38 Irreducibility criteria in rings of polynomials

38.1 Theorem. Let \(p(x), q(x) \in R[x] \) be polynomials such that
\[
p(x) = a_0 + a_1 x + \ldots + a_n x^n, \quad q(x) = b_0 + b_1 x + \ldots + b_m x^m
\]
and \(a_n, b_m \neq 0 \). If \(b_m \) is a unit in \(R \) then there exist unique polynomials \(r(x), s(x) \in R[x] \) such that
\[
p(x) = s(x)q(x) + r(x)
\]
and either \(\deg r(x) < \deg q(x) \) or \(r(x) = 0 \).

Proof. Exercise (or see Hungerford p.158).

38.2 Definition. If \(R \) is a ring and \(p(x) \in R[x] \) then \(p(x) \) defines a function
\[
p: R \rightarrow R, \quad a \mapsto p(a)
\]
A function of this form is called a polynomial function.

38.3 Note. Different polynomials may define the same polynomial function.

E.g. if \(p(x) = x + 1 \), \(q(x) = x^2 + 1 \) are polynomials in \(\mathbb{Z}/2\mathbb{Z}[x] \) then \(p(x), q(x) \) define the same function \(\mathbb{Z}/2\mathbb{Z} \rightarrow \mathbb{Z}/2\mathbb{Z} \):
\[
p(0) = q(0) = 1, \quad p(1) = q(1) = 0
\]

38.4 Definition. Let \(p(x) \in R[x] \). An element \(a \in R \) is a root of \(p(x) \) if \(f(a) = 0 \).
38.5 Proposition. An element \(a \in R \) is a root of \(p(x) \in R[x] \) iff \((x - a) \mid p(x) \).

Proof.

(\(\Leftarrow\)) If \((x - a) \mid p(x) \) then \(p(x) = q(x)(x - a) \) for some \(q(x) \in R[x] \) so \(p(a) = q(a)(a - a) = 0 \).

(\(\Rightarrow\)) Assume that \(p(a) = 0 \). By Theorem 38.1 we have

\[
p(x) = s(x)(x - a) + r(x)
\]

where \(\deg r(x) = 0 \), so \(r(x) = b \) for some \(b \in R \). This gives

\[
0 = p(a) = s(a)(a - a) + b
\]

Thus \(b = 0 \), and so \(p(x) = s(x)(x - a) \).

\[\square\]

38.6 Corollary. If \(R \) is an integral domain and \(0 \neq p(x) \in R[x] \) is a polynomial of degree \(n \) then \(R[x] \) has at most \(n \) distinct roots in \(R \).

Proof. Let \(a_1, \ldots, a_k \in R \) be all distinct roots of \(p(x) \). By (38.5) we have

\[
p(x) = (x - a_1)q_1(x)
\]

for some \(q_1(x) \in R[x] \). Also we have

\[
0 = p(a_2) = (a_2 - a_1)q_1(a_2)
\]

Since \(R \) is an integral domain and \(a_2 - a_1 \neq 0 \) we obtain \(q_1(a_2) \), and so

\[
q_2(x) = (x - a_2)q_3(x)
\]

for some \(q_3(x) \in R[x] \). This gives

\[
p(x) = (x - a_1)(x - a_2)q_3(x)
\]

151
By induction we obtain
\[p(x) = (x - a_1) \cdot \ldots \cdot (x - a_k) q_k(x) \]
for some \(0 \neq q_k(x) \in R[x] \). This gives
\[\deg p(x) = \deg((x - a_1) \cdot \ldots \cdot (x - a_k) q_k(x)) \geq k \]

38.7 Note.

1) Corollary 38.6 in not true if \(R \) is not an integral domain. E.g. if \(R = \mathbb{Z}/6\mathbb{Z} \) and \(p(x) = x^2 + x \) then \(0, 2, 3 \in \mathbb{Z}/6\mathbb{Z} \) are roots of \(p(x) \).

2) Corollary 38.6 is not true is \(R \) is a non-commutative ring (even if \(R \) is an integral domain). For example, if \(R = \mathbb{H} \) and \(p(x) = x^2 + 1 \) then \(\pm i, \pm j, \pm k \in \mathbb{H} \) are roots of \(p(x) \).

Recall:

33.7 Proposition. If \(p \in \mathbb{Z} \) is a prime number then the groups of units \((\mathbb{Z}/p\mathbb{Z})^*\) of the ring \(\mathbb{Z}/p\mathbb{Z} \) is a cyclic group of order \((p - 1)\).

Proof. For a prime \(q \) let \(P_q \) be the Sylow \(q \)-subgroup of \((\mathbb{Z}/p\mathbb{Z})^*\). We have
\[(\mathbb{Z}/p\mathbb{Z})^* = \bigoplus_{q | (p-1)} P_q \]
It suffices to show that \(P_q \) is cyclic for ever \(q \mid (p - 1) \).

Let \(a \) be an element of the largest order in \(P_q \). We will show that \(P_q = \langle a \rangle \). Let \(|a| = q^m \). If \(b \in P_q \) then \(|b| = q^k \) for some \(k \leq m \). As a consequence all elements of \(P_q \) are roots of the polynomial
\[r(x) = x^{q^m} - 1 \]
On the other hand by (38.6) \(r(x) \) has at most \(q^m \) distinct roots in \(\mathbb{Z}/p\mathbb{Z} \). It follows that

\[
|P_q| \leq q^m = |\langle a \rangle|
\]

Since \(\langle a \rangle \subseteq P_q \) this shows that \(\langle a \rangle = P_q \).

38.8 Note. Proposition 33.7 can be generalized as follows: if \(\mathbb{F} \) is a finite field and \(\mathbb{F}^* = \mathbb{F} - \{0\} \) is the multiplicative group of units of \(\mathbb{F} \) then \(\mathbb{F}^* \) is a cyclic group. The proof is the same as for \(\mathbb{F} = \mathbb{Z}/p\mathbb{Z} \).

38.9 Proposition. If \(\mathbb{F} \) is a field and \(p(x) \in \mathbb{F}[x] \) is a polynomial such that \(\deg p(x) > 1 \) and \(p(x) \) has a root in \(\mathbb{F} \) then \(p(x) \) is not irreducible in \(\mathbb{F}[x] \).

Proof. By (38.6) we have \(p(x) = q(x)(x-a) \) for some \(q(x) \in \mathbb{F}[x] \). Since \(\deg p(x) > 1 \) we have \(\deg q(x) > 0 \), so \(q(x) \) and \((x-a) \) are not units in \(\mathbb{R}[x] \).

38.10 Corollary. Let \(R \) be a UFD and let \(K \) be the field of fractions of \(R \). If \(p(x) \in R[x] \) is a polynomial such that \(\deg p(x) > 1 \) and \(p(x) \) has a root in \(K \) then \(p(x) \) is not irreducible in \(R[x] \).

Proof. By (38.6) \(p(x) \) is not irreducible in \(K[x] \), so by (37.10) it is also not irreducible in \(R[x] \).

38.11 Proposition (Integral root test). Let \(R \) be a UFD, let \(K \) be the field of fractions of \(R \) and let \(p(x) \in R[x] \) be a polynomial

\[
p(x) = a_0 + a_1 x + \ldots + a_n x^n
\]

153
where $a_n \neq 0$. If $a \in K$ is a root of $p(x)$ then a is of the form $a = b/s$ where $b, s \in R$, $\gcd(b, s) \sim 1$, $b \mid a_0$ and $s \mid a_n$.

In particular, in $a_n = 1$ then $a \in R$ and $a \mid a_0$.

Proof. Exercise. \qed

38.12 Theorem (Eisenstein Irreducibility Criterion). *Let R be a UFD. If

$$p(x) = a_0 + a_1 x + \ldots + a_n x^n$$

is a primitive polynomial in $R[x]$ such that $\deg p(x) > 0$, and $b \in R$ is an irreducible element $b \in R$ such that

1) $b \nmid a_n$
2) $b \mid a_i$ for all $i < n$
3) $b^2 \nmid a_0$

then $p(x)$ is irreducible in $R[x]$.\]

Proof. Assume that $p(x)$ is not irreducible in $R[x]$. Then we have

$$p(x) = q(x)r(x)$$

for some non-units $q(x), r(x) \in R[x]$. Since $p(x)$ is primitive we must have $\deg q(x), \deg r(x) > 0$. Let

$$q(x) = c_0 + c_1 x + \ldots + c_k x^k, \quad r(x) = d_0 + d_1 x + \ldots + d_l x^l$$

Notice that since b is irreducible it is a prime element of R and so by (32.4) the ideal $\langle b \rangle$ is a prime ideal of R. As a consequence $R/\langle b \rangle$ is an integral domain. Consider the canonical epimorphism $\pi: R \to R/\langle b \rangle$ and the induced homomorphism of rings of polynomials

$$\bar{\pi}: R[x] \longrightarrow R/\langle b \rangle[x]$$

154
By assumption on $p(x)$ we have
\[\tilde{\pi}(p(x)) = \pi(a_n)x^n \]

On the other hand we have
\[\tilde{\pi}(p(x)) = \tilde{\pi}(q(x))\tilde{\pi}(r(x)) \]

Check: since $R/\langle b \rangle$ is an integral domain we must have
\[\tilde{\pi}(q(x)) = \pi(c_k)x^k, \quad \tilde{\pi}(r(x)) = \pi(d_l)x^l \]

In particular $\pi(c_0) = \pi(d_0) = 0$, so $b \mid c_0$ and $b \mid d_0$. On the other hand $a_0 = c_0d_0$, so $b^2 \mid a_0$ which contradicts the assumption on a_0. \qed

\textbf{38.13 Example.} If $p \in \mathbb{Z}$ is a prime number then $q(x) = x^n - p$ is an irreducible polynomial in $\mathbb{Z}[x]$.

Note: by (37.10) $q(x)$ is also irreducible in $\mathbb{Q}[x]$. This shows in particular that $q(x)$ has no roots in \mathbb{Q}, and so that $n\sqrt{p}$ is an irrational number for all primes p and all $n > 1$.

\textbf{38.14 Proposition.} Let R be an integral domain and let $c \in R$. A polynomial $p(x) = \sum_{i=0}^{n} a_i x^i$ is irreducible iff the polynomial $p(x - c) = \sum_{i=0}^{n} (x - c)^i$ is irreducible.

\textbf{Proof.} It is enough to notice that the map
\[f: R[x] \to R[x], \quad f(p(x)) = p(x - c) \]

is an isomorphism of rings. \qed
38.15 Example. Let $p \in \mathbb{Z}$ be a prime number, and let

$$q(x) = x^{p-1} + x^{p-2} + \ldots + x + 1$$

We will show that $q(x)$ is irreducible in $\mathbb{Z}[x]$. We have

$$q(x) = \frac{x^p - 1}{x - 1}$$

This gives

$$q(x + 1) = \frac{(x + 1)^p - 1}{(x + 1) - 1} = \frac{(x + 1)^p - 1}{x} = x^{p-1} + \binom{p}{1} x^{p-2} + \binom{p}{2} x^{p-3} + \ldots + \binom{p}{p-1}$$

Since $p \mid \binom{p}{k}$ for $k = 1, \ldots, p - 1$ and $p^2 \nmid \binom{p}{p-1}$ the polynomial $q(x + 1)$ is irreducible in $\mathbb{Z}[x]$, and so $q(x)$ is also irreducible.
39 Modules

39.1 Definition. Let R be a (possibly non-commutative) ring. A **left R-module** is an abelian group M together with a map
\[R \times M \rightarrow M, \quad (r, m) \mapsto rm \]
satisfying the following conditions:

1) $r(m + n) = rm + rn$
2) $(r + s)m = rm + sm$
3) $(rs)m = r(sm)$
4) If R is a ring with identity $1 \in R$ then $1m = m$ for all $m \in M$.

A **right R-module** is defined analogously.

39.2 Definition. If M, N are left R-modules then a map
\[f : M \rightarrow N \]
is a **left R-modules homomorphism** if f is a homomorphism of abelian groups and $f(rm) = rf(m)$ for all $r \in R$, $m \in M$.

39.3 Note. Left R-modules and their homomorphisms form a category R-Mod. Analogously, right R-modules form a category Mod-R.

39.4 Examples.

1) If I is a left ideal of R then I is a left module of R. In particular R is a left R-module.

2) If \mathbb{F} is a field then (or right) \mathbb{F}-modules are vector spaces over \mathbb{F}, and homomorphisms of \mathbb{F}-modules are \mathbb{F}-linear maps.
3) The category of left (or right) \mathbb{Z}-modules is isomorphic to the category of abelian groups: if G is an abelian group then G has a natural \mathbb{Z}-module structure such that for $n \in \mathbb{Z}$ and $g \in G$ we have

\[ng = \begin{cases}
\underbrace{g + \cdots + g}_{\text{n times}} & \text{for } n > 0 \\
0 & \text{for } n = 0 \\
\underbrace{(-g) + \cdots + (-g)}_{|n| \text{ times}} & \text{for } n < 0
\end{cases} \]

4) Let G be an abelian group, and let $R = \text{Hom}(G, G)$ be the ring of homomorphisms of G (with the usual addition of homomorphisms and multiplication given by composition of homomorphisms). We have a map

\[R \times G \to G, \quad \varphi \cdot g = \varphi(g) \]

Check: this defines a left R-module structure on G.

Note: the multiplication

\[G \times R \to G, \quad g \cdot \varphi = \varphi(g) \]

does not define a right module structure on G. Indeed, for $\varphi, \psi \in R$ we have:

\[(g \cdot \psi) \cdot \varphi = (\psi(g)) \cdot \varphi = \varphi(\psi(g)) \]

One the other hand $g \cdot (\psi \cdot \varphi) = \psi(\varphi(g))$. Since in general $\psi(\varphi(g)) \neq \varphi(\psi(g))$ we get that

\[(g \cdot \psi) \cdot \varphi \neq g \cdot (\psi \cdot \varphi) \]

39.5 Note. For a ring R define a ring R^{op} as follows:

- $R^{\text{op}} = R$ as abelian group
- $r \cdot_{\text{new}} s := sr$
We have:

\[(\text{left } R\text{-modules}) = (\text{right } R^{\text{op}}\text{-modules})\]

(check!). In particular, if \(R\) is a commutative ring then \(R = R^{\text{op}}\), and so

\[(\text{left } R\text{-modules}) = (\text{right } R\text{-modules})\]

Note. From now on by an \(R\)-module we will understand a *left* \(R\)-module.
40 Basic operations on modules

40.1 Definition. If M in an R-module then a submodule of M is an additive subgroup $N \subseteq M$ such that if $r \in R$ and $n \in N$ then $rn \in N$.

40.2 Note. If $f: M \to N$ is a homomorphism of R-modules then $\ker(f) := f^{-1}(0)$ is a submodule of M and $\operatorname{Im}(f) := f(M)$ is a submodule of N.

40.3 Definition. If M is an R-module and S is a subset of M then the module generated by S is the submodule $\langle S \rangle \subseteq M$ that is the smallest submodule of M containing S.

If $\langle S \rangle = M$ then we say that the set S generates M. A module M is finitely generated if $M = \langle S \rangle$ for some finite set S.

40.4 Note. If M is an R-module and $S \subseteq M$ then

$$\langle S \rangle = \{ r_1m_1 + \ldots + r_km_k \mid r_i \in R, m_i \in M \}$$

40.5 Definition. If M is an R-module and $N \subseteq M$ is a submodule then the quotient module M/N is the quotient abelian group with multiplication defined by

$$r(m + N) := rm + N$$

for $r \in R, m + N \in M/N$.

40.6 First Isomorphism Theorem. If $f: M \to N$ is a homomorphism of R-modules that is onto then

$$M/\ker(f) \cong N$$
Proof. Similar to the proof of Theorem 6.1 for groups.

40.7 Definition. If \(\{ M_i \}_{i \in I} \) is a family of \(R \)-modules then the direct product of \(\{ M_i \}_{i \in I} \) is the module

\[
\prod_{i \in I} M_i = \{ (m_i)_{i \in I} \mid m_i \in M_i \}
\]

with addition and multiplication by \(R \) defined coordinatewise.

The direct sum of \(\{ M_i \}_{i \in I} \) is the submodule \(\bigoplus_{i \in I} M_i \) of \(\prod_{i \in I} M_i \) given by

\[
\bigoplus_{i \in I} M_i := \{ (m_i)_{i \in I} \mid m_i \neq 0 \text{ for finitely many } i \text{ only } \}
\]

40.8 Note. Recall the notions of categorical products and coproducts (Section 12). Check:

\(\prod_{i \in I} M_i \) is the categorical product of the family \(\{ M_i \}_{i \in I} \) in the category \(R\text{-Mod} \).

\(\bigoplus_{i \in I} M_i \) is the categorical coproduct of \(\{ M_i \}_{i \in I} \) in the category \(R\text{-Mod} \).
41 Free modules and vector spaces

41.1 Definition. Let M be an R-module. A set $S \subseteq M$ is linearly independent if for any distinct $m_1, \ldots, m_k \in S$ we have

$$r_1 m_1 + \ldots + r_k m_k = 0$$

only if $r_1 = \ldots = r_k = 0$.

41.2 Definition. Let M be an R-module. A set $B \subseteq M$ is a basis of M if B is linearly independent and B generates M.

41.3 Definition. An R-module M is a free module if M has a basis.

41.4 Theorem. Let R be a ring with identity $1 \neq 0$ and let F be an R-module. The following conditions are equivalent.

1) F is a free module.

2) $F \cong \bigoplus_{i \in I} R$ for some set I.

3) There is a non-empty subset $B \subseteq F$ satisfying the following universal property. For any R-module M and any map of sets $f: B \to M$ there is a unique R-module homomorphism $\bar{f}: F \to N$ such that the following diagram commutes:

$$\begin{array}{ccc}
B & \xrightarrow{f} & M \\
\downarrow i & & \downarrow \bar{f} \\
F & \xleftarrow{f} & \\
\end{array}$$

Here $i: B \hookrightarrow F$ is the inclusion map.

Proof. Exercise. \qed

162
41.5 Note. Let $U: R\text{-Mod} \to \text{Set}$ be the forgetful functor. Check: U has a left adjoint functor

$$F_{R\text{Mod}}: \text{Set} \to R\text{-Mod}$$

One can show that an R-module M is free iff $M \cong F_{R\text{Mod}}(S)$ for some set S (exercise).

41.6 Note. We have:

$$(\text{free } \mathbb{Z}\text{-modules}) = (\text{free abelian groups})$$

41.7 Theorem. If R is a division ring then every R-module is free.

Proof. Let M be an R-module. It is enough to show that M has a basis.

Let S be the set of all linearly independent subsets of M ordered with respect to inclusion of subsets.

Claim 1. S has a maximal element.

Indeed, by Zorn’s Lemma (29.10) it is enough to show that every chain in S has an upper bound. Let then $T = \{B_i\}_{i \in I}$ be a chain in S. Take $B := \bigcup_{i \in I} B_i$. We have $B_i \subseteq B$ for all $i \in I$, so it suffices check that B is a linearly independent. Let then $b_1, \ldots, b_k \in B$, and assume that

$$r_1b_1 + \ldots + r_kb_k = 0$$

We need to show that $r_1 = \ldots = r_k = 0$.

We have $b_1 \in B_{i_1}, \ldots, b_k \in B_{i_k}$ for some $i_1, \ldots, i_k \in I$. Since $\{B_i\}_{i \in I}$ is a chain we can assume that

$$B_{i_1} \subseteq B_{i_2} \subseteq \ldots \subseteq B_{i_k}$$

As a consequence $b_1, \ldots, b_k \in B_{i_k}$, and since B_{i_k} is a linearly independent set we get that $r_1 = \ldots = r_k = 0$. 163
Claim 2. If \(B \) is a maximal element in \(S \) then \(B \) is a basis of \(M \).

Indeed, by the definition of \(S \) the set \(B \) is linearly independent so it is enough to show that \(\langle B \rangle = M \). Assume that this is not true, and let \(m \in M - \langle B \rangle \). Take the set

\[
B' = B \cup \{ m \}
\]

Notice that the set \(B' \) is linearly independent. To see this, assume that for some \(b_1, \ldots, b_k \in B \) and \(r_1, \ldots, r_k, s \in R \) we have

\[
r_1 b_1 + \ldots + r_k b_k + sm = 0
\]

If \(s \neq 0 \) then \(s \) is a unit (since \(R \) is a division ring) and so

\[
m = (-s^{-1}r_1)b_1 + \ldots + (-s^{-1}r_k)b_k
\]

This is however impossible since \(m \not\in \langle B \rangle \). Therefore \(s = 0 \), and so

\[
r_1 b_1 + \ldots + r_k b_k = 0
\]

Linear independence of \(B \) gives then \(s = r_1 = \ldots = r_k = 0 \)

As a consequence we get that \(B' \in S \) and \(B \subsetneq B' \). This is however a contradiction since \(B \) is a maximal element of \(S \).

\[\square\]

41.8 Note. Let \(R \) be a division algebra and let \(M \) be an \(R \)-module. By a similar argument as in the proof of Theorem 41.7 we can show that:

1) if \(V \subseteq M \) is a linearly independent set then there is a basis \(B \) of \(M \) such that \(V \subseteq B \);

2) if \(V \subseteq M \) is a set generating \(M \) then there is a basis \(B \) of \(M \) such that \(B \subseteq V \).
41.9 Note.

1) For a general ring R it is not true that a linearly independent subset V of a free R-module F can be always extended to a basis. Take e.g.

$$R = \mathbb{Z}, \quad F = \mathbb{Z}, \quad V = \{2\}$$

2) It is also not true in general that if V is a set generating a free R-module then V contains a basis of F. Take e.g.

$$R = \mathbb{Z}, \quad F = \mathbb{Z}, \quad V = \{2, 3\}$$