14 | Compact Spaces

14.1 Definition. Let X be a topological space. A cover of X is a collection $\mathcal{Y} = \{Y_i\}_{i \in I}$ of subsets of X such that $\bigcup_{i \in I} Y_i = X$.

If the sets Y_i are open in X for all $i \in I$ then \mathcal{Y} is an open cover of X. If \mathcal{Y} consists of finitely many sets then \mathcal{Y} is a finite cover of X.

14.2 Definition. Let $\mathcal{Y} = \{Y_i\}_{i \in I}$ be a cover of X. A subcover of \mathcal{Y} is a cover \mathcal{Y}' of X such that every element of \mathcal{Y}' is in \mathcal{Y}.

14.3 Example. Let $X = \mathbb{R}$. The collection

$$\mathcal{Y} = \{(m, n) \subseteq \mathbb{R} | m, n \in \mathbb{Z}, m < n\}$$

is an open cover of \mathbb{R}, and the collection

$$\mathcal{Y}' = \{(-n, n) \subseteq \mathbb{R} | n = 1, 2, \ldots\}$$

is a subcover of \mathcal{Y}.

14.4 Definition. A space X is compact if every open cover of X contains a finite subcover.

14.5 Example. A discrete topological space X is compact if and only if X consists of finitely many points.
14.6 Example. Let X be a subspace of \mathbb{R} given by
$$X = \{0\} \cup \{\frac{1}{n} \mid n = 1, 2, \ldots\}$$

The space X is compact. Indeed, let $\mathcal{U} = \{U_i\}_{i \in I}$ be any open cover of X and let $0 \in U_0$. Then there exists $N > 0$ such that $\frac{1}{n} \in U_i$ for all $n > N$. For $n = 1, \ldots, N$ let $U_{i_n} \in \mathcal{U}$ be a set such that $\frac{1}{n} \in U_{i_n}$. We have:
$$X = U_{i_0} \cup U_{i_1} \cup \cdots \cup U_{i_N}$$
so $\{U_{i_0}, U_{i_1}, \ldots, U_{i_N}\}$ is a finite subcover of \mathcal{U}.

14.7 Example. The real line \mathbb{R} is not compact since the open cover
$$\mathcal{Y} = \{(n - 1, n + 1) \subseteq \mathbb{R} \mid n \in \mathbb{Z}\}$$
does not have any finite subcover.

14.8 Proposition. Let $f: X \to Y$ be a continuous function. If X is compact and f is onto then Y is compact.

Proof. Exercise. \hfill \square

14.9 Corollary. Let $f: X \to Y$ be a continuous function. If $A \subseteq X$ is compact then $f(A) \subseteq Y$ is compact.

Proof. The function $f|_A: A \to f(A)$ is onto, so this follows from Proposition 14.8. \hfill \square

14.10 Corollary. Let X, Y be topological spaces. If X is compact and $Y \cong X$ then Y is compact.

Proof. Follows from Proposition 14.8. \hfill \square

14.11 Example. For any $a < b$ the open interval $(a, b) \subseteq \mathbb{R}$ is not compact since $(a, b) \not\cong \mathbb{R}$.

14.12 Proposition. For any $a < b$ the closed interval $[a, b] \subseteq \mathbb{R}$ is compact.

Proof. Let \mathcal{U} be an open cover of $[a, b]$ and let
$$A = \{x \in [a, b] \mid \text{the interval } [a, x] \text{ can be covered by a finite number of elements of } \mathcal{U}\}$$
Let $x_0 := \sup A$.

Step 1. We will show that $x_0 > a$. Indeed, let $U \in \mathcal{U}$ be a set such that $a \in U$. Since U is open we have $[a, a + \varepsilon) \subseteq U$ for some $\varepsilon > 0$. It follows that $x \in A$ for all $x \in [a, a + \varepsilon)$. Therefore $x_0 \geq a + \varepsilon$.
14. Compact Spaces

Step 2. Next, we will show that \(x_0 \in A \). Let \(U_0 \in \mathcal{U} \) be a set such that \(x_0 \in U_0 \). Since \(U_0 \) is open and \(x_0 > a \) there exists \(\varepsilon_1 > 0 \) such that \((x_0 - \varepsilon_1, x_0) \subseteq U_0 \). Also, since \(x_0 = \sup A \) there is \(x \in A \) such that \(x \in (x_0 - \varepsilon_1, x_0] \). Notice that

\[
[a, x_0] = [a, x] \cup (x_0 - \varepsilon_1, x_0]
\]

By assumption the interval \([a, x_0]\) can be covered by a finite number of sets from \(\mathcal{U} \) and \((x_0 - \varepsilon_1, x_0]\) is covered by \(U_0 \in \mathcal{U} \). As a consequence \([a, x_0]\) can be covered by a finite number of elements of \(\mathcal{U} \), and so \(x_0 \in A \).

Step 3. In view of Step 2 it suffices to show that \(x_0 = b \). To see this take again \(U_0 \in \mathcal{U} \) to be a set such that \(x_0 \in U_0 \). If \(x_0 < b \) then there exists \(\varepsilon_2 > 0 \) such that \([x_0, x_0 + \varepsilon_2] \subseteq U_0 \). Notice that for any \(x \in (x_0, x_0 + \varepsilon_2) \) the interval \([a, x]\) can be covered by a finite number of elements of \(\mathcal{U} \), and thus \(x \in A \). Since \(x > x_0 \) this contradicts the assumption that \(x_0 = \sup A \).

\[\square \]

14.13 Proposition. Let \(X \) be a compact space. If \(Y \) is a closed subspace of \(X \) then \(Y \) is compact.

Proof. Exercise. \[\square \]

14.14 Proposition. Let \(X \) be a Hausdorff space and let \(Y \subseteq X \). If \(Y \) is compact then it is closed in \(X \).

Proposition 14.14 is a direct consequence of the following fact:

14.15 Lemma. Let \(X \) be a Hausdorff space, let \(Y \subseteq X \) be a compact subspace, and let \(x \in X \setminus Y \). There exists open sets \(U, V \subseteq X \) such that \(x \in U, Y \subseteq V \) and \(U \cap V = \emptyset \).

Proof. Since \(X \) is a Hausdorff space for any point \(y \in Y \) there exist open sets \(U_y \) and \(V_y \) such that \(x \in U_y, y \in V_y \) and \(U_y \cap V_y = \emptyset \). Notice that \(Y \subseteq \bigcup_{y \in Y} V_y \). Since \(Y \) is compact we can find a finite number of points \(y_1, \ldots, y_n \in Y \) such that

\[
Y \subseteq V_{y_1} \cup \cdots \cup V_{y_n}
\]

Take \(V = V_{y_1} \cup \cdots \cup V_{y_n} \) and \(U := U_{y_1} \cap \cdots \cap U_{y_n} \).
14. Compact Spaces

Proof of Proposition 14.14. By Lemma 14.15 for each point \(x \in X \setminus Y \) we can find an open set \(U_x \subseteq X \) such that \(x \in U_x \) and \(U_x \subseteq X \setminus Y \). Therefore \(X \setminus Y \) is open and so \(Y \) is closed.

14.16 Corollary. Let \(X \) be a compact Hausdorff space. A subspace \(Y \subseteq X \) is compact if and only if \(Y \) is closed in \(X \).

14.17 Proposition. Let \(f : X \to Y \) be a continuous function, where \(X \) is a compact space and \(Y \) is a Hausdorff space. For any closed set \(A \subseteq X \) the set \(f(A) \) is closed in \(Y \).

Proof. Let \(A \subseteq X \) be a closed set. By Proposition 14.13 \(A \) is a compact space and thus by Corollary 14.9 \(f(A) \) is a compact subspace of \(Y \). Since \(Y \) is a Hausdorff space, using Proposition 14.14 we obtain that \(f(A) \) is closed in \(Y \).

14.18 Proposition. Let \(f : X \to Y \) be a continuous bijection. If \(X \) is a compact space and \(Y \) is a Hausdorff space then \(f \) is a homeomorphism.

Proof. This follows from Proposition 6.13 and Proposition 14.18.

14.19 Theorem. If \(X \) is a compact Hausdorff space then \(X \) is normal.

Proof. Step 1. We will show first that \(X \) is a regular space (9.9). Let \(A \subseteq X \) be a closed set and let \(x \in X \setminus A \). We need to show that there exists open sets \(U, V \subseteq X \) such that \(x \in U \), \(A \subseteq V \) and \(U \cap V = \emptyset \). Notice that by Proposition 14.13 the set \(A \) is compact. Since \(X \) is Hausdorff existence of the sets \(U \) and \(V \) follows from Lemma 14.15.

Step 2. Next, we show that \(X \) is normal. Let \(A, B \subseteq X \) be closed sets such that \(A \cap B = \emptyset \). By Step 1 for every \(x \in A \) we can find open sets \(U_x \) and \(V_x \) such that \(x \in U_x \), \(B \subseteq V_x \) and \(U_x \cap V_x = \emptyset \). The collection \(\mathcal{U} = \{ U_x \}_{x \in A} \) is an open cover of \(A \). Since \(A \) is compact there is a finite number of points...
$x_1, \ldots, x_m \in A$ such that \{\(U_{x_1}, \ldots, U_{x_m}\)\} is a cover of \(A\). Take \(U := \bigcup_{i=1}^{m} U_{x_i}\) and \(V := \bigcap_{i=1}^{m} V_{x_i}\). Then \(U\) and \(V\) are open sets, \(A \subseteq U, B \subseteq V\) and \(U \cap V = \emptyset\). \(\square\)

Exercises to Chapter 14

E14.1 Exercise. Prove Proposition 14.8.

E14.3 Exercise. Let \(X\) be a Hausdorff space and let \(A \subseteq X\). Show that the following conditions are equivalent:

(i) \(A\) is compact

(ii) \(A\) is closed in \(X\) and in any open cover \{\(U_i\)\}_{i \in I} of \(X\) there exists a finite number of sets \(U_{i_1}, \ldots, U_{i_n}\) such that \(A \subseteq \bigcup_{k=1}^{n} U_{i_k}\).

E14.4 Exercise. a) Let \(X\) be a compact space and for \(i = 1, 2, \ldots\) let \(A_i \subseteq X\) be a non-empty closed set. Show that if \(A_{i+1} \subseteq A_i\) for all \(i\) then \(\bigcap_{i=1}^{\infty} A_i = \emptyset\).

b) Give an example of a (non-compact) space \(X\) and closed non-empty sets \(A_i \subseteq X\) satisfying \(A_{i+1} \subseteq A_i\) for \(i = 1, 2, \ldots\) such that \(\bigcap_{i=1}^{\infty} A_i = \emptyset\).

E14.5 Exercise. a) Let \(X\) be a compact Hausdorff space and for \(i = 1, 2, \ldots\) let \(A_i \subseteq X\) be a closed, connected set. Show that if \(A_{i+1} \subseteq A_i\) for all \(i\) then \(\bigcap_{i=1}^{\infty} A_i\) is connected.

b) Give an example of a space \(X\) and subspaces \(A_1 \subseteq A_2 \subseteq \ldots \subseteq X\) such that \(A_i\) is connected for each \(i\) but \(\bigcap_{i=1}^{\infty} A_i\) is not connected.

E14.6 Exercise. The goal of this exercise is to show that if \(f : X \to \mathbb{R}\) is a continuous function and \(X\) is a compact space then there exist points \(x_1, x_2 \in X\) such that \(f(x_1)\) is the minimum value of \(f\) and \(f(x_2)\) is the maximum value.

Let \(X\) be a compact space and let \(f : X \to \mathbb{R}\) be a continuous function.

a) Show that there exists \(C > 0\) such that \(|f(x)| < C\) for all \(x \in X\).

b) By part a) there exists \(C > 0\) such that \(f(X) \subseteq [-C, C]\). This implies that \(\inf f(X) \neq -\infty\) and \(\sup f(X) \neq +\infty\). Show that there are points \(x_1, x_2 \in X\) such that \(f(x_1) = \inf f(X)\) and that \(f(x_2) = \sup f(X)\).

E14.7 Exercise. Let \((X, g)\) be a compact metric space, and let \(f : X \to X\) be a function such that \(q(f(x), f(y)) < q(x, y)\) for all \(x, y \in X, x \neq y\).

a) Show that the function \(\varphi : X \to \mathbb{R}\) given by \(\varphi(x) = q(x, f(x))\) is continuous.
b) Show that there exists a unique point \(x_0 \in X \) such that \(f(x_0) = x_0 \).

E14.8 Exercise. Let \(f: X \to Y \) be a continuous map such for any closed set \(A \subseteq X \) the set \(f(A) \) is closed in \(Y \).

a) Let \(y \in Y \). Show that if \(U \subseteq X \) is an open set and \(f^{-1}(y) \subseteq U \) then there exists an open set \(V \subseteq Y \) such that \(y \in V \) and \(f^{-1}(V) \subseteq U \).

b) Show that if \(Y \) is compact and \(f^{-1}(y) \) is compact for each \(y \in Y \) then \(X \) is compact.

E14.9 Exercise. Let \(X, Y \) be topological spaces, and let \(p_1: X \times Y \to X \) be the projection map: \(p_1(x, y) = x \). Show that if \(Y \) is compact then for any closed set \(A \subseteq X \times Y \) the set \(p_1(A) \subseteq X \) is closed in \(X \).

E14.10 Exercise. A continuous function \(f: X \to Y \) is a **local homeomorphism** if for each point \(x \in X \) there exists an open neighborhood \(U_x \subseteq X \) such that \(f(U_x) \) is open in \(Y \) and \(f|_{U_x}: U_x \to f(U_x) \) is a homeomorphism.

a) Assume that \(f: X \to Y \) is a local homeomorphism where \(X \) is a compact space. Show that for each \(y \in Y \) the set \(f^{-1}(y) \) consists of finitely many points.

b) Assume that \(f: X \to Y \) is a local homeomorphism where \(X \) is a compact Hausdorff space and \(Y \) is a Hausdorff space. Let \(y \in Y \) be a point such that \(f^{-1}(y) \) consists of \(n \) points. Show that there exists an open set \(V \subseteq Y \) such that \(y \in V \) and that for each \(y' \in V \) the set \(f^{-1}(y') \) consists of \(n \) points.