Norbert Mahouton Hounkonnou

Born:

place:

thesis:: Institute of Mathematical and Physical Sciences, Benin

personal or universal URL:

email:PUBLICATION

BOOKS

David Atkinson &

Mahouton Norbert Hounkonnou.Quantum Mechanics -- a Self-Contained Course, Rinton Press. This book is the first in a series of three volumes devoted to quantum mechanics and to quantum field theory. It is self-contained.The prerequisites are a knowledge of integral calculus and partial differential equations, as well as Newton's mechanics of point masses. New subjects are developed in requisite detail at the various points where they are required. The mathematics is explicit but kept in check, and the reader does not get bogged down in annoying generalizations that might distract him or her from the physics. In each chapter, ten problems are given. The student is strongly advised to try them all by himself or herself before looking at our full solutions in the third volume.Edited: Contemporary problems in mathematical physics. Proceedings of the 1st International Workshop held in Cotonou, October 31--November 5, 1999. Edited by Jan Govaerts,

M. Norbert Hounkonnouand William A. Lester, Jr. World Scientific Publishing Co., Inc., River Edge, NJ, 2000. xii+377 pp. ISBN: 981-02-4297-2RESEARCH

Mathematical Physics

Bangerezako, G.;Hounkonnou, M. N.The transformation of polynomial eigenfunctions of linear second-order difference operators: a special case of Meixner polynomials. J. Phys. A34(2001), no. 28, 5653--5666.Hounkonnou, M. N.; Avossevou, G. Y. H.Spectral and resonance properties of $\delta$- and $\delta'$-type interactions in relativistic quantum mechanics. J. Math. Phys.42(2001), no. 1, 30--51.Hounkonnou, M. N.; Hounga, C.; Ronveaux,A. Discrete semi-classical orthogonal polynomials: generalized Charlier. J. Comput. Appl. Math.114(2000), no. 2, 361--366.Hounkonnou, M. N.; Avossevou, G. Y. H.Exactly solvable models of $\delta'$-sphere interactions in relativistic quantum mechanics. J. Math. Phys.41(2000), no. 4, 1718--1734.Hounkonnou, M. N.; Avossevou, G. Y. H.Relativistic scattering theory for finitely many $\delta$-sphere interactions supported by concentric spheres. J. Math. Phys.41(2000), no. 4, 1735--1744.- Foupouagnigni, Mama;
Hounkonnou, M. Norbert; Ronveaux, AndrÈThe fourth-order difference equation satisfied by the associated orthogonal polynomials of the $\Delta$-Laguerre-Hahn class. Orthogonal polynomials and computer algebra. J. Symbolic Comput.28(1999), no. 6, 801--818.Hounkonnou, M. N.; Belmehdi, S.; Ronveaux, A.Linearization of arbitrary products of classical orthogonal polynomials. Appl. Math. (Warsaw)27(2000), no. 2, 187--196.- Avossevou, G. Y. H.;
Hounkonnou, M. N.Analytically solvable models of relativistic $\delta'$-sphere interactions with first type boundary conditions. Contemporary problems in mathematical physics (Cotonou, 1999), 347--365, World Sci. Publishing, River Edge, NJ, 2000.- Azatassou, E.;
Hounkonnou, M. N.; Ronveaux, A.Laguerre-Freud equations for semi-classical operators. Contemporary problems in mathematical physics (Cotonou, 1999), 336--346, World Sci. Publishing, River Edge, NJ, 2000.- BaloÔtcha, E.;
Hounkonnou, M. N.Quantum description of rigidly or adiabatically constrained four-particle systems and supersymmetry. J. Math. Phys. 40 (1999), no. 12, 6133--6144.- Avossevou, G. Y. H.;
Hounkonnou, M. N.Relativistic scattering theory for a $\delta$ sphere plus a Coulomb interaction with boundary conditions of second type. J. Math. Phys.41(2000), no. 1, 24--39.Hounkonnou, M. N.; Mendy, J. E. B.Exact solutions of the Dirac equation in a nonfactorizable metric. J. Math. Phys.40(1999), no. 8, 3827--3842.Hounkonnou, M. N.; Hounkpe, M.; Shabani, J.Exactly solvable models of $\delta'$-sphere interactions in nonrelativistic quantum mechanics. J. Math. Phys.40(1999), no. 9, 4255--4273.Hounkonnou, M. N.; Mendy, J. E. B.Exact solutions of Dirac equation for neutrinos in presence of external fields. J. Math. Phys.40(1999), no. 9, 4240--4254.- Foupouagnigni, M.;
Hounkonnou, M. N.; Ronveaux, A.Laguerre-Freud equations for the recurrence coefficients of $D\sb \omega$ semi-classical orthogonal polynomials of class one. Proceedings of the VIIIth Symposium on Orthogonal Polynomials and Their Applications (Seville, 1997). J. Comput. Appl. Math.99(1998), no. 1-2, 143--154Hounkonnou, M. N.; Hounkpe, M.; Shabani, J.Scattering theory for finitely many sphere interactions supported by concentric spheres. J. Math. Phys.38(1997), no. 6, 2832--2850.- Navez, P.;
Hounkonnou, M. N.A quantum statistical model of a three-dimensional linear rigid rotator in a bath of oscillators. I. Electrical susceptibility derivation.J. Phys. A28(1995), no. 22, 6345--6361- Ronveaux, A.;
Hounkonnou, M. N.; Belmehdi, S.Generalized linearization problems. J. Phys. A28(1995), no. 15, 4423--4430.- Navez, P.;
Hounkonnou, M. N.Dielectric properties of a linear rigid rotor in $3$D: the case of large collisions. J. Phys. A27(1994), no. 20, 6657--6676.Hounkonnou, M. N.; Ronveaux, A.; Navez, P.Theory of the rotational Brownian motion of a linear molecule in $3$D. I. Relaxation and steady-state regimes. J. Phys. A27(1994), no. 20, 6635--6656- Hounkonnou, M. N. The von Neumann theory of self-adjoint extensions of symmetric linear operators: applications to Dirac and Dirac-Coulomb Hamiltonians. Contemporary problems in mathematical physics (Cotonou, 1999), 307--335, World Sci. Publishing, River Edge, NJ, 2000.
- Titantah, J. T.; Hounkonnou, M. N. A quantum statistical model of a three-dimensional linear rigid rotator in a bath of oscillators. III. DC field dielectric property dynamics. J. Phys. A 30 (1997), no. 18, 6347--6370.
- Titantah, J. T.; Hounkonnou, M. N. A quantum statistical model of a three-dimensional linear rigid rotator in a bath of oscillators. II. The electrical birefringence in relaxation regime. J. Phys. A 30 (1997), no. 18, 6327--6345. 81V80

The web pages

**MATHEMATICIANS OF THE
AFRICAN DIASPORA**

are brought to you by

**The Mathematics Department
of
The State University of New York at Buffalo.**

They are created and maintained by

Scott W. Williams

Professor of Mathematics