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Abstract

We provide a unifying approach which links results on algebraic actions by Lind and Schmidt,
Chung and Li, and a topological result by Meyerovitch that relates entropy to the set of asymptotic
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pairs (the homoclinic group in the algebraic case). As new applications of our method, we give a
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1 Introduction

Inspired by properties introduced in the context of symbolic dynamical systems in [22, 6] we define a
series of Markovian properties for actions of countable groups G on compact metrizable spaces X by
homeomorphisms. Among them, the topological Markov property (TMP) and the strong topological
Markov property (strong TMP). Every group action which satisfies the pseudo-orbit tracing property
(or shadowing) has the strong TMP, and every action with the strong TMP has the TMP. Although
these properties were introduced to study supports of measures that arise in the theory of thermody-
namic formalism, it turns out that they are specially relevant in the context of algebraic actions on
compact metrizable abelian groups.

A group action Gy X satisfies the TMP, if for every ε > 0, there is δ > 0 such that for every finite
set A ⊂ G there exists a finite subset B ⊃ A of G such that for every pair x, y ∈ X whose G-orbits are
at distance at most δ in B \A, there is z ∈ X whose G-orbit is at distance at most ε from the G-orbit
of x in B and at distance at most ε from the G-orbit of y in G \ A. Intuitively, satisfying the TMP
means that for every finite set A ⊂ G, there is a finite subset B ⊃ A of G such that knowledge of the
values (up to δ) of any G-orbit on C \ A for some C ⊃ B does not provide further information about
the values (up to ε) of the G-orbit in A than the mere knowledge of the values in B \ A, hence the
name Markovian. The strong TMP imposes that the set B should take the form FA for some fixed
finite set F ⊂ G which does not depend on A, and hence gives a bounded variant of the TMP.

An action G y X of a countable group G on a compact metrizable space X by homeomorphisms
is called expansive if there is some c > 0 such that sups∈G d(sx, sy) > c for all distinct x, y ∈ X, where
d is a given compatible metric on X. A pair (x, y) in X2 is called asymptotic if d(sx, sy) → 0 as
G 3 s → ∞. The TMP and the strong TMP are especially useful for establishing relations between
independence entropy pairs and asymptotic pairs for expansive actions (Theorems 6.1, 6.4 and 6.9).

By an algebraic action we mean an action of a countable group G on a compact metrizable
abelian group X by continuous automorphisms. The study of algebraic actions has been an active
field, because of rich connections with commutative algebra, operator algebras, and L2-invariants. See
for example [67, 78, 94] for algebraic actions of Z, [33, 59, 68, 70, 71, 88, 90, 91] for algebraic actions
of Zd, and [7, 8, 16, 26, 29, 30, 35, 38, 43, 45, 46, 62, 63, 64, 66, 69] for algebraic actions of countable
groups. Denote by ZG and CG the group rings of G with coefficients in Z and C respectively (see

Section 4). For any algebraic action G y X, the Pontryagin dual X̂ of X as a compact abelian
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group is naturally a countable left ZG-module. In fact, up to isomorphism, there is a natural one-
to-one correspondence between algebraic actions of G and countable left ZG-modules. Recall that
a unital ring is (left/right) Noetherian if every (left/right) ideal is finitely generated. For any
positive integers m,n and any a ∈Mm×n(CG), the von Neumann dimension dimvN ker a of the kernel
of the bounded operator Mn×1(`2(G))→Mm×1(`2(G)) sending z to az is a real number in [0, n] (see
Section 4). The group G is said to satisfy the strong Atiyah conjecture if dimvN ker a lies in the
subgroup of Q generated by 1/|H| for H ranging over finite subgroups of G. For algebraic actions
G y X, the asymptotic pairs are determined by the homoclinic group ∆(X,G) consisting of x ∈ X
such that sx → eX as G 3 s → ∞, where eX denotes the identity element of X. For any algebraic
action G y X of an amenable group G, we may either view the action as a topological dynamical
system and speak about the topological entropy, or view it as an action preserving the normalized
Haar measure of X and speak about the measure-theoretical entropy (see Section 2). It turns out that
these two entropies always coincide [29]. Furthermore, the action has complete positive entropy in the
topological sense (i.e. every nontrivial topological factor has positive topological entropy) exactly when
it has completely positive entropy in the measure-preserving sense (i.e. every nontrivial measurable
factor has positive measure-theoretical entropy) [26]. One of our main results is the following:

Theorem 1.1. Let G y X be an expansive algebraic action of a countably infinite amenable group.
Assume that at least one of the following conditions holds:

1. the integral group ring ZG is left Noetherian;

2. G satisfies the strong Atiyah conjecture, there is an upper bound on the orders of finite subgroups
of G, and the Pontryagin dual X̂ of X is a finitely presented left ZG-module.

Then Gy X has the strong TMP. As a consequence, the following hold:

i. Gy X has positive entropy if and only if ∆(X,G) is nontrivial;

ii. Gy X has completely positive entropy if and only if ∆(X,G) is dense in X.

The “if” direction of consequences (i) and (ii) in the above statement, i.e. non-triviality and
denseness of the homoclinic group ∆(X,G), imply that G y X has positive entropy and completely
positive entropy respectively, is in fact valid in much wider generality. It is known for all amenable
groups [26], and for all groups in the sense of naive topological entropy [56]. It is even true without
assuming that X is abelian, for all groups in the sense of naive topological entropy and for all sofic
groups in the sense of sofic topological entropy (see Corollary 7.3). A recent result of Hayes shows that
when ∆(X,G) is replaced by the subgroup of square summable homoclinic points, it is also true for
sofic groups without assuming expansivity [46, Theorem 1.3]. The “only if” direction (the existence
of non-trivial homoclinic points from positive entropy and denseness of the homoclinic group from
completely positive entropy) is much more difficult to establish. It is still open whether the “only if”
direction holds for all finitely presented algebraic actions of amenable groups. The crucial statement
of the second part of the theorem is that the “only if” direction holds in the aforementioned cases.
Both directions were first established by Lind and Schmidt [68] in the case G = Zd, using commutative
algebra tools. The case where ZG is left Noetherian was proven by Chung and Li [26] using local
entropy theory, Peters’ entropy formula and Yuzvinskii’s addition formula for entropy. Besides local
entropy theory, our proof uses techniques of von Neumann algebras to prove the strong TMP, and then
straightforward combinatorial arguments to obtain the conclusion. We also present examples where
this conclusion does not hold when assuming weaker hypotheses.

For every polycyclic-by-finite group G, the group ring ZG is left Noetherian [42] [76, Theorem
1.5.12]. It is a long standing conjecture that the converse holds. Recall that the class of elementary
amenable groups is the smallest class of groups containing all finite groups and all abelian groups
and is closed under taking subgroups, quotient groups, extensions, and inductive limits [28]. A result
of Linnell says that if there is an upper bound on the orders of finite subgroups of an elementary
amenable group G, then the strong Atiyah conjecture holds for G [72, Theorem 1.5] [74, Theorem
10.19]. In particular, for any polycyclic-by-finite group G, there is an upper bound on the orders of
finite subgroups of G and the strong Atiyah conjecture holds for G. Recall that a unital ring R is called
a domain if for any a, b ∈ R with ab = 0 one must have either a = 0 or b = 0. If CG is a domain, then
G is torsion-free. Kaplansky’s zero-divisor conjecture asserts that the converse holds. For torsion-free
amenable groups, the strong Atiyah conjecture is equivalent to Kaplansky’s zero-divisor conjecture
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[74, Lemma 10.16]. In particular, if G is amenable and CG is a domain, then G satisfies the strong
Atiyah conjecture and 1 is an upper bound on the orders of finite subgroups. Also recall that G is
said to be left orderable [80] if there is a total order ≤ on G such that s ≤ t implies gs ≤ gt for
all g, s, t ∈ G. Based on his work on the strong Atiyah conjecture, Linnell showed that if G has a
torsion-free elementary amenable normal subgroup H such that G/H is left orderable, then CG is a
domain [73, Theorem 8.9]. In particular, if G is torsion-free elementary amenable or left orderable,
then CG is a domain. In [39] Grigorchuk constructed a finitely generated group of intermediate growth
(so amenable but not elementary amenable [24]), which was shown to left orderable by Grigorchuk and
Maki [40].

The strong Atiyah conjecture fails for the lamplighter group (Z/2Z) o Z [41]. So far there is no
counterexample for the strong Atiyah conjecture in the case there is an upper bound on the orders of
finite subgroups.

The finitely presented condition in (2) of Theorem 1.1 is natural since for any expansive algebraic

action G y X of a countable group G, the Pontryagin dual X̂ of X is a finitely generated left ZG-
module [90]. In particular, when ZG is left Noetherian, X̂ is finitely presented for every expansive
algebraic action G y X of G. In general, when ZG is not left Noetherian, we expect much better
dynamical properties for algebraic actions G y X with X̂ finitely presented than just X̂ finitely
generated. For instance, Meyerovitch [77] has constructed an expansive algebraic action of an infinite

locally finite abelian group with positive entropy and trivial homoclinic group, in which X̂ is finitely
generated but not finitely presented.

Homoclinic points were first studied by Poincaré [2], and are used in the study of smooth dynamical
systems [86, 27] (note that Anosov diffeomorphisms are expansive and have the pseudo-orbit tracing
property [3, Theorem 1.2.1]). Recently, Meyerovitch [77] showed that every expansive action of an
amenable group on a compact metrizable space by homeomorphisms, which has positive topologi-
cal entropy and which satisfies the pseudo-orbit tracing property, must have off-diagonal asymptotic
pairs. Schmidt showed that expansive actions of polycyclic-by-finite groups on zero-dimensional com-
pact metrizable groups by continuous automorphisms satisfy the pseudo-orbit tracing property [90,
Corollary 2.3, Theorems 3.8 and 4.2], thus Meyerovitch’s result applies to such actions. However,
Meyerovitch’s result does not apply to all expansive algebraic actions of polycyclic-by-finite groups as
Bhattacharya constructed an expansive algebraic action of a polycyclic group which does not have the
pseudo-orbit tracing property [7]. We improve Meyerovitch’s result by showing that the pseudo-orbit
tracing condition in his result may be replaced by the condition of satisfying the strong TMP (Corol-
lary 6.10). This provides a broader dynamical setting than the pseudo-orbit tracing property, which
also assures the existence of off-diagonal asymptotic pairs under the assumption of positive topological
entropy. Our proof of Theorem 1.1 rests on the fact that both of the conditions stated in the theorem
imply that the action has the strong TMP (Theorem 4.3).

We also study analogous results in the context of non-amenable group actions. Entropy theory
beyond the scope of actions of amenable groups has only been introduced recently. For sofic group ac-
tions the theory of measurable entropy was introduced by Bowen in [15] and its topological counterpart
along with a variational principle by Kerr and Li [55]. Another notion, naive entropy, which applies to
actions of any countable group was formally introduced respectively in the measurable and topological
settings by Bowen [17] and Burton [18] although in the amenable case the notion is already present
in the work of Downarowicz, Frej and Romagnoli [32]. The naive entropy can only take the values 0
or +∞ for action of non-amenable groups [17, 18], thus is not suitable as an invariant for classifying
actions. However, it is very suitable for discussing whether the entropy is positive or not [65]. We
provide an example of an expansive algebraic symbolic action of the free group with two generators
which has uniformly positive naive entropy but whose homoclinic group is trivial (Example 7.6), thus
showing that Theorem 1.1 does not extend naively into the context of non-amenable group actions.

The TMP provides a condition which ensures that under simple conditions a group action has
positive topological entropy. Assuming the TMP, we show that expansivity and the existence of an
off-diagonal asymptotic pair (and a necessary technical condition) is enough to ensure both positive
topological naive and sofic entropy (Theorems 6.1 and 6.4). This gives easy criteria to show positive
entropy for all sofic approximation sequences. For example, we use this result to show that expan-
sive algebraic actions with nontrivial homoclinic group (see Corollary 7.3) and hard-square models
(see Example 6.6) in sofic groups have positive sofic entropy for any sofic approximation sequence.

The results explained in the previous paragraphs are given in the context of local entropy theory.
Classical local entropy theory was initiated by Blanchard when he introduced the concept of entropy
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pairs [9, 10] and developed quickly in [11, 12, 13, 14, 36, 47, 48, 50] (for a survey on local entropy theory
see [37]). Later on a combinatorial approach was given by Kerr and Li in [53], and further developed
in [26, 44, 49, 54, 56, 58, 65]. One advantage of local entropy theory is that it provides necessary
and sufficient conditions for uniform positive entropy (an action which has positive topological entropy
with respect to any standard open cover).

The paper is organized as follows. In Section 2 we provide the definitions of several classical notions
which will be used through the paper. Particularly, we provide definitions of topological classical, sofic
and naive entropy and their local versions. We also provide a few notions on shift spaces and we define
the pseudo-orbit tracing property.

In Section 3 we introduce our topological Markov properties and their uniform versions. We prove
several structural results of the topological Markov properties, in particular, we describe the connection
between uniformity and expansivity, which shall be used extensively in the remainder of the paper. We
also present several examples of group actions which satisfy different types of Markovian properties,
which show that all the classes we introduce are relevant.

In Section 4 we study the Markovian properties in the setting of algebraic actions. We show that
every action of a countable group on a compact metrizable group by continuous automorphisms has
the TMP (Proposition 4.1) and that a large class of finitely presented expansive algebraic actions of
amenable groups have the strong TMP (Theorem 4.3).

In Section 5 we study the Markovian properties in the setting of minimal group actions. In particular
we show that minimal expansive group actions have the TMP if and only if they do not admit off-
diagonal asymptotic pairs (Theorem 5.1).

In Section 6 we present our results regarding the connection between topological entropy and
asymptotic pairs in the setting of Markovian properties. First we give conditions under which the
existence of off-diagonal asymptotic pairs of an action which satisfies the TMP give rise to positive
entropy (Corollaries 6.2 and 6.5). Then we give conditions under which an action with positive entropy
which satisfies the strong TMP has off-diagonal asymptotic pairs (Corollary 6.10).

In Section 7 we put together the results from the previous sections and present applications to
algebraic actions, minimal actions and subshifts which are the support of some Markovian measure.
In particular we prove Theorem 1.1 and show that a minimal expansive action of an amenable group
which satisfies the strong TMP always has zero topological entropy (Corollary 7.13). We also provide
an example which shows that an analogue of Theorem 1.1 does not hold in the free group for naive
entropy, even for subshifts of finite type.
Acknowledgments. The authors wish to thank Tom Meyerovitch for interesting discussions and
Ville Salo for sharing a beautiful proof that minimal subshifts on finitely generated groups cannot
admit interchangeable patterns, on which our proof of Proposition 5.4 is based, and Tim Austin for
pointing out the reference [75] to us. They are also grateful to the referee for helpful comments.
Sebastián Barbieri wishes to acknowledge that a considerable portion of this work was done while he
was affiliated to the University of British Columbia. Sebastián Barbieri was partially supported by the
ANR project CoCoGro (ANR-16-CE40-0005), the ANR project CODYS (ANR-18-CE40-0007) and
FONDECYT grant 11200037. Felipe Garćıa-Ramos was partially supported by CONACyT (287764).
Hanfeng Li was partially supported by NSF grants DMS-1600717 and DMS-1900746.

2 Preliminaries

Throughout this paper N denotes the set of positive integers and G denotes a countably infinite group
with identity eG. We denote by F b G a finite subset of G.

Let δ > 0 and K b G. A nonempty set F b G is said to be left (K, δ)-invariant if |KF∆F | ≤ δ|F |.
A sequence of nonempty finite subsets {Fn}n∈N of G is said to be left asymptotically invariant or
left Følner if it is eventually left (K, δ)-invariant for every nonempty K b G and δ > 0. From this
point forward we shall omit the usage of the word left and speak plainly about a Følner sequence.
A countable group G is amenable if it admits a Følner sequence. Elementary amenable groups and
finitely generated groups of subexponential growth are all amenable.

For n ∈ N we write Sym(n) for the group of permutations of {1, . . . , n}. A group G is sofic if
there exist a sequence {ni}i∈N of positive integers which goes to infinity and a sequence Σ = {σi : G→
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Sym(ni)}∞i=1 that satisfies

lim
i→∞

1

ni
|{v ∈ {1, . . . , ni} : σi(st)v = σi(s)σi(t)v}| = 1 for every s, t ∈ G

lim
i→∞

1

ni
|{v ∈ {1, . . . , ni} : σi(s)v 6= σi(t)v}| = 1 for every s 6= t ∈ G.

In this case we say Σ is a sofic approximation sequence of G. Amenable groups are all sofic. We
refer the reader to [19, 20, 84] for general information about amenable groups and sofic groups.

A (left) action of the group G on X is represented by G y X. In this paper we shall always
assume that X is a compact metrizable space and that G acts by homeomorphisms. We denote by d
a compatible metric on X.

We say Gy X is expansive if there exists c > 0 such that whenever x, y ∈ X, if x 6= y then there
exists g ∈ G such that d(gx, gy) > c. The value c is called an expansivity constant of Gy X.

Let Gy X be an action, k ≥ 2 and ε > 0. We say (x1, . . . , xk) ∈ Xk is an ε-asymptotic tuple if
there exists F b G such that for every g /∈ F and 1 ≤ i, j ≤ k, one has d(gxi, gxj) ≤ ε. Furthermore,
we say (x1, . . . , xk) is an asymptotic tuple if it is ε-asymptotic for every ε > 0.

Notation 2.1. We denote by Aεk(X,G) the set of all (x1, . . . , xk) ∈ Xk which are ε-asymptotic and by
Ak(X,G) =

⋂
ε>0 A

ε
k(X,G) the set of asymptotic k-tuples.

Remark 2.2. When G = Z, asymptotic pairs are sometimes called bilateral asymptotic pairs or
two-sided asymptotic pairs to avoid confusion with the weaker notion of forward asymptotic pairs,
for which the only requirement is that limn→+∞ d(nx1, nx2) = 0.

Let G y X and G y Y be two actions of G. A function π : X → Y is G-equivariant if gπ(x) =
π(gx) for every g ∈ G and x ∈ X. A G-equivariant function as above is called a topological factor
if it is continuous and surjective, and is called a topological conjugacy if it is a homeomorphism. If
there exists a topological conjugacy between X and Y we say Gy X and Gy Y are topologically
conjugate.

Let G y X be an action. A Borel probability measure µ on X is G-invariant if for every Borel
set A ⊂ X and g ∈ G, we have µ(A) = µ(g−1A). In this case we say that Gy (X,µ) is a probability
measure preserving (p.m.p.) action. For p.m.p. actions Gy (X,µ) and Gy (Y, ν) we say that
Gy (Y, ν) is a factor of Gy (X,µ) if there is a G-invariant conull set X ′ ⊂ X and a G-equivariant
measurable map π : X ′ → Y such that µ(π−1(A)) = ν(A) for every Borel set A ⊂ Y . Furthermore,
we say that G y (X,µ) and G y (Y, ν) are isomorphic if there are G-invariant conull sets X ′ ⊂ X
and Y ′ ⊂ Y and a G-equivariant bimeasurable bijection π : X ′ → Y ′ such that µ(π−1(A)) = ν(A) for
every Borel set A ⊂ Y ′.

2.1 Entropy theory

In what follows we shall provide several definitions and results on entropy theory. For a more detailed
exposition of these topics we refer the reader to [31, 85, 93] for ample background on entropy theory
of Z-actions, and to [58, 79] for entropy theory of actions of amenable and sofic groups.

2.1.1 Topological entropy for actions of amenable groups

Given two open covers U ,V of X we define their join by U ∨ V = {U ∩ V : U ∈ U , V ∈ V}. For g ∈ G
let gU = {gU : U ∈ U} and denote by N(U) the smallest cardinality of a subcover of U . If F is a
nonempty finite subset of G, denote by UF the join

UF =
∨
g∈F

g−1U .

Let G be an amenable group, G y X an action, U an open cover of X and {Fn}n∈N a Følner
sequence for G. We define the topological entropy of Gy X with respect to U as

htop(Gy X,U) = lim
n→∞

1

|Fn|
logN(UFn).
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The function F 7→ logN(UF ) is subadditive and thus the limit exists and does not depend on the choice
of Følner sequence, see for instance [82, 60] [58, page 220]. The topological entropy of G y X is
defined as

htop(Gy X) = sup
U
htop(Gy X,U).

2.1.2 Naive topological entropy

Let G y X be an action and U an open cover of X. We define the naive topological entropy of
Gy X with respect to U as

hnv
top(Gy X,U) = inf

∅ 6=FbG

1

|F |
logN(UF ).

The naive topological entropy of Gy X is defined as

hnv
top(Gy X) = sup

U
hnv

top(Gy X,U).

The notion of naive entropy was introduced by Burton [18]. He showed that in the case of a
non-amenable group hnv

top(Gy X) can only take the values {0,+∞}.

2.1.3 Sofic topological entropy

The following notion of topological entropy for sofic group actions was introduced by Kerr and Li [55]
following the breakthrough of Bowen for probability-measure-preserving actions [15].

Let Gy X be an action. Let F b G, δ > 0, n ∈ N, and σ : G→ Sym(n). We define Map(d, F, δ, σ)
as the set of all maps ϕ : {1, . . . , n} → X such that(

1

n

n∑
v=1

d(ϕ(σ(s)v), sϕ(v))2

)1/2

≤ δ for every s ∈ F.

Write Nε(Y, d∞) for the maximum cardinality of a subset Y ′ of Y ⊂ X{1,...,n} such that whenever
ϕ1, ϕ2 are distinct in Y ′ then maxv∈{1,...,n} d(ϕ1(v), ϕ2(v)) ≥ ε.

Let G be a sofic group and Σ = {σi : G → Sym(ni)} a sofic approximation sequence for G. The
topological sofic entropy of Gy X with respect to Σ is

hΣ
top(Gy X) = sup

ε>0
inf
FbG

inf
δ>0

lim sup
i→∞

1

ni
logNε(Map(d, F, δ, σi), d∞).

The value of hΣ
top(Gy X) does not depend on the choice of d by [58, Proposition 10.25].

Remark 2.3. If G is a countable amenable group, then the classical topological entropy of a G-action
coincides with the naive topological entropy [32, Theorem 6.8] and the topological sofic entropy [57,
Theorem 5.3] [58, Theorem 10.37] for any sofic approximation sequence.

2.1.4 Measure-theoretical entropy and the variational principle

Let Gy (X,µ) be a p.m.p. action. For a finite partition P of X consisting of Borel sets the Shannon
entropy of P with respect to µ is given by

Hµ(P) =
∑
A∈P
−µ(A) logµ(A).

For an amenable group G, the measure-theoretical entropy of Gy (X,µ) with respect to P is
given by

hµ(Gy X,P) = lim
n→∞

1

|Fn|
logHµ(

∨
g∈Fn

g−1P),

where {Fn}n∈N is a Følner sequence. The measure-theoretical entropy of G y (X,µ) is the
supremum of hµ(Gy X,P) taken over all finite partitions:

hµ(Gy X) = sup
P finite

hµ(Gy X,P).
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The variational principle relates the topological entropy with the measure-theoretical entropy
through the following formula.

Theorem 2.4. [79, Theorem 5.2.7] Let G be an amenable group and Gy X an action, we have

htop(Gy X) = sup
µ∈M(GyX)

hµ(Gy X).

where M(Gy X) denotes the space of all Borel G-invariant probability measures on X.

For a p.m.p. action Gy (X,µ) of a sofic group G, there is the notion of the measure-theoretical
sofic entropy hΣ

µ (G y X) with respect to a sofic approximation sequence Σ for G introduced by
Bowen [15]. An analogous variational principle for sofic entropy was established by Kerr and Li [55].

2.2 Local entropy theory

In the seminal papers [9, 10], Blanchard introduced the notion of entropy pairs. These can be used
to give a local characterization of positive entropy. This work was the birth of what is now called
local entropy theory (see [37] for a survey). A combinatorial counterpart of that theory is the notion of
independence which can also be used in the context of non-amenable group actions. For an introduction
to the subject see [58, Chapter 12].

Notation 2.5. For each k ∈ N, we represent by 4k(X) the diagonal of Xk, that is, the set of all
tuples (x, x, . . . , x) ∈ Xk.

2.2.1 Orbit independence entropy tuples

Let G y X be an action and A = (A1, . . . , An) a tuple of subsets of X. We say J ⊂ G is an
independence set for A if for every nonempty I b J and every φ : I → {1, . . . , n} we have⋂

s∈I
s−1Aφ(s) 6= ∅.

We define the independence density of A (over G) to be the largest q ≥ 0 such that every set
F b G has a subset of cardinality at least q |F | which is an independence set for A.

Definition 2.6. [56, Definition 3.2] Fix an integer k ≥ 1. We say a tuple x = (x1, . . . , xk) ∈ Xk is an
orbit independence entropy tuple (orbit IE-tuple) if for every product neighborhood U1×· · ·×Uk
of x the tuple U = (U1, . . . , Uk) has positive independence density. We denote the set of orbit IE-tuples
of length k by IEk(X,G).

An open cover U of X is called standard if U = {U1, U2} such that none of U1, U2 is dense in X.
We say an action G y X has naive uniform positive entropy (naive UPE) if for each standard
cover U we have that hnv

top(Gy X,U) > 0. The notion of UPE was defined in the context of Z-actions
by Blanchard [9] and naive UPE is a natural generalization in the context of naive topological entropy.

Theorem 2.7. Let Gy X be an action.

1. [65, Theorem 2.5] If IE2(X,G) \ 42(X) 6= ∅, then hnv
top(Gy X) > 0.

2. [58, Theorems 12.19 and 12.23] If G is amenable and htop(G y X) > 0, then for each k ∈ N
there is some (x1, . . . , xk) ∈ IEk(X,G) such that x1, . . . , xk are distinct.

3. [65, Theorem 2.5] IE2(X,G) = X2 if and only if Gy X has naive UPE.

4. [56, Lemma 6.2] We have that
⋃
µ∈M(GyX) supp(µ) ⊂ IE1(X,G), where M(Gy X) is the set

of G-invariant Borel probability measures on X and supp(µ) denotes the support of µ.

Consequently with the third point of Theorem 2.7, for k ≥ 2 we shall say that G y X has naive
UPE of order k if IEk(X,G) = Xk. We also say that G y X has naive UPE of all orders if it
has naive UPE of order k for all k ≥ 2.
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2.2.2 Sofic independence entropy tuples

Let G be a sofic group, Gy X an action and A = (A1, . . . , Ak) a tuple of subsets of X. Given F b G,
δ > 0, n ∈ N and σ : G→ Sym(n), we say J ⊂ {1, . . . , n} is a (d, F, δ, σ)-independence set for A if
for every ω : J → {1, . . . , k} there exists ϕ ∈ Map(d, F, δ, σ) such that ϕ(a) ∈ Aω(a) for every a ∈ J .

Definition 2.8. [58, Definitions 12.33 and 12.34] Let G be a sofic group, G y X an action and
Σ = {σi : G→ Sym(ni)}i∈N a sofic approximation sequence for G. We say a tuple A = (A1, . . . , Ak)
of subsets of X has positive upper independence density over Σ if there exists q > 0 such that
for every F b G and δ > 0 there exists an infinite set of i for which A has a (d, F, δ, σi)-independence
set of cardinality at least qni. This property does not depend on the choice of the metric d, see [58,
Lemma 10.24].

We say x = (x1, . . . , xk) ∈ Xk is a sofic independence entropy tuple with respect to Σ (Σ-
IE-tuple) if for every product neighborhood U1×· · ·×Uk of x the tuple U = (U1, . . . , Uk) has positive
upper independence density over Σ. We denote the set of Σ-IE-tuples of length k by IEΣ

k (X,G).

Theorem 2.9. [58, Theorem 12.39] Let G be sofic, Σ a sofic approximation sequence for G, and
Gy X an action. Then

1. IEΣ
1 (X,G) 6= ∅ if and only if hΣ

top(Gy X) ≥ 0.

2. IEΣ
2 (X,G) \ 42(X) 6= ∅ if and only if hΣ

top(Gy X) > 0.

Given a sofic group G and a sofic approximation sequence Σ for G, for k ≥ 2 we say G y X has
sofic UPE of order k if IEΣ

k (X,G) = Xk. We also say that G y X has sofic UPE of all orders
if it has sofic UPE of order k for all k ≥ 2.

Remark 2.10. Every Σ-IE-tuple is an orbit IE-tuple [56, Proposition 4.6] but there might exist orbit
IE-tuples that are not Σ-IE-tuples for any Σ. Nonetheless, if G is amenable then every orbit IE-tuple
is a Σ-IE-tuple for every Σ [56, Theorem 4.8]. In this case we call naive/sofic UPE simply UPE.

2.3 Shift spaces and the pseudo-orbit tracing property

Given a nonempty finite set Λ, we say X ⊂ ΛG is a G-subshift or G-shift space if X is closed under
the product topology and G-invariant under the left shift action Gy ΛG given by

gx(h) = x(g−1h) for every g, h ∈ G.

Elements x ∈ ΛG are called configurations. A pattern is an element p ∈ ΛA for some A b G.
For a pattern p ∈ ΛA let us denote by [p] = {x ∈ ΛG : x|A = p} the cylinder centered at p. A set
X ⊂ ΛG is a subshift if and only if there exists a set F of patterns which generates X, that is, X = XF
where,

XF = ΛG \
⋃

g∈G,p∈F
g[p].

In other words, X is the set of all configurations x ∈ ΛG where no translation of a pattern p ∈ F
appears in x. If there exists a finite set F of patterns such that X = XF , then we say that X is a
subshift of finite type (SFT).

Let G y X be an action, δ > 0 and S b G. An (S, δ) pseudo-orbit is a sequence {xg}g∈G of
elements in X such that d(sxg, xsg) < δ for every s ∈ S and g ∈ G. We say a pseudo-orbit is ε-traced
by x ∈ X if d(gx, xg) ≤ ε for every g ∈ G.

An action G y X has the pseudo-orbit tracing property (POTP) if for every ε > 0 there
exist δ > 0 and S b G such that any (S, δ) pseudo-orbit is ε-traced by some point x ∈ X. The POTP
is also known as shadowing. For a shift space, POTP coincides with the notion of SFT [92, 81] [25,
Theorem 3.2].
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3 Topological Markov properties: results and examples

3.1 Topological Markov properties

In what follows the following notation shall be useful.

Notation 3.1. For an action Gy X, a set K ⊂ G, and x, y ∈ X, we shall write

dK(x, y) = sup
g∈K

d(gx, gy).

Definition 3.2. Let Gy X be an action, and ε, δ > 0. We say that B b G is an (ε, δ)-memory set
for A ⊂ B if for every pair x, y ∈ X satisfying dB\A(x, y) ≤ δ there exists z ∈ X such that dB(x, z) ≤ ε
and dG\A(y, z) ≤ ε.

In [22] the authors introduced the notion of topological Markov field. A topological Markov
field is a subshift X ⊂ ΛZ which has the following property: for every pair of configurations x, y ∈ X
for which there are n,m ∈ Z so that n < m, xn = yn and xm = ym, we have that the configuration
z ∈ ΛZ given by

z(i) =

{
x(i) if i ∈ {n, . . . ,m}
y(i) if i ∈ Z \ {n, . . . ,m}

belongs to X. In terms of memory sets, this property is stating that for an adequate choice of ε, δ
(which depends upon d) an (ε, δ)-memory set for an interval A = {n + 1, . . . ,m − 1} is the interval
B = {n, . . . ,m}. The notion of topological Markov field was in turn generalized to the concept of
(strong) topological Markov property for subshifts on arbitrary countable groups in [6]. We shall give
a natural generalization of these properties to the non-symbolic setting.

Definition 3.3. An action Gy X has the:

1. Topological Markov property (TMP) if for every ε > 0 there exists δ > 0 such that every
A b G admits an (ε, δ)-memory set for A.

2. Strong topological Markov property (strong TMP) if for every ε > 0 there exist δ > 0 and
F b G containing the identity, such that every A b G admits FA as an (ε, δ)-memory set for A.

3. Mean topological Markov property (mean TMP) if for every ε > 0 there exists δ > 0 and
an increasing sequence {Fn}n∈N of finite subsets of G with union G such that for each n ∈ N
there is an (ε, δ)-memory set F̃n for Fn so that |F̃n \ Fn| = o(|Fn|).

Now we introduce uniform versions of the topological Markov properties. These are mainly technical
conditions needed for the results in the following sections.

Let B b G. We say that a set V ⊂ G is B-separated if Bv1 ∩ Bv2 = ∅ whenever v1 6= v2 and
v1, v2 ∈ V .

Definition 3.4. Let G y X be an action, ε, δ > 0, and A b G. We say that an (ε, δ)-memory
set B for A is uniform, if for any B-separated V b G, xv ∈ X for v ∈ V and y ∈ X such that
d(B\A)v(xv, y) ≤ δ for every v ∈ V , there exists z ∈ X such that dBv(z, xv) ≤ ε for every v ∈ V and
dG\AV (z, y) ≤ ε.

Remark 3.5. If an (ε, δ)-memory set B is uniform, it follows by compactness that in fact the above
property holds for any B-separated V ⊂ G, even if it is not finite.

Definition 3.6. We say that an action G y X has the uniform (mean/strong) topological
Markov property if it satisfies the (mean/strong) topological Markov property with a memory set
which is uniform.

If two metrics d and d′ on X are both compatible with the given compact topology on X, then for
any ε > 0 there is some ε′ > 0 such that for any x, y ∈ X satisfying d′(x, y) ≤ ε′ one has d(x, y) ≤ ε.
It follows that the topological Markov properties do not depend upon the choice of the metric as long
as it is compatible with the topology of X. Hence, they are invariants of topological conjugacy.
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3.2 Structural results

We say that a continuous pseudometric ρ on X is dynamically generating for an action Gy X [58,
Definition 9.35] if for any distinct x, y ∈ X one has sups∈G ρ(sx, sy) > 0. As in the case of a metric,
for K ⊂ G we denote ρK(x, y) = sups∈K ρ(sx, sy).

Proposition 3.7. Let ρ be a dynamically generating continuous pseudometric on X for an action
Gy X. Then the following hold.

1. G y X has the TMP if and only if for any ε > 0 there is some δ > 0 such that for any A b G
there is some B b G containing A so that for any x, y ∈ X with ρB\A(x, y) ≤ δ there is some
z ∈ X with ρB(z, x) ≤ ε and ρG\A(z, y) ≤ ε.

2. G y X has the strong TMP if and only if for any ε > 0 there are some δ > 0 and F b G
containing eG such that for any A b G and any x, y ∈ X with ρFA\A(x, y) ≤ δ there is some
z ∈ X with ρFA(z, x) ≤ ε and ρG\A(z, y) ≤ ε.

Proof. We shall prove (1). The proof for (2) is similar.
Take a function f : G→ (0, 1] with

∑
s∈G f(s) <∞ and f(eG) = 1. For any x, y ∈ X, put

d(x, y) =
∑
s∈G

f(s)ρ(sx, sy).

Then it is easily checked that d is a compatible metric on X and d ≥ ρ.
We prove the “only if” part first. Assume that G y X has the TMP. Let ε > 0. Then there is

some δ > 0 such that for any A b G there is some BA b G containing A so that for any x, y ∈ X with
dBA\A(x, y) ≤ δ there is some z ∈ X with dBA(z, x) ≤ ε

2 and dG\A(z, y) ≤ ε
2 . Take a K b G with

eG ∈ K = K−1 such that diam(X, ρ)
∑
s∈G\K f(s) < δ

2 . Put δ′ = 1
2|K| min(ε, δ) > 0. For A b G, let

B′ = KBKA. Then B′ is a finite subset of G containing A, and K(BKA \KA) ⊂ B′ \A. Let x, y ∈ X
with ρB′\A(x, y) ≤ δ′. For any s ∈ BKA \KA, we have

d(sx, sy) =
∑
t∈K

f(t)ρ(tsx, tsy) +
∑

t∈G\K

f(t)ρ(tsx, tsy) < |K|δ′ + δ

2
≤ δ.

Thus there is some z ∈ X with dBKA(z, x) ≤ ε
2 and dG\KA(z, y) ≤ ε

2 . For any s ∈ BKA, we have
ρ(sz, sx) ≤ d(sz, sx) ≤ ε

2 . For any s ∈ G\KA, we have ρ(sz, sy) ≤ d(sz, sy) ≤ ε
2 . For any s ∈ KA\A,

we have
ρ(sz, sy) ≤ ρ(sz, sx) + ρ(sx, sy) ≤ d(sz, sx) + δ′ <

ε

2
+ δ′ ≤ ε.

For any s ∈ B′ \BKA, we have

ρ(sz, sx) ≤ ρ(sz, sy) + ρ(sy, sx) ≤ ε

2
+ δ′ ≤ ε.

This proves the “only if” part.
Next we prove the “if” part. Let ε > 0. Take a K b G with eG ∈ K = K−1 such that

diam(X, ρ)
∑
s∈G\K f(s) < ε

4 . Put ε′ = ε
8|K| > 0. By assumption, there is some δ′ > 0 such that

for any A b G there is some B′A b G containing A so that for any x, y ∈ X with ρB′A\A(x, y) ≤ δ′

there is some z ∈ X with ρB′A(z, x) ≤ ε′ and ρG\A(z, y) ≤ ε′. Put δ = min(δ′, ε′) > 0. Let A b G. Put

B = B′K2A ⊃ K2A ⊃ A. Let x, y ∈ G with dB\A(x, y) ≤ δ. Then

max
s∈B′

K2A
\K2A

ρ(sx, sy) ≤ dB\A(x, y) ≤ δ ≤ δ′.

Thus there is some z ∈ X with ρB′
K2A

(z, x) ≤ ε′ and ρG\K2A(z, y) ≤ ε′. For any s ∈ KA, we have

d(sz, sx) =
∑
t∈K

f(t)ρ(tsz, tsx) +
∑

t∈G\K

f(t)ρ(tsz, tsx) < |K|ε′ + ε

4
≤ ε

2
.

For any γ ∈ K2A \A ⊂ B \A, we have

ρ(γz, γy) ≤ ρ(γz, γx) + ρ(γx, γy) ≤ ε′ + d(γx, γy) ≤ ε′ + δ.
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Thus ρ(γz, γy) ≤ ε′ + δ for all γ ∈ G \A. Then for any s ∈ G \KA, we get

d(sz, sy) =
∑
t∈K

f(t)ρ(tsz, tsy) +
∑

t∈G\K

f(t)ρ(tsz, tsy) ≤ |K|(ε′ + δ) +
ε

4
≤ ε

2
.

For any s ∈ KA \A, we have

d(sz, sy) ≤ d(sz, sx) + d(sx, sy) ≤ ε

2
+ δ < ε.

For any s ∈ B \KA, we have

d(sz, sx) ≤ d(sz, sy) + d(sy, sx) ≤ ε

2
+ δ < ε.

Therefore Gy X has the TMP. This proves the “if” part.

Let X ⊂ ΛG be a G-subshift. For any x, y ∈ X, put

ρ(x, y) =

{
1 if x(eG) 6= y(eG)

0 otherwise
.

Then ρ is a dynamically generating continuous pseudometric for G y X. Thus from Proposition 3.7
we get the following corollary.

Corollary 3.8. Let X ⊂ ΛG be a G-subshift. The following hold.

1. G y X has the TMP if and only if for any A b G there is some B b G containing A so
that for any x, y ∈ X with x = y on B \ A the configuration z ∈ ΛG such that z|A = x|A and
z|G\A = y|G\A lies in X.

2. G y X has the strong TMP if and only if there is some F b G containing the identity, such
that for any A b G and any x, y ∈ X with x = y on AF \ A the configuration z ∈ ΛG such that
z|A = x|A and z|G\A = y|G\A lies in X.

In particular, we recover the original definitions introduced for subshifts in [6, Section 2.5.1]. Before
stating the relation between the POTP and the TMP properties, we shall state the following technical
lemma.

Lemma 3.9. Let G y X be an action, F b G with eG ∈ F = F−1 and δ > 0. There exists η > 0
such that for any A b G, any FA-separated V ⊂ G, any xv ∈ X for v ∈ V, and y ∈ X satisfying
d(FA\A)v(xv, y) ≤ η for all v ∈ V , we have that {wγ}γ∈G is an (F, δ) pseudo-orbit, where

wγ =

{
γxv if γ ∈ Av for some v ∈ V
γy if γ ∈ G \AV .

Proof. Take 0 < η < δ such that, for any x, y ∈ X with d(x, y) ≤ η, we have dF (x, y) < δ. Let A, V, xv
and y be as in the statement. We need to check d(swγ , wsγ) < δ for all s ∈ F and γ ∈ G. Fix s ∈ F .
The only nontrivial cases are (1) γ ∈ Av for some v ∈ V and sγ ∈ G \ AV , and (2) γ ∈ G \ AV and
sγ ∈ Av for some v ∈ V .

Consider the case (1). Then sγ ∈ (FA \A)v, and hence

d(swγ , wsγ) = d(sγxv, sγy) ≤ η < δ.

Now consider the case (2). Note that sγ ∈ Av and s−1(sγ) ∈ G \AV , and hence from the case (1)
we have

d(s−1wsγ , wγ) ≤ η.

From our choice of η we get d(wsγ , swγ) < δ as desired.

Proposition 3.10. Let Gy X be an action. The following implications hold.
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Gy X has POTP Gy X has uniform strong TMP Gy X has uniform TMP

Gy X has strong TMP Gy X has TMP

Proof. The fact that the uniform versions imply the non-uniform ones follows by taking V = {eG}.
The implications showing that (uniform) strong TMP implies (uniform) TMP are also trivial. Let us
show that if Gy X has the POTP then Gy X has the uniform strong TMP.

Let ε > 0. By the POTP, there exist δ > 0 and S b G such that every (S, δ) pseudo-orbit is
ε
2 -traced by some z ∈ X. Take F b G such that F ⊃ S and eG ∈ F = F−1. Choosing δ ≤ ε

2 we can
apply Lemma 3.9 to obtain η ≤ δ, such that for any A b G, any FA-separated set V ⊂ G, any xv ∈ X
for v ∈ V , and y ∈ X satisfying d(FA\A)v(xv, y) ≤ η for all v ∈ V , we have that {wγ}γ∈G defined by

wγ =

{
γxv if γ ∈ Av for some v ∈ V
γy if γ ∈ G \AV

is an (S, δ) pseudo-orbit. By the POTP, there exists z ∈ X which ε
2 -traces {wγ}γ∈G. Therefore, for

every v ∈ V and g ∈ FAv we have that either g ∈ Av, and thus d(gz, gxv) = d(gz, wg) ≤ ε
2 , or

g ∈ (FA \ A)v and thus d(gz, gxv) ≤ d(gz, gy) + d(gy, gxv) ≤ d(gz, wg) + η ≤ ε. For g ∈ G \ AV we
have d(gz, gy) = d(gz, wg) ≤ ε

2 . This shows that FA is a uniform (ε, η)-memory set for A and hence
that Gy X has the uniform strong TMP.

Proposition 3.11. Let G be an amenable group and G y X an action. The following implications
hold.

Gy X
has uniform strong TMP

Gy X
has uniform mean TMP

Gy X
has uniform TMP

Gy X has strong TMP Gy X has mean TMP Gy X has TMP

Proof. As before, the uniform versions imply the non-uniform versions by choosing V = {eG}. Since
G is amenable, there exists an increasing Følner sequence {Fn}n∈N for G with union G. If Gy X has
the (uniform) strong TMP, for any ε > 0 there are δ > 0 and K b G containing the identity such that
KFn is a (uniform) (ε, δ)-memory set for Fn. As {Fn}n∈N is Følner, we have that |KFn\Fn| = o(|Fn|).
Thus Gy X has the (uniform) mean TMP.

If Gy X has the (uniform) mean TMP then for every ε > 0 there are 0 < δ < ε
2 and an increasing

sequence {Fn}n∈N of finite subsets of G with union G for which there are finite (uniform) ( ε2 , δ)-memory

sets F̃n. It suffices to choose for every A b G a value of n large enough such that A b Fn and thus F̃n
is a (uniform) (ε, δ)-memory set for A.

Now we will see that an expansive action has the TMP if and only if it has the uniform TMP. Note
that for any F b G and δ > 0, if {xt}t∈G is an (F, δ) pseudo-orbit, then so is {xtg}t∈G for any g ∈ G.
The following lemma is only stated for G = Z in the reference, but its proof works for all countable
groups.

Lemma 3.12 (Propositions 1 and 2 of [1]). Let G y X be an action and c > 0. The following are
equivalent:

1. c is an expansivity constant for Gy X.

2. For any ε > 0, there exist F b G and δ > 0 such that for any two (F, δ) pseudo-orbits {xt}t∈G
and {yt}t∈G, if d(xt, yt) ≤ c for all t ∈ G, then d(xt, yt) ≤ ε for all t ∈ G.

3. For any ε > 0, there exists W b G such that for any x, y ∈ X, if dW (x, y) ≤ c, then d(x, y) < ε.

Theorem 3.13. Every expansive action Gy X with the TMP has the uniform TMP.
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Proof. Let c > 0 be an expansivity constant for G y X. Let 0 < ε ≤ c. We have F and δ
in Lemma 3.12.(2) for ε

2 . Replacing F by F ∪ F−1 ∪ {eG}, we may assume that eG ∈ F = F−1. Then
we have η in Lemma 3.9 for F and δ.

Since G y X has the TMP, there is some 0 < τ < min(η, ε2 ) such that for any A b G there is
some BA b G containing A such that for any x, y ∈ X satisfying dBA\A(x, y) ≤ τ , there is some z ∈ X
such that dBA(z, x) ≤ ε

2 and dG\A(z, y) ≤ ε
2 . Take W in Lemma 3.12.(3) for τ . Replacing W by

W ∪W−1 ∪ {eG}, we may assume that eG ∈ W = W−1. Let A b G. Then we have BA and BWA as
above. Put B = BA ∪WBWA ∪ FA b G. We shall prove the following claim.

Claim: For any B-separated V b G and any xv ∈ X for v ∈ V and y ∈ X satisfying d(B\A)v(xv, y) ≤ τ
for all v ∈ V , there is some z ∈ X such that dAv(z, xv) ≤ ε

2 for all v ∈ V and dG\AV (z, y) ≤ ε
2 .

Assume the claim holds. As τ < ε
2 , we have that for any such finite set V , dBv(z, xv) ≤ ε for every

v ∈ V and dG\AV (z, y) ≤ ε. This is exactly what we wanted to show.
To prove the claim, we argue by induction on |V |. Consider first the case |V | = 1. Say, V = {v}.

Let xv, y ∈ X with d(B\A)v(xv, y) ≤ τ . Then d(s(vxv), s(vy)) ≤ τ for all s ∈ B \ A, in particular
for all s ∈ BA \ A. Thus by our choice of BA there is some z ∈ X such that dBA(z, vxv) ≤ ε

2 and
dG\A(z, vy) ≤ ε

2 . Putting z′ = v−1z, we have dBAv(z
′, xv) ≤ ε

2 and dG\Av(z
′, y) ≤ ε

2 . This proves the
case |V | = 1.

Assume that the claim holds for |V | = n. Let V b G be B-separated with |V | = n + 1, and let
xv ∈ X for v ∈ V and y ∈ X with d(B\A)v(xv, y) ≤ τ for all v ∈ V . Take v0 ∈ V . Applying the
inductive hypothesis to V \{v0} we find some u ∈ X such that dAv(u, xv) ≤ ε

2 for all v ∈ V \{v0}, and
dG\A(V \{v0})(u, y) ≤ ε

2 . For any g ∈ BWA \WA and any s ∈ W , we have sg ∈ WBWA \ A ⊂ B \ A,
and hence

d(sgv0u, sgv0xv0) ≤ d(sgv0u, sgv0y) + d(sgv0xv0 , sgv0y) ≤ ε

2
+ τ ≤ c.

From our choice of W , we get dBWA\WA(v0u, v0xv0) < τ . From the TMP and our choice of BWA, we

obtain there is u′ ∈ X such that dBWA
(u′, v0xv0) ≤ ε

2 and dG\WA(u′, v0u) ≤ ε
2 . Put z = v−1

0 u′ ∈ X.
Then dBWAv0(z, xv0) ≤ ε

2 and dG\WAv0(z, u) ≤ ε
2 . For any v ∈ V \ {v0} and s ∈ Av, we have

d(sz, sxv) ≤ d(sz, su) + d(su, sxv) ≤
ε

2
+
ε

2
≤ c.

For any s ∈ Av0 ⊂WAv0, we have d(sz, sxv0) ≤ ε
2 < c. For any s ∈ G \ (AV ∪WAv0), we have

d(sz, sy) ≤ d(sz, su) + d(su, sy) ≤ ε

2
+
ε

2
≤ c.

For any s ∈WAv0 \Av0, we have

d(sz, sy) ≤ d(sz, sxv0) + d(sxv0 , sy) ≤ ε

2
+ τ < c.

Put wγ = γxv for all v ∈ V and γ ∈ Av and wγ = γy for all γ ∈ G \ AV . Then d(γz, wγ) ≤ c for all
γ ∈ G. Since τ < η and B ⊃ FA, by our choice of η we know that {wγ}γ∈G is an (F, δ) pseudo-orbit.
Then from our choice of F and δ we conclude d(γz, wγ) ≤ ε

2 for all γ ∈ G. This finishes the induction
step, and proves the claim.

Remark 3.14. The previous proof can be easily adapted to show that every expansive action with
the strong TMP has the uniform strong TMP.

Theorem 3.13 does not hold if we do not assume expansivity. Indeed, Lind and Schmidt [68, Exam-
ple 7.5] constructed an algebraic action of Z3 with off-diagonal asymptotic pairs and zero topological
entropy. As a consequence of Theorem 2.7 and Proposition 6.3 which we shall prove later on, this
action does not have the uniform TMP, but it has the TMP by Proposition 4.1. Nonetheless, as we
saw in Proposition 3.10, whenever an action has the POTP it will have the uniform TMP even if it is
not expansive.
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3.3 Examples

Classic examples of actions with the POTP are subshifts of finite type (SFTs). Schmidt showed that
expansive actions of polycyclic-by-finite groups on zero-dimensional compact metrizable groups by
continuous automorphisms are SFTs [90, Corollary 2.3, Theorems 3.8 and 4.2], thus have the POTP.
Other examples of group actions with the POTP are Axiom A diffeomorphisms [3, Theorem 1.2.1],
and expansive principal algebraic actions of countable groups [77, Theorem 1.5].

There are known examples of Z-subshifts with the strong TMP but which are not SFTs, see [22,
Proposition 3.6]. For any fixed countable group there are countably many SFTs, but in contrast, there
are uncountably many Z2-subshifts X such that Z2 y X has the strong TMP [23]. Indeed, if X ⊂ ΛZ

is any Z-subshift, then the Z2-subshift consisting of all x ∈ ΛZ2

whose restriction to Z × {0} is an
element of X and such that {0} × Z acts trivially has the strong TMP but is not necessarily an SFT.

We shall see that subshifts with the strong TMP also arise naturally as supports of Markovian
measures. A G-invariant Borel probability measure µ on a G-subshift X is Markovian if there exists
F b G containing the identity such that for every A b G, p ∈ ΣA and x ∈ supp(µ) we have that for
every B b G which contains AF ,

µ([p] | [x|B\A]) = µ([p] | [x|AF\A]),

where µ([p] | [q]) = µ([p]∩[q])
µ([q]) denotes the conditional probability of [p] given [q].

The following proposition is essentially a rephrasing of [21, Lemma 2.0.1].

Proposition 3.15. Let X ⊂ ΛG be a G-subshift and µ a Markovian measure on X. Then Gy supp(µ)
has the strong TMP.

Proof. As µ is Markovian there is F b G containing the identity such that for every A b G and p ∈ ΛA

we have that for every B b G which contains AF and x ∈ supp(µ) we have µ([p] | [x|B\A]) = µ([p] |
[x|AF\A]). Let us fix A b G and let x, y ∈ supp(µ) such that x|AF\A = y|AF\A. We shall show that
z ∈ ΛG, defined by

z(g) =

{
x(g) if g ∈ A
y(g) otherwise

,

is in supp(µ). Indeed, it suffices to show that for every large enough B b G we have µ([z|B ]) > 0. For
any B b G which contains AF we have

µ([z|B ]) = µ([z|A] | [z|B\A]) · µ([z|B\A]) = µ([x|A] | [y|B\A]) · µ([y|B\A]).

As y ∈ supp(µ), we have µ([y|B\A]) > 0. Furthermore, by our choice of F we also get

µ([x|A] | [y|B\A]) = µ([x|A] | [y|AF\A]) = µ([x|A] | [x|AF\A]) =
µ([x|AF ])

µ([x|A])
.

Since x ∈ supp(µ), we obtain µ([x|A] | [y|B\A]) > 0 and thus µ([z|B ]) > 0.

Example 3.16 (mean TMP but not strong TMP). Let G be a locally finite group (for instance
G =

⊕
i∈N Z/2Z) and X be the subshift {0G, 1G} ⊂ {0, 1}G. Recall that G is infinite as assumed at

the beginning of Section 2. We claim that G y X does not have the strong TMP. Indeed, assume
Gy X has the strong TMP. Then for every ε > 0 there are δ > 0 and F b G containing the identity,
such that for every A b G we have that FA is an (ε, δ)-memory set for A. In particular taking A = 〈F 〉
the subgroup generated by F , we get that 〈F 〉 is an (ε, δ)-memory set for 〈F 〉 which is clearly false.
On the other hand, G y X does have the mean TMP. Indeed, for any sufficiently small δ > 0, any
A b G and any g ∈ G \A we have that A ∪ {g} is an (ε, δ)-memory set for A.

Example 3.17 (TMP but not mean TMP. Lemmas 4.2 and 4.3 of [77]). Let Gi be a sequence of finite
groups of order ai and consider their direct sum G =

⊕
i∈NGi. Identify g ∈ Gi with the tuple in G for

which the only non-identity coordinate is g at position i. Consider the subshift X ⊂ (Z/2Z)G consisting
of all x ∈ (Z/2Z)G such that for every i ∈ N and h ∈ G we have

∑
g∈Gi x(hg) = 0. This example has

no off-diagonal asymptotic pairs and, if ai grows rapidly enough (so that
∏
i≥1(1 − a−1

i ) > 0) then
Gy X has positive topological entropy. We shall later see that, by Proposition 4.1 the action Gy X
has the TMP, while as a consequence of Remark 6.11 it does not satisfy the mean TMP.
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Another example with the TMP and not the strong TMP can be found in [6, Example 2.4]. This
example has both positive topological entropy and off-diagonal asymptotic pairs.

Example 3.18 (not TMP). Consider the sunny-side up G-subshift consisting on all points x ∈ {0, 1}G
where x(g) = 1 for at most one value of g, that is,

X≤1 =
{
x ∈ {0, 1}G : |x−1(1)| ≤ 1

}
.

We claim that Gy X≤1 does not have the TMP. Let A = {eG}. For every B b G which contains A,
let h ∈ G \B and x, y ∈ X≤1 such that x(eG) = 1 and y(h) = 1. Then x|B\A = y|B\A but z ∈ {0, 1}G
such that z|A = x|A and z|G\A = y|G\A does not belong to X≤1. By Corollary 3.8 the action Gy X≤1

does not have the TMP.

When G = Z the sunny-side up subshift X≤1 is a topological factor of an SFT. Indeed, let X ⊂
{a, b}Z be the subshift of all configurations which satisfy that if x(n) = b, then x(n+ 1) = b for every
n ∈ Z. Since X is an SFT, it satisfies the TMP by Proposition 3.10. The map π : X → X≤1 given by

π(x)(n) =

{
1 if x(n− 1) = a and x(n) = b

0 otherwise
for every n ∈ Z,

is a factor map. It follows that even for Z-actions the property of having the TMP does not pass to
topological factors.

4 Markovian properties of algebraic actions

In this section we prove Theorem 4.3, which establishes the strong TMP for finitely presented expansive
algebraic actions of a large class of amenable groups.

Proposition 4.1. Every action Gy X of a group G on a compact metrizable group X by continuous
automorphisms has the TMP.

Proof. We can find a compatible metric d on X which is translation-invariant, that is, d(zxw, zyw) =
d(x, y) for all x, y, z, w ∈ X. Indeed, given any compatible metric d′ on X, we can define d(x, y) =
supz,w∈X d

′(zxw, zyw) which satisfies the property. Let ε > 0 be arbitrary and fix δ = ε
2 . Let

C = {C1, C2, . . . , Cn} be a δ-cover of X, that is, for every Ci, supx,y∈Ci d(x, y) ≤ δ, and for A,B b G
define LA|B as the set of all functions ϕ : A→ {1, . . . , n} such that there exists z ∈ X satisfying:

1. For every g ∈ A we have gz ∈ Cϕ(g).

2. We have dB\A(z, eX) ≤ δ, where eX denotes the identity element of X.

Clearly if B1 ⊂ B2 then LA|B1
⊃ LA|B2

, also, these sets are all finite. It follows that if we fix an
enumeration g0, g1, . . . of G and set Bn = {g0, . . . , gn} then the decreasing sequence

· · · ⊂ LA|Bn ⊂ · · · ⊂ LA|B1
⊂ LA|B0

stabilizes for some NA ∈ N. Let us fix B = A ∪BNA .
Suppose we have x ∈ X such that dB\A(x, eX) ≤ δ. By definition any function ϕx : A→ {1, . . . , n}

such that ϕx(g) = k implies gx ∈ Ck is in LA|B . By our choice of NA, for each m > NA we may
extract a point zm ∈ X for which dBm\A(zm, eX) ≤ δ and gzm ∈ Cϕx(g) for every g ∈ A. As C is
a δ-cover, we obtain that dA(x, zm) ≤ δ for every m > NA. By compactness of X, we may extract
an accumulation point z ∈ X which satisfies that dG\A(z, eX) ≤ δ < ε and dA(z, x) ≤ δ < ε. Then
dB\A(z, x) ≤ dB\A(z, eX) + dB\A(eX , x) ≤ 2δ ≤ ε.

Now let x, y ∈ X be arbitrary points such that dB\A(x, y) ≤ δ. Then x′ = y−1x satisfies that
dB\A(x′, eX) ≤ δ. Consequently we may extract z′ with the aforementioned properties. Let z = yz′.
As the metric is translation-invariant, by left-multiplying by y−1 we have that dB(z, x) = dB(z′, x′) ≤ ε
and dG\A(z, y) = dG\A(z′, eX) ≤ ε.
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We say Gy X is an algebraic action if X is a compact metrizable abelian group and G acts by
continuous automorphisms.

Schmidt [90, Theorems 3.8 and 4.2] showed that every group shift of a polycyclic-by-finite group
has the POTP (i.e. it is an SFT). Nonetheless, Bhattacharya [7, Section 3] showed that not every
expansive algebraic action of a polycyclic group has the POTP (negatively answering [77, Question
3.11]). We will now show that a larger class of algebraic actions, including Bhattacharya’s example,
always satisfy the strong TMP.

Let us briefly recall the notion of group ring. Given a group G and a unital ring R, the group
ring RG consists of all functions f : G → R of finite support. We shall write the elements of RG as
f =

∑
s∈G fss, where fs ∈ R is zero except for finitely many s ∈ G. The addition and multiplication

of RG are given by ∑
s∈G

fss+
∑
s∈G

gss =
∑
s∈G

(fs + gs)s,

(
∑
s∈G

fss)(
∑
s∈G

gss) =
∑
s∈G

(
∑
t∈G

ftgt−1s)s. (1)

We refer the reader to [83] for general information about group rings. The ring CG has also a ∗-
operation given by

(
∑
s∈G

fss)
∗ =

∑
s∈G

fss
−1. (2)

Under these operations CG becomes a ∗-algebra, that is, (fg)∗ = g∗f∗, (f + g)∗ = f∗ + g∗, and
(λf)∗ = λ̄f∗ for all f, g ∈ CG and λ ∈ C. For g ∈ (R/Z)G and f ∈ ZG, the convolution products
fg, gf ∈ (R/Z)G are also defined via (1).

Let us also denote for p ∈ [1,+∞) by `p(G) = {f : G → C :
∑
s∈G |fs|p < ∞} and `∞(G) =

{f : G → C : sups∈G |fs| < ∞} together with the norms ‖ · ‖p on `p(G) and ‖ · ‖∞ on `∞(G). The
convolution products fg, gf ∈ `p(G) are defined by (1) for all 1 ≤ p ≤ ∞ and f ∈ `1(G), g ∈ `p(G).
The ∗-operation also extends to `p(G) for p ∈ [1,+∞] via (2). Then `1(G) is also a ∗-algebra.

For m,n ∈ N and a ∈ Mm,n(CG), denote by ker a the kernel of the bounded linear operator
Mn×1(`2(G))→Mm×1(`2(G)) sending z to az, and by P the orthogonal projection from Mn×1(`2(G))
to ker a. Then P = (Pjk)1≤j,k≤n ∈ Mn×n(B(`2(G))), where B(`2(G)) denotes the algebra of all
bounded linear operators from `2(G) to itself. We have the canonical orthonormal basis {δs}s∈G of
`2(G), where δs is the unit vector in `2(G) taking value 1 at s and 0 everywhere else. The von
Neumann dimension of ker a is

dimvN ker a :=

n∑
j=1

〈PjjδeG , δeG〉 .

For a gentle introduction to group von Neumann algebras and a definition of the von Neumann
dimension in a general context we refer the reader to Sections 1.1.1 to 1.1.3 of [74]. The following
lemma is well known. For convenience of the reader, we give a proof here.

Lemma 4.2. Let a ∈Mm,n(CG). The following hold:

1. dimvN ker a ∈ [0, n],

2. dimvN ker a = 0 if and only if ker a = {0},

3. dimvN ker a = n if and only if a = 0.

Proof. For each z ∈ `2(G) and 1 ≤ j ≤ n denote by z ⊗ δj the column vector in Mn×1(`2(G)) which
is equal to z at the j-th row and 0 everywhere else. Then

dimvN ker a =
n∑
j=1

〈
P (δeG ⊗ δj), δeG ⊗ δj

〉
.

Since P is an orthogonal projection, we have P 2 = P = P ∗. Thus

dimvN ker a =

n∑
j=1

〈
P 2(δeG ⊗ δj), δeG ⊗ δj

〉
=

n∑
j=1

〈
P (δeG ⊗ δj), P (δeG ⊗ δj)

〉
≥ 0. (3)
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Denote by I the identity map from Mn×1(`2(G)) to itself. Then I − P is the orthogonal projection
from Mn×1(`2(G)) to the orthogonal complement of ker a, and hence (I − P )2 = I − P = (I − P )∗.
Thus

n− dimvN ker a =

n∑
j=1

〈
I(δeG ⊗ δj), δeG ⊗ δj

〉
−

n∑
j=1

〈
P (δeG ⊗ δj), δeG ⊗ δj

〉
(4)

=

n∑
j=1

〈
(I − P )(δeG ⊗ δj), δeG ⊗ δj

〉
=

n∑
j=1

〈
(I − P )2(δeG ⊗ δj), δeG ⊗ δj

〉
=

n∑
j=1

〈
(I − P )(δeG ⊗ δj), (I − P )δeG ⊗ δj

〉
≥ 0.

This proves dimvN ker a ∈ [0, n].
For each s ∈ G, we have the unitary ρs−1,n on Mn×1(`2(G)) given by ρs−1,nz = zs. Since the

bounded linear operator T : Mn×(`2(G))→Mm×1(`2(G)) sending z to az satisfies Tρs−1,n = ρs−1,mT ,
we have ρs−1,n ker a = ker a, and hence the projections P and I − P commute with ρs−1,n.

If ker a = {0}, then P = 0, and hence dimvN ker a = 0. Conversely, assume that dimvN ker a = 0.
From (3) we have P (δeG ⊗ δj) = 0 for all 1 ≤ j ≤ n, and hence

P (δs ⊗ δj) = Pρs−1,n(δeG ⊗ δj) = ρs−1,nP (δeG ⊗ δj) = 0

for all s ∈ G and 1 ≤ j ≤ n. Since δs ⊗ δj for all s ∈ G and 1 ≤ j ≤ n is an orthonormal basis of
Mn×1(`2(G)), we conclude that P = 0. Therefore ker a = {0}.

If a = 0, then P = I, and hence dimvN ker a = n. Conversely, assume that dimvN ker a = n. From
(4) we have (I − P )(δeG ⊗ δj) = 0 for all 1 ≤ j ≤ n, and hence

(I − P )(δs ⊗ δj) = (I − P )ρs−1,n(δeG ⊗ δj) = ρs−1,n(I − P )(δeG ⊗ δj) = 0

for all s ∈ G and 1 ≤ j ≤ n. Since δs ⊗ δj for all s ∈ G and 1 ≤ j ≤ n is an orthonormal basis of
Mn×1(`2(G)), we conclude that I − P = 0. Then ker a = Mn×1(`2(G)), and hence a = 0.

The strong Atiyah conjecture asserts that dimvN ker a is in the subgroup of Q generated by 1/|H|
for H ranging over all finite subgroups of G. We refer the reader to [74, Chapter 10] for information
about the strong Atiyah conjecture and related conjectures.

For each locally compact abelian group Y , we denote by Ŷ its Pontryagin dual. It consists of all
continuous group homomorphisms Y → R/Z, and becomes a locally compact abelian group under
pointwise addition and the topology of uniform convergence on compact subsets. Then Y is compact
metrizable if and only if Ŷ is countable discrete.

For a compact metrizable abelian group X, there is a natural one-to-one correspondence between
algebraic actions ofG onX and actions ofG on X̂ by automorphisms. There is also a natural one-to-one
correspondence between the latter and the left ZG-module structure on X̂. Thus, up to isomorphism,
there is a natural one-to-one correspondence between algebraic actions of G and countable left ZG-
modules. We say an algebraic action Gy X is finitely generated (finitely presented resp.) if X̂
is a finitely generated (finitely presented resp.) left ZG-module. Every expansive algebraic action of
G is finitely generated [90, Proposition 2.2 and Corollary 2.16].

Using the ∗-operation it is easy to see that ZG is left Noetherian if and only if it is right Noetherian.
Also note that if a unital ring R is left Noetherian, then every finitely generated left R-module is finitely
presented [61, Proposition 4.29].

Theorem 4.3. Let G be an amenable group. The following results hold:

1. If ZG is left Noetherian, then every expansive algebraic action of G has the strong TMP.

2. If G satisfies the strong Atiyah conjecture and there is an upper bound on the orders of finite
subgroups of G, then every finitely presented expansive algebraic action of G has the strong TMP.
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If G satisfies the strong Atiyah conjecture and there is an upper bound on the orders of finite
subgroups of G, then {dimvN ker a : a ∈ ZG} is a finite subset of [0, 1] and thus every point of this set
is isolated. Therefore Theorem 4.3 follows from Lemmas 4.5 and 4.6 below.

For each nonempty F b G, denote by CF (resp. ZF ) the set of f ∈ CG (f ∈ ZG resp.) with
support in F . We shall need the following result of Elek in [34] on the analytic zero divisor conjecture.
The result is proven for a finitely generated amenable group and m = n = 1, but the arguments work
for any countable amenable group and any m,n ∈ N.

Lemma 4.4. Let G be an amenable group, and a ∈Mm×n(CG) for some m,n ∈ N. Then the following
hold:

1. For any F b G, one has dimvN ker a ≥ dimC(ker a∩Mn×1(CF ))
|F | ,

2. If az = 0 for some nonzero z ∈Mn×1(`2(G)), then ab = 0 for some nonzero b ∈Mn×1(CG).

For amenable groups, in view of Lemmas 4.2 and 4.4, the condition (2) of the following lemma
implies that dimvN ker a for a ∈ ZG is equal to 1 or 0 depending on a = 0 or not, which in turn implies
the condition (3). Nevertheless we give a separate proof for the case (2) since the proof in this case is
easier.

Lemma 4.5. Let G be an amenable group. Assume that at least one of the following conditions holds:

1. ZG is right Noetherian,

2. ZG is a domain,

3. 1 is an isolated point in {dimvN ker a : a ∈ ZG}.

Let f ∈ Mn(ZG) be invertible in Mn(`1(G)), and let g ∈ Mn×1(ZG). Then there is some ε > 0 such
that for any x ∈M1×n(ZG), if xf−1g 6∈ ZG, then ‖xf−1g − y‖∞ ≥ ε for all y ∈ ZG.

Proof. Denote by K the union of the supports of f and g, which is a nonempty finite subset of G.
For each nonempty F b G, denote by V (F,Z) (V (F,C) resp.) the set of (h,w) ∈Mn×1(ZF )×ZF

((h,w) ∈ Mn×1(CF ) × CF resp.) satisfying gw = fh. Note that gw = fh is a finite system of linear
equations with coefficients in Z. Thus V (F,C) is the C-linear span of V (F,Z). Since f is invertible in
Mn(`1(G)), for any (h,w) ∈ V (F,C), we have h = f−1gw, and hence h is determined by w. Denote by
W (F,C) the image of V (F,C) under the projection Mn×1(CF )×CF → CF sending (h,w) to w, and
by W (F,Z) the image of V (F,Z) under the same map. Then W (F,C) is the C-linear span of W (F,Z).

Consider the map ϕF : Mn×1(CF )×CF →Mn×1(CKF ) sending (h,w) to fh− gw. Then V (F,C)
is the kernel of ϕF . Thus

dimCW (F,C) = dimC V (F,C)

= dimC ker(ϕF )

≥ dimC(Mn×1(CF )× CF )− dimCMn×1(CKF )

= (n+ 1)|F | − n|KF |.

As G is amenable, there exists a left Følner sequence {Fk}k∈N such that Fk ⊆ Fk+1 for all k ∈ N
and

⋃
k∈N Fk = G. Then

lim inf
k→∞

dimCW (Fk,C)

|Fk|
≥ lim
k→∞

(n+ 1)|Fk| − n|KFk|
|Fk|

= 1.

Denote by W (Z) (resp. W (C)) the union of W (F,Z) (W (F,C) resp.) over all nonempty F b G.
Then W (Z) contains nonzero elements. Let W = {w1, . . . , wm} be a nonempty finite set of nonzero
elements in W (Z) which we shall determine later. Take 0 < ε < min1≤j≤m

1
‖wj‖1 . Let x ∈M1×n(ZG)

and y ∈ ZG with ‖xf−1g − y‖∞ < ε. Then

‖xf−1gwj − ywj‖∞ ≤ ‖xf−1g − y‖∞‖wj‖1 < ε‖wj‖1 < 1.

Since wj ∈ W (Fk,Z), we have f−1gwj ∈ Mn×1(ZFk), and hence xf−1gwj − ywj ∈ ZG. Therefore
xf−1gwj − ywj = 0. Put b := xf−1g − y ∈ `1(G) ⊆ `2(G). Then b(w1, . . . , wm) = 0, and hence
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w
∗
1
...
w∗m

 b∗ = 0. Assume b 6= 0. Then by Lemma 4.4 there is some nonzero c ∈ CG such that

w
∗
1
...
w∗m

 c∗ =

0, and hence cwj = 0 for all 1 ≤ j ≤ m. Denote by K ′ the support of c, which is a nonempty finite
subset of G. Note that z(w1, . . . , wm) = 0 for z ∈ CK ′ is a finite system of linear equations with
coefficients in Z and has a nonzero solution c. Thus it has a nonzero solution a ∈ ZK ′.

Now consider the case ZG is a domain. Since ZG is a domain, we have aw 6= 0 for all nonzero
w ∈ ZG, which is a contradiction. Thus xf−1g = y ∈ ZG.

Next consider the case ZG is right Noetherian. Note that W (Z) is a right ideal of ZG, and
hence is finitely generated. We may take W to generate W (Z). Since aw = 0 for every w ∈ W, we
have aw = 0 for every w ∈ W (Z), and hence aw = 0 for all w ∈ W (C). By Lemma 4.4 we have

dimvN ker a ≥ supk∈N
dimCW (Fk,C)

|Fk| ≥ 1. From Lemma 4.2 we get a = 0, which is a contradiction. Thus

xf−1g = y ∈ ZG.
Finally consider the case where 1 is an isolated point in V = {dimvN ker z : z ∈ ZG}. Take

0 < δ < 1 close to 1 such that V ∩ [δ, 1] = {1}. Take k ∈ N such that dimCW (Fk,C)
|Fk| ≥ δ. We may takeW

to be a basis of W (Fk,C) contained in W (Fk,Z). Then aw = 0 for all w ∈ W (Fk,C). By Lemma 4.4

we have dimvN ker a ≥ dimCW (Fk,C)
|Fk| ≥ δ. Then dimvN ker a = 1. From Lemma 4.2 we get a = 0, which

is a contradiction. Thus xf−1g = y ∈ ZG.

For each n ∈ N, we write M1×n(ZG) and M1×n((R/Z)G) as (ZG)n and ((R/Z)G)n respectively.

For any finitely generated algebraic action G y X, if we write X̂ as (ZG)n/J for some n ∈ N and
some left ZG-submodule J of (ZG)n, then we may identify X with

{x ∈ ((R/Z)G)n : xg∗ = 0(R/Z)G for all g ∈ J}

with the G-action on X being the restriction of the left shift action of G on ((R/Z)G)n = ((R/Z)n)G

to X [58, page 312].

Lemma 4.6. Assume that for any n ∈ N, any f ∈Mn(ZG) which is invertible in Mn(`1(G)) and any
g ∈Mn×1(ZG), there is some ε > 0 such that for any x ∈ (ZG)n, if xf−1g 6∈ ZG, then ‖xf−1g−y‖∞ ≥
ε for all y ∈ ZG. Then every finitely presented expansive algebraic action of G has the strong TMP.

Proof. Let G y X be a finitely presented expansive algebraic action of G. Then we can write X̂ as
(ZG)n/(ZG)kg for some n, k ∈ N and g ∈Mk,n(ZG). Since Gy X is expansive, by [26, Theorem 3.1]
we can find an f ∈Mn(ZG) such that f is invertible in Mn(`1(G)) and the rows of f are all contained
in (ZG)kg. Write the rows of g as g1, . . . , gk. Then we may identify X with

{x ∈ ((R/Z)G)n : xg∗j = 0(R/Z)G for all 1 ≤ j ≤ k}.

In particular, for each x ∈ X, we have xf∗ = (0(R/Z)G , . . . , 0(R/Z)G).
Applying our assumption to f∗ and g∗j we find an η > 0 such that for any x ∈ (ZG)n and 1 ≤ j ≤ k,

if x(f∗)−1g∗j 6∈ ZG, then ‖x(f∗)−1g∗j − y‖∞ ≥ η for all y ∈ ZG.

Denote by P the natural projection (Rn)G → ((R/Z)G)n modulo Z. For each bounded function
u : G→ Rn, we put ‖u‖∞ = sups∈G ‖us‖∞. Set ‖f‖1 =

∑n
i,j=1 ‖fi,j‖1.

Consider the metric ρ on (R/Z)n given by

ρ(a+ Zn, b+ Zn) = min
m∈Zn

‖a− b−m‖∞

for all a, b ∈ Rn. Then we may think of ρ as a continuous pseudometric on ((R/Z)n)G via setting

ρ(x, y) = ρ(xeG , yeG)

for all x, y ∈ ((R/Z)n)G. This is a dynamically generating continuous pseudometric on X, thus Propo-
sition 3.7 applies.

Let ε > 0. Take 0 < τ < min(ε,η)
‖f‖1 . Take a finite subset K1 of G containing the support of f∗ and

{eG}. Take a large nonempty finite subset K2 of G containing eG such that∑
s∈G\K2

n∑
i=1

|((f∗)−1g∗j )i,s| < τ for all 1 ≤ j ≤ k, and
∑

s∈G\K2

n∑
i,j=1

|((f∗)−1)i,j,s| < τ.
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Take 0 < δ < min( 1
‖f‖1 ,

ε
2 ). Put F = K1K2K

−1
2 K−1

1 , which is a finite subset of G containing eG.

Let A b G and x, y ∈ X with ρFA\A(x, y) ≤ δ. Put z = x − y ∈ X. There is a unique
z̃ ∈ ([−1/2, 1/2)n)G satisfying P (z̃) = z. Then

max
s∈A−1K1K2K

−1
2 K−1

1 \A−1
‖z̃s‖∞ = max

s∈K1K2K
−1
2 K−1

1 A\A
‖z̃s−1‖∞

= max
s∈FA\A

‖z̃s−1‖∞

= max
s∈FA\A

ρ(sz, 0X)

= max
s∈FA\A

ρ(sx, sy)

= ρFA\A(x, y) ≤ δ,

and hence

max
s∈A−1K1K2K

−1
2 \A−1K1

‖(z̃f∗)s‖∞ ≤ ( max
s∈A−1K1K2K

−1
2 K−1

1 \A−1
‖z̃s‖∞)‖f∗‖1 ≤ δ‖f‖1 < 1.

Since zf∗ = (0(R/Z)G , . . . , 0(R/Z)G), we have z̃f∗ ∈ (Zn)G. Therefore (z̃f∗)s = 0Rn for all s ∈
A−1K1K2K

−1
2 \A−1K1. We also have

‖z̃f∗‖∞ ≤ ‖z̃‖∞‖f∗‖1 ≤
‖f‖1

2
.

Define u′ ∈ (ZG)n by u′s = (z̃f∗)s for all s ∈ A−1K1 and u′s = 0Zn for all s ∈ G \ A−1K1. Also
put v′ = z̃f∗ − u′. Then the supports of u′ and v′ are contained in A−1K1 and G \ A−1K1K2K

−1
2

respectively. Note that

max(‖u′‖∞, ‖v′‖∞) = ‖z̃f∗‖∞ ≤
‖f‖1

2
.

Let 1 ≤ j ≤ k. Then

sup
s∈G\A−1K1K2

|(u′(f∗)−1g∗j )s| ≤ ‖u′‖∞
∑

s∈G\K2

n∑
i=1

|((f∗)−1g∗j )i,s| ≤
τ‖f‖1

2
< η,

and

max
s∈A−1K1K2

|(v′(f∗)−1g∗j )s| ≤ ‖v′‖∞
∑

s∈G\K2

n∑
i=1

|((f∗)−1g∗j )i,s| ≤
τ‖f‖1

2
< η.

Since z ∈ X, we have zg∗j = 0(R/Z)G , and hence u′(f∗)−1g∗j + v′(f∗)−1g∗j = z̃g∗j ∈ ZG. It follows that

‖u′(f∗)−1g∗j − uj‖∞ < η for some uj ∈ ZG, and hence u′(f∗)−1g∗j ∈ ZG by our choice of η.

Put u = P (u′(f∗)−1) ∈ ((R/Z)G)n and v = P (v′(f∗)−1) ∈ ((R/Z)G)n. Note that u+v = z = x−y.
For each 1 ≤ j ≤ k, since u′(f∗)−1g∗j ∈ ZG, we have ug∗j = 0(R/Z)G . Thus u ∈ X. We have

sup
s∈G\A−1K1K2

ρ(us, 0(R/Z)n) ≤ sup
s∈G\A−1K1K2

‖(u′(f∗)−1)s‖∞

≤ ‖u′‖∞
∑

s∈G\K2

n∑
i,j=1

|((f∗)−1)i,j,s| ≤
τ‖f‖1

2
<
ε

2
,

and similarly

max
s∈A−1K1K2

ρ(vs, 0(R/Z)n) ≤ max
s∈A−1K1K2

‖(v′(f∗)−1)s‖∞ ≤ ‖v′‖∞
∑

s∈G\K2

n∑
i,j=1

|((f∗)−1)i,j,s| <
ε

2
.

Then

ρG\K−1
2 K−1

1 A(u+ y, y) = sup
s∈G\A−1K1K2

ρ((u+ y)s, ys) = sup
s∈G\A−1K1K2

ρ(us, 0(R/Z)n) <
ε

2
,
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and

ρK−1
2 K−1

1 A(u+ y, x) = max
s∈A−1K1K2

ρ((u+ y)s, xs)

= max
s∈A−1K1K2

ρ((x− v)s, xs) = max
s∈A−1K1K2

ρ(vs, 0(R/Z)n) <
ε

2
.

Now we have

ρK−1
2 K−1

1 A\A(u+ y, y) ≤ ρK−1
2 K−1

1 A\A(u+ y, x) + ρK−1
2 K−1

1 A\A(x, y)

≤ ρK−1
2 K−1

1 A(u+ y, x) + ρFA\A(x, y) <
ε

2
+ δ < ε,

and

ρFA\K−1
2 K−1

1 A(u+ y, x) ≤ ρFA\K−1
2 K−1

1 A(u+ y, y) + ρFA\K−1
2 K−1

1 A(y, x)

≤ ρG\K−1
2 K−1

1 A(u+ y, y) + ρFA\A(y, x) <
ε

2
+ δ < ε.

Finally,
ρG\A(u+ y, y) = max(ρG\K−1

2 K−1
1 A(u+ y, y), ρK−1

2 K−1
1 A\A(u+ y, y)) < ε,

and
ρFA(u+ y, x) = max(ρK−1

2 K−1
1 A(u+ y, x), ρFA\K−1

2 K−1
1 A(u+ y, x)) < ε.

From Proposition 3.7 we conclude that Gy X has the strong TMP.

5 Markovian properties of minimal actions

In this section we prove Theorem 5.1, which characterizes the TMP for minimal expansive actions. We
say Gy X is minimal if every closed G-invariant subset of X is either equal to X or empty.

Theorem 5.1. Let Gy X be a minimal expansive action. Then Gy X has the TMP if and only if
it has no off-diagonal asymptotic pairs.

Theorem 5.1 follows from Theorem 3.13 and Propositions 5.3 and 5.4 below.
The following result is [26, Lemma 6.2], and also follows from the part (3) of Lemma 3.12.

Lemma 5.2. Let Gy X be an expansive action with an expansivity constant c > 0. Then Ac2(X,G) =
A2(X,G).

Proposition 5.3. If Gy X is expansive and has no off-diagonal asymptotic pairs, then Gy X has
the TMP.

Proof. Let c > 0 be an expansivity constant for Gy X. If Gy X does not have the TMP then there
exists ε > 0 such that for every δ > 0 there is A b G such that for every B b G which contains A
there exist x, y ∈ X such that dB\A(x, y) ≤ δ but for every z ∈ X we have that either dB(x, z) > ε or
dG\A(y, z) > ε. Choose δ < min(c, ε) and consider an increasing sequence {Bn}n∈N of finite subsets
of G such that

⋃
n∈NBn = G and Bn ⊃ A and let (xn, yn) be a pair for which dBn\A(xn, yn) ≤ δ but

for every z ∈ X we have that either dBn(xn, z) > ε or dG\A(yn, z) > ε. By compactness of X ×X, we
may extract an accumulation point (x̄, ȳ) of {(xn, yn)}n∈N.

From the choice of Bn and (xn, yn) it follows that for every g /∈ A we get that d(gx̄, gȳ) ≤ δ
and hence by the choice δ < c and Lemma 5.2 we have that (x̄, ȳ) is an asymptotic pair. If x̄ = ȳ
then for every ε′ > 0 there would be n ∈ N such that dA(xn, yn) < ε′. Taking ε′ < δ yields a
contradiction because z = yn would satisfy that dBn(xn, z) ≤ ε and dG\A(yn, z) ≤ ε. Therefore (x̄, ȳ)
is an off-diagonal asymptotic pair.

Salo [89] communicated to us a proof that minimal actions of finitely generated groups on subshifts
do not have exchangeable patterns. We use some of his ideas to prove the following generalization of
his result.

Proposition 5.4. Assume that G y X has only finitely many minimal closed G-invariant subsets
and has the uniform TMP. Then X has no off-diagonal asymptotic pairs (x1, x2) with Gx1 minimal.
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Proof. List the minimal closed G-invariant subsets of X as Y1, . . . , YN . Take a point ωj ∈ Yj for each
1 ≤ j ≤ N . Put Ω = {ω1, . . . , ωN}. Assume that X has an off-diagonal asymptotic pair (x1, x2) such
that Gx1 is minimal. Take 0 < ε < 1

5d(x1, x2).
Since G y X has the uniform TMP, there is some τ > 0 such that for any A b G there is some

B b G containing A such that for any B-separated V b G and any xv ∈ X for v ∈ V and y ∈ X
satisfying d(B\A)v(xv, y) ≤ τ for all v ∈ V , there is some z ∈ X such that dBv(z, xv) ≤ ε

2 for all v ∈ V
and dG\AV (z, y) ≤ ε

2 .
Since (x1, x2) is asymptotic, there is some A b G containing eG such that dG\A(x1, x2) < τ

2 . Then
we have B as above for A. Take 0 < θ < ε

2 such that for any x, y ∈ X with d(x, y) ≤ θ, one has

dB\A(x, y) < τ
2 . Since Gx1 is minimal, there is some K ′1 b G containing eG such that for any y ∈ Gx1

one has mins∈K′1 d(x1, sy) < θ. Put K1 = BK ′1 b G. Then K1 ⊃ B.

Since G is infinite, we can take a K1-separated W2 b G with 2|W2| > N |K1|4|W2|4. Put K2 =
K1W2 b G. Then |K2| ≤ |K1| · |W2| and K2 ⊃W2. Put K3 = K2K

−1
2 K2 b G.

Denote by U the union of the open dK′1K3
-balls of radius ε around each ω ∈ Ω. Then GU ⊃

⋃N
j=1 Yj .

If GU 6= X, then X \ GU contains a minimal closed G-invariant subset, which is impossible. Thus
GU = X. Since X is compact, this means that there is some K4 b G with K−1

4 U = X, i.e. for any
y ∈ X one has mins∈K4

minω∈Ω dK′1K3
(ω, sy) < ε. Take a maximal K2-separated subset W4 of K4.

Then

K−1
2 K2W4 ⊃ K4. (5)

Since W4 is K2-separated and K2 ⊃W2, we know that W4 is W2-separated.
We claim that W2W4 is K1-separated. Let γ1, γ2 ∈ W2W4 with K1γ1 ∩K1γ2 6= ∅. Say, γj = hjsj

with hj ∈W2, sj ∈W4 for j = 1, 2. From

K2s1 ∩K2s2 = K1W2s1 ∩K1W2s2 ⊃ K1γ1 ∩K1γ2

we know that K2s1 ∩ K2s2 6= ∅, and hence s1 = s2. Then K1h1 ∩ K1h2 6= ∅, and consequently
h1 = h2. Therefore γ1 = γ2. This proves our claim.

Fix y1 ∈ Gx1. For each γ ∈ W2W4, by our choice of K ′1 we can find some gγ ∈ K ′1 with
d(x1, gγγy1) < θ. Put V ′ = {gγγ : γ ∈W2W4} b G. For any γ, γ′ ∈W2W4, if Bgγγ∩Bgγ′γ′ 6= ∅, then
using that W2W4 is K1-separated we get γ = γ′. Thus V ′ is B-separated, and the map W2W4 → V ′

sending γ to gγγ is a bijection.
Let s ∈ W4. Denote by Cs the set of t ∈ G satisfying K3t ⊃ K2s. For each t ∈ Cs one has

t ∈ K−1
3 K2s, and hence

|Cs| ≤ |K−1
3 K2| ≤ |K2|4 ≤ |K1|4|W2|4 <

1

N
2|W2|.

Note that for any distinct maps ϕ,ϕ′ : (W2)s → {1, 2}, one has maxγ∈(W2)s d(xϕ(γ), xϕ′(γ)) > 5ε.
Thus for each t ∈ Cs and ω ∈ Ω, there is at most one map ϕ : (W2)s → {1, 2} which satisfies that
maxγ∈(W2)s d(gγγt

−1ω, xϕ(γ)) < 2ε. Since N |Cs| < 2|W2|, we can find some map ϕs : (W2)s → {1, 2}
such that for every t ∈ Cs and ω ∈ Ω one has

max
γ∈(W2)s

d(gγγt
−1ω, xϕs(γ)) ≥ 2ε. (6)

Since W4 is W2-separated, W2W4 is the disjoint union of (W2)s for s ∈ W4. Then we can define
a map ϕ : W2W4 → {1, 2} by taking ϕ to be ϕs on (W2)s for all s ∈ W4. Put V = {gγγ : γ ∈
ϕ−1(2)} ⊂ V ′. Then V is B-separated. For each γ ∈ ϕ−1(2), putting xgγγ = (gγγ)−1x2 and using
d(x1, gγγy1) < θ we have

d(uxgγγ , uy1) = d(u(gγγ)−1x2, u(gγγ)−1(gγγy1))

≤ d(u(gγγ)−1x2, u(gγγ)−1x1) + d(u(gγγ)−1x1, u(gγγ)−1(gγγy1))

<
τ

2
+
τ

2
= τ

for all u ∈ (B \A)gγγ. Thus there is some z ∈ X satisfying dBgγγ(z, xgγγ) ≤ ε
2 for all γ ∈ ϕ−1(2) and

dG\AV (z, y1) ≤ ε
2 .
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By our choice of K4, there are some t ∈ K4 and ω ∈ Ω with dK′1K3
(ω, tz) < ε. From (5) we have

t ∈ K−1
2 K2s for some s ∈W4. Then s ∈ K−1

2 K2t, and hence K2s ⊂ K3t. Thus t ∈ Cs, and

max
γ∈(W2)s

d(gγγt
−1ω, gγγz) ≤ dK′1(W2)s(t

−1ω, z)

≤ dK′1K2s(t
−1ω, z)

≤ dK′1K3t(t
−1ω, z)

= dK′1K3
(ω, tz) < ε.

From (6) we can find some γ ∈ (W2)s with d(gγγt
−1ω, xϕs(γ)) ≥ 2ε. Then

d(xϕs(γ), gγγz) ≥ d(gγγt
−1ω, xϕs(γ))− d(gγγt

−1ω, gγγz) > 2ε− ε = ε. (7)

Now we have ϕs(γ) = 1 or 2. Consider first the case ϕs(γ) = 2. We have d(gγγz, x2) =
d(gγγz, gγγxgγγ) ≤ ε

2 , contradicting (7). Next consider the case ϕs(γ) = 1. We have gγγ ∈ V ′ \ V ⊂
G \AV . Then d(gγγz, gγγy1) ≤ ε

2 . Therefore

d(x1, gγγz) ≤ d(x1, gγγy1) + d(gγγy1, gγγz) < θ +
ε

2
< ε,

again contradicting (7). Thus X has no off-diagonal asymptotic pairs (x1, x2) with Gx1 minimal.

6 Topological entropy and asymptotic pairs

In this section we will explore the consequences of having Markovian properties on the relation between
asymptotic pair and independence entropy pairs.

6.1 From asymptotic pairs to independence entropy pairs

In this subsection we shall give conditions under which the existence of an off-diagonal asymptotic pair
gives rise to IE-pairs. We provide a result for orbit IE-pairs which applies to all groups (Theorem 6.1),
and a result for Σ-IE-pairs which applies to sofic groups (Theorem 6.4).

Theorem 6.1. Let Gy X be an expansive action with the TMP. Let k ∈ N and (x1, . . . , xk, xk+1) ∈
Xk+1 such that (x1, . . . , xk) ∈ IEk(X,G) and (xk, xk+1) is an asymptotic pair. Then (x1, . . . , xk, xk+1) ∈
IEk+1(X,G).

Theorem 6.1 follows from Theorem 3.13 and Proposition 6.3 below.
Whenever G is amenable, we have x ∈ IE1(X,G) if and only if x is in the the support of an invariant

Borel probability measure, see [58, Lemma 12.6]. For a non-amenable group G every element in the
support of some G-invariant Borel probability measure is in IE1(X,G) but the converse may not hold,
see Theorem 2.7.

A direct application of Theorems 6.1 and 2.7 yields the following result.

Corollary 6.2. Let Gy X be an expansive action with the TMP.

1. Suppose that (x, y) ∈ A2(X,G)\42(X) and x ∈ IE1(X,G), then (x, y) ∈ IE2(X,G). In particular
we have hnv

top(Gy X) > 0.

2. If IE1(X,G) = X and A2(X,G) = X2, then Gy X has naive UPE of all orders.

For x ∈ X and δ > 0, denote by Bδ(x) = {y ∈ X : d(y, x) < δ} the open ball of radius δ centered
at x.

Proposition 6.3. Suppose that G y X has the uniform TMP. Let k ∈ N and (x1, . . . , xk, xk+1) ∈
Xk+1 such that (xk, xk+1) is an asymptotic pair. Then (x1, . . . , xk) ∈ IEk(X,G) if and only if
(x1, . . . , xk, xk+1) ∈ IEk+1(X,G).
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Proof. The “if” part is trivial. We shall prove the “only if” part. Let ε > 0. Then there is some τ > 0
such that for any A b G there is some B′ b G containing A such that for any B′-separated V b G
and any xv ∈ X for v ∈ V and y ∈ X satisfying d(B′\A)v(xv, y) ≤ τ for all v ∈ V , there is some z ∈ X
such that dB′v(z, xv) ≤ ε

2 for all v ∈ V and dG\AV (z, y) ≤ ε
2 .

Since (xk, xk+1) is an asymptotic pair, there is someA b G containing eG such that dG\A(xk, xk+1) <
τ
2 . Then we have B′ ⊃ A as above. Take 0 < δ < ε

2 such that for any x, y ∈ X with d(x, y) ≤ δ one
has dB′\A(x, y) < τ

2 .
Since (x1, . . . , xk) ∈ IEk(X,G), the tuple (Bδ(x1), . . . , Bδ(xk)) has independence density q > 0.
Let F b G. Then there is some F ′ ⊂ F with |F ′| ≥ q|F | such that F ′ is an independence set for

(Bδ(x1), . . . , Bδ(xk)). Take a maximal B′-separated subset J of F ′. Then B′−1B′J ⊃ F ′ and hence

|J | ≥ |F
′|

|B′|2
≥ q|F |
|B′|2

.

We claim that J is an independence set for (Bε(x1), . . . , Bε(xk), Bε(xk+1)). Consider an arbitrary
map f : J → {1, . . . , k + 1} and put V = f−1(k + 1), which is B′-separated. Define g : J → {1, . . . , k}
by g = f on J \ V and g = k on V . Then there is some y ∈

⋂
s∈J s

−1Bδ(xg(s)). Put xv = v−1xk+1 for
each v ∈ V . For any v ∈ V we have d(xk, vy) ≤ δ, and hence for s ∈ (B′ \A)v,

d(sxv, sy) = d(sv−1xk+1, sv
−1(vy)) ≤ d(sv−1xk+1, sv

−1xk) + d(sv−1xk, sv
−1(vy)) <

τ

2
+
τ

2
= τ.

Thus there is some z ∈ X such that dB′v(z, xv) ≤ ε
2 for all v ∈ V and dG\AV (z, y) ≤ ε

2 . For any
v ∈ f−1(k + 1) = V , we have d(vz, xk+1) = d(vz, vxv) ≤ ε

2 . For any v ∈ J \ V , we have

d(vz, xf(v)) ≤ d(vz, vy) + d(vy, xf(v)) ≤
ε

2
+ δ < ε.

Therefore z ∈
⋂
s∈J s

−1Bε(xf(s)). This proves our claim.
Now we conclude that (Bε(x1), . . . , Bε(xk), Bε(xk+1)) has independence density at least q

|B′|2
.

Therefore (x1, . . . , xk, xk+1) ∈ IEk+1(X,G).

Next we shall prove Theorem 6.4, which is the analogue of Theorem 6.1 for sofic topological entropy.

Theorem 6.4. Let G be a sofic group and Σ a sofic approximation sequence for G. Suppose that Gy
X is expansive and has the TMP. Let k ∈ N and (x1, . . . , xk, xk+1) ∈ Xk+1 such that (x1, . . . , xk) ∈
IEΣ
k (X,G) and (xk, xk+1) is an asymptotic pair. Then (x1, . . . , xk, xk+1) ∈ IEΣ

k+1(X,G).

A direct consequence of Theorems 2.9 and 6.4 yields the following.

Corollary 6.5. Let G be a sofic group, Σ a sofic approximation sequence for G, and G y X an
expansive action with the TMP.

1. Suppose that (x, y) ∈ A2(X,G) \ 42(X) and x ∈ IEΣ
1 (X,G), then (x, y) ∈ IEΣ

2 (X,G). In partic-
ular we have hΣ

top(Gy X) > 0.

2. If IEΣ
1 (X,G) = X and A2(X,G) = X2, then Gy X has sofic UPE of all orders.

Example 6.6. Let G be a sofic group, F b G which does not contain eG, and Σ a sofic approximation
sequence for G. The F hard-square model of G is the subshift Xhard,F ⊂ {0, 1}

G consisting of all

x ∈ {0, 1}G for which x−1(1) is an independence set in the right Cayley graph of G given by F , that is

Xhard,F =
{
x ∈ {0, 1}G : for every g ∈ G and s ∈ F, x(g)x(gs) = 0

}
.

Xhard,F is a subshift of finite type, and therefore has the POTP and thus the TMP by Proposi-

tion 3.10. It is easy to see that any point which is asymptotic to 0G is in IEΣ
1 (Xhard,F , G) and hence

IEΣ
1 (Xhard,F , G) = Xhard,F , moreover, A2(Xhard,F , G) = (Xhard,F )2. By Corollary 6.5 we obtain

that G y Xhard,F has sofic UPE of all orders for every sofic approximation sequence. Although this

result is not very surprising, as far as we now, this is the first proof of (uniform) positive topological
sofic entropy of hard-square models on sofic groups.
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To prove Theorem 6.4 we need to make some preparations. The following is a result of Karpovsky
and Milman [51]. See also [58, Lemma 12.14].

Lemma 6.7. Let k ≥ 2 and λ > 1. Then there is a c > 0 such that for every n ∈ N and S ⊂
{1, 2, . . . , k}{1,2,...,n} with |S| ≥ ((k − 1)λ)n there is an I ⊂ {1, 2, . . . , n} satisfying |I| ≥ cn and
S|I = {1, 2, . . . , k}I .

Lemma 6.8. Let G be a sofic group and Σ = {σi : G→ Sym(ni)}i∈N a sofic approximation sequence
for G. Let G y X be an action and A = (A1, . . . , Ak) a tuple of subsets of X. Then A has positive
upper independence density over Σ if and only if there exists q > 0 such that for every F b G and
δ > 0 there exists an infinite set of i for which there is a set Ji ⊂ {1, . . . , ni} so that |Ji| ≥ qni and
for every map ω : Ji → {1, . . . , k} there is some ϕ ∈ Map(d, F, δ, σi) satisfying that ϕ(a) ∈ Aω(a) for
all a ∈ Ji and d(sϕ(a), ϕ(σi(s)a)) ≤ δ for all a ∈ Ji and s ∈ F .

Proof. The “if” part is trivial.
Assume that A has positive upper independence density over Σ. Then there exists q > 0 such that

for every F b G and δ > 0 there is an infinite set IF,δ of i for which A has a (d, F, δ, σi)-independence
set Ji ⊂ {1, . . . , ni} of cardinality at least qni.

Consider the case k ≥ 2. Take η > 0 small such that k1−η > k − 1. Put λ = k1−η/(k − 1) > 1.
Then we have c > 0 given by Lemma 6.7 for k and λ. From Stirling’s approximation formula (see
example [58, Lemma 10.1]) it is easy to see that there is some τ ′ > 0 depending only on kηq such that∑

0≤j≤τ ′n
(
n
j

)
≤ kηqn for all n ∈ N. Put τ = min(τ ′, cq/2) > 0.

In the case k = 1, we put τ = q/2.
Let F b G and δ > 0. Put δ′ = ( τ

|F |+1 )1/2δ > 0.

Let i ∈ IF,δ′ . Then A has a (d, F, δ, σi)-independence set Ji ⊂ {1, . . . , ni} of cardinality at least
qni. For each ω : Ji → {1, 2, . . . , k}, take ϕω ∈ Map(d, F, δ′, σi) such that ϕω(a) ∈ Aω(a) for all a ∈ Ji.
Denote by Wω the set of all a ∈ {1, . . . , ni} satisfying d(sϕω(a), ϕω(σi(s)a)) ≤ δ for all s ∈ F . Since
ϕω ∈ Map(d, F, δ′, σi), we have |Wω|/ni ≥ 1 − τ . In the case k = 1, there is only one ω and setting
J ′i = Ji ∩Wω we have |J ′i |/ni ≥ q/2. Thus we may assume k ≥ 2. From our choice of τ , we get that
the number of choices for Wω is at most kηqni . Thus there is a set Ω ⊂ {1, 2, . . . , k}Ji such that Wω

is the same for all ω ∈ Ω, which we denote by W , and

|Ω| ≥ k|Ji|/kηqni ≥ k|Ji|/kη|Ji| = k(1−η)|Ji| = ((k − 1)λ)|Ji|.

By our choice of c, we find a J ′i ⊂ Ji such that |J ′i | ≥ c|Jj | and Ω|J′i = {1, 2, . . . , k}J′i . Put J ′′i = J ′i∩W .
Then

|J ′′i |/ni ≥ |J ′i |/ni − (1− |W |/ni) ≥ cq − τ ≥ cq/2.

Let g : J ′′i → {1, 2, . . . , k} be an arbitrary map. Take a ω ∈ Ω such that ω|J′′i = g. Then ϕω ∈
Map(d, F, δ′, σi) ⊂ Map(d, F, δ, σi), ϕω(a) ∈ Aω(a) = Ag(a) for all a ∈ J ′′i , and for any a ∈ J ′′i and
s ∈ F we have a ∈W = Wω, whence d(sϕω(a), ϕω(σi(s)a)) ≤ δ. This proves the “only if” part.

We are ready to prove Theorem 6.4.

Proof of Theorem 6.4. Let c > 0 be an expansivity constant for G y X. Say, Σ = {σi : G →
Sym(ni)}i∈N.

Let 0 < ε < c
2 . It suffices to show that the tuple (Bε(x1), . . . , Bε(xk), Bε(xk+1)) has positive upper

independence density over Σ. By Theorem 3.13 we have that G y X satisfies the uniform TMP and
thus there is some τ > 0 such that for any A b G there is some B′ b G containing A such that for
any B′-separated V b G and any xv ∈ X for v ∈ V and y ∈ X satisfying d(B′\A)v(xv, y) ≤ τ for all
v ∈ V , there is some z ∈ X such that dB′v(z, xv) ≤ ε

2 for all v ∈ V and dG\AV (z, y) ≤ ε
2 .

Since (xk, xk+1) is asymptotic, there is some A b G containing eG such that dG\A(xk, xk+1) < τ
2 .

Then we have B′ for A as above. Take 0 < θ < ε
2 such that for any x, y ∈ X with d(x, y) ≤ 2θ one has

dB′\A(x, y) < τ
2 .

Since (x1, . . . , xk) ∈ IEΣ
k (X,G), the tuple (Bθ(x1), . . . , Bθ(xk)) has positive upper independence

density over Σ. By Lemma 6.8 there is some q > 0 such that for every F b G and δ > 0 there is an
infinite set IF,δ of i for which there is a set WF,δ,i ⊂ {1, . . . , ni} so that |WF,δ,i| ≥ qni and for every
map ω : WF,δ,i → {1, . . . , k} there is a ϕ ∈ Map(d, F, δ, σi) satisfying that ϕ(a) ∈ Bθ(xω(a)) for all
a ∈WF,δ,i and d(sϕ(a), ϕ(σi(s)a)) ≤ δ for all a ∈WF,δ,i and s ∈ F .
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Let F b G and δ > 0. By Lemma 3.12 there is some K1 b G such that for any x, y ∈ X, if
dK1(x, y) ≤ c, then d(x, y) < δ

2 . Take 0 < κ ≤ θ such that for any x, y ∈ X with d(x, y) ≤ κ, one has
dK1(x, y) < c

2 .

Put K = B′ ∪ F ∪ A−1K1 ∪ A−1K1F b G. Take 0 < η < q
2 such that 4ηdiam(X, d)2 ≤ ( δ2 )2. Put

δ′ = κ
√
η/|K| > 0. Let i ∈ IK,δ′ be sufficiently large so that |Wi| ≥ (1− η)ni for

Wi ={a ∈ {1, . . . , ni} : σi(s)a 6= σi(t)a for all distinct s, t ∈ K,
and σi(s)σi(t)a = σi(st)a for all s, t ∈ K}.

Take a maximal subset Ji of Wi ∩WK,δ′,i subject to the condition that σi(B
′)a ∩ σi(B′)b = ∅ for all

distinct a, b ∈ Ji. Then (σi(B
′))−1σi(B

′)Ji ⊃Wi ∩WK,δ′,i, and hence

|Ji| ≥
|Wi ∩WK,δ′,i|
|B′|2

≥ (q − η)ni
|B′|2

≥ qni
2|B′|2

.

Now it suffices to show that Ji is a (d, F, δ, σi)-independence set for (Bε(x1), . . . , Bε(xk), Bε(xk+1)).
Let f : Ji → {1, . . . , k+1} be an arbitrary map and define g : Ji → {1, . . . , k} by g = f on Ji\f−1(k+1)
and g = k on f−1(k + 1). Then there is some ϕ ∈ Map(d,K, δ′, σi) such that ϕ(a) ∈ Bθ(xg(a)) for all
a ∈ Ji and d(sϕ(a), ϕ(σi(s)a)) ≤ δ′ for all a ∈WK,δ′,i and s ∈ K.

Denote by Wϕ the set of a ∈ {1, . . . , ni} satisfying d(sϕ(a), ϕ(σi(s)a)) ≤ κ for all s ∈ K. Since
ϕ ∈ Map(d,K, δ′, σi), we have |Wϕ|/ni ≥ 1− η.

Let a ∈ Wi ∩ Wϕ. Denote by Va (V ′a resp.) the set of t ∈ K satisfying σi(t)a ∈ f−1(k + 1)
(σi(t)a ∈ Ji resp.). For each t ∈ V ′a, we have σi(B

′t)a = σi(B
′)σi(t)a. For any distinct t1, t2 ∈ V ′a, we

have σi(t1)a 6= σi(t2)a, and hence σi(B
′t1)a ∩ σi(B′t2)a = σi(B

′)σi(t1)a ∩ σi(B′)σi(t2)a = ∅, which
implies that B′t1 ∩ B′t2 = ∅. Thus V ′a is B′-separated. Put ya = ϕ(a), and for each t ∈ Va put
xa,t = t−1xk+1. For any t ∈ Va and s ∈ (B′ \A)t, we have

d(xk, tϕ(a)) ≤ d(xk, ϕ(σi(t)a)) + d(ϕ(σi(t)a), tϕ(a)) ≤ θ + κ ≤ 2θ,

and hence

d(sxa,t, sya) = d(st−1xk+1, st
−1(tϕ(a))) ≤ d(st−1xk+1, st

−1xk) + d(st−1xk, st
−1(tϕ(a))) <

τ

2
+
τ

2
= τ.

Then there is some ψ(a) ∈ X such that dB′t(ψ(a), xa,t) ≤ ε
2 for all t ∈ Va and dG\AVa(ψ(a), ya) ≤ ε

2 .
For a ∈ {1, . . . , ni}\(Wi∩Wϕ), take ψ(a) to be any point in X. Then we get a map ψ : {1, . . . , ni} →

X. We claim that ψ ∈ Map(d, F, δ, σi).
Indeed, let s ∈ F and put W = (Wi ∩Wϕ) ∩ (σi(s))

−1(Wi ∩Wϕ). We have

|{1, . . . , ni} \W | ≤ 2|{1, . . . , ni} \Wi|+ 2|{1, . . . , ni} \Wϕ| ≤ 4ηni.

Let a ∈ W and γ ∈ K1. If γs ∈ At for some t ∈ Va, then ts−1 ∈ A−1K1 ⊂ K and σi(ts
−1)σi(s)a =

σi(t)a ∈ f−1(k + 1), and hence ts−1 ∈ Vσi(s)a and γ ∈ Ats−1, from which we get

d(γsψ(a), γψ(σi(s)a)) ≤ d(γsψ(a), γsxa,t) + d(γsxa,t, γxσi(s)a,ts−1) + d(γxσi(s)a,ts−1 , γψ(σi(s)a))

≤ ε

2
+ d(γst−1xk+1, γst

−1xk+1) +
ε

2
= ε < c.

If γ ∈ At for some t ∈ Vσi(s)a, then ts ∈ A−1K1F ⊂ K and σi(ts)a = σi(t)σi(s)a ∈ f−1(k + 1),
and hence ts ∈ Va and γs ∈ A(ts). Thus, if γs ∈ G \ AVa, then γ ∈ G \ AVσi(s)a, and using
d(sϕ(a), ϕ(σi(s)a)) ≤ κ and γ ∈ K1 we have

d(γsψ(a), γψ(σi(s)a)) ≤ d(γsψ(a), γsya) + d(γsya, γyσi(s)a) + d(γyσi(s)a, γψ(σi(s)a))

≤ ε

2
+ d(γsϕ(a), γϕ(σi(s)a)) +

ε

2
<
ε

2
+
c

2
+
ε

2
≤ c.

We conclude that dK1
(sψ(a), ψ(σi(s)a)) ≤ c for every a ∈ W . From our choice of K1, we obtain that

d(sψ(a), ψ(σi(s)a)) < δ
2 for all a ∈W . Therefore

1

ni

∑
a∈{1,...,ni}

d(sψ(a), ψ(σi(s)a))2 =
1

ni

∑
a∈W

d(sψ(a), ψ(σi(s)a))2 +
1

ni

∑
a∈{1,...,ni}\W

d(sψ(a), ψ(σi(s)a))2

≤ |W |
ni

(
δ

2

)2

+ diam(X, d)2 |{1, . . . , ni} \W |
ni

≤
(
δ

2

)2

+ 4ηdiam(X, d)2 ≤ 2

(
δ

2

)2

< δ2.
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This proves our claim.
We have WK,δ′,i ⊂Wϕ, and hence Ji ⊂Wi∩WK,δ′,i ⊂Wi∩Wϕ. Since eG ∈ K, we have σi(eG)a = a

for all a ∈Wi. For any a ∈ f−1(k+1), we have eG ∈ Va, and hence d(ψ(a), xk+1) = d(ψ(a), xa,eG) ≤ ε
2 .

For any a ∈ Ji \ f−1(k + 1), we have eG ∈ V ′a \ Va ⊂ G \AVa, whence d(ψ(a), ϕ(a)) = d(ψ(a), ya) ≤ ε
2

and consequently

d(ψ(a), xf(a)) ≤ d(ψ(a), ϕ(a)) + d(ϕ(a), xf(a)) ≤
ε

2
+ θ < ε.

We conclude that ψ(a) ∈ Bε(xf(a)) for all a ∈ Ji. This shows that Ji is a (d, F, δ, σi)-independence set
for (Bε(x1), . . . , Bε(xk), Bε(xk+1)) as desired.

6.2 From independence entropy pairs to asymptotic pairs

In this subsection we prove Theorem 6.9 which gives sufficient conditions under which positive topo-
logical entropy for an action of an amenable group implies the existence of off-diagonal asymptotic
pairs.

Theorem 6.9. Let G be an amenable group, and G y X an expansive action with the strong TMP.
Then IEk(X,G) ⊆ Ak(X,G) for every k ≥ 2.

Theorem 6.9 follows from Proposition 3.11, Lemma 5.2 and Proposition 6.12 below.
Combining Theorem 6.9 and part (2) of Theorem 2.7 we obtain the following corollary. Part (1) of

it was proven by Meyerovitch [77, Theorem 1.4] under the stronger assumption that G y X has the
POTP.

Corollary 6.10. Let G be an amenable group, and Gy X an expansive action with the strong TMP.

1. If htop(Gy X) > 0, then for every k ≥ 2 there exists an (x1, . . . , xk) ∈ Ak(X,G) with x1, . . . , xk
distinct.

2. If Gy X has UPE of order k for some k ≥ 2, then Ak(X,G) is dense in Xk.

Remark 6.11. Theorem 6.9 and Corollary 6.10 also hold with the strong TMP replaced by the mean
TMP.

The following result was proven in [5, Theorem 4.2] under the stronger assumption of the POTP.
The proof is very similar but it is in fact much more natural in this general context.

Proposition 6.12. Let Gy X be an action with the mean TMP. For every k ≥ 2 and ε > 0 we have
IEk(X,G) ⊂ Aεk(X,G).

Proof. Let (x1, . . . , xk) ∈ IEk(X,G). It suffices to show that for any ε > 0 there exists an ε-asymptotic
tuple in Bε(x1) × · · · × Bε(xk). By the mean TMP there exist δ > 0 and an increasing sequence
{Fn}n∈N of finite subsets of G with union G such that for each n ∈ N there is an ( ε2 , δ)-memory set

F̃n for Fn so that |F̃n \ Fn| = o(|Fn|). Let C = {Ci} be a finite δ-cover of X, that is, for every Ci,
supz,w∈Ci d(z, w) ≤ δ. For every n ∈ N we define

Kn =
∨

g∈Fn
g−1C and ∂Kn =

∨
g∈F̃n\Fn

g−1C.

Let U = (B ε
2
(x1), . . . , B ε

2
(xk)). Since (x1, . . . , xk) is an orbit IE-tuple, there exists q > 0 such that

for every n ∈ N there exists an independence set Jn ⊂ Fn for U such that |Jn| ≥ q|Fn|. We also have
that for all n ∈ N.

|∂Kn| ≤ |C||F̃n\Fn| .

Since |F̃n \ Fn| = o(|Fn|), for all sufficiently large m ∈ N we have |F̃m \ Fm| < q log(k/(k−1))
log(|C|) |Fm| and

thus,

(
k

k − 1
)|Jm| ≥ (

k

k − 1
)q|Fm| > |C||F̃m\Fm| ≥ |∂Km| .

In particular, as Jm is an independence set for U, there exist γ ∈ Jm, C ∈ ∂Km and x′1, . . . , x
′
k ∈ C

such that

γx′j ∈ B ε
2
(xj) for every 1 ≤ j ≤ k.
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Let 2 ≤ j ≤ k. Since x′1, x
′
j ∈ C, for every g ∈ F̃m \ Fm we have that d(gx′1, gx

′
j) ≤ δ and thus

d
F̃m\Fm(x′1, x

′
j) ≤ δ. As F̃m is an ( ε2 , δ)-memory set for Fm, there exists z′j ∈ X such that d

F̃m
(x′j , z

′
j) ≤

ε
2 and dG\Fm(x′1, z

′
j) ≤ ε

2 . By definition, (x′1, z
′
j) is an ε

2 -asymptotic pair and as γ ∈ Fm ⊂ F̃m we
obtain that d(γx′j , γz

′
j) ≤ ε

2 and hence γz′j ∈ Bε(xj).
Defining zj = γz′j for 2 ≤ j ≤ k and z1 = γx′1 yields that (z1, . . . , zk) ∈ Aεk(X,G) ∩ (Bε(x1)× · · · ×

Bε(xk)).

Remark 6.13. Proposition 6.12 does not hold in general for actions with the (uniform) TMP. In-
deed, Example 3.17 is an expansive algebraic action of a countable amenable group with positive
topological entropy and no off-diagonal asymptotic pairs. By Proposition 4.1 and Theorem 3.13 we
conclude that this action has the uniform TMP but cannot have the mean TMP as it would contradict
Remark 6.11.

Corollary 6.10 does not hold in general for actions of non-amenable groups and sofic topological
entropy. In order to illustrate this, we need to introduce a few concepts from measurable dynamics.
Given a sofic group G, a sofic approximation sequence Σ for G, and an action Gy X and a G-invariant
Borel probability measure µ on X, we say G y (X,µ) is Bernoulli if it is isomorphic to a p.m.p.
action of the form G y (Y G, νG) where Y is a compact metrizable space, ν is a Borel probability
measure on Y , νG is the product measure on Y G and the action Gy Y G is given by gy(h) = y(g−1h)
for every y ∈ Y G and g ∈ G. We say that G y (X,µ) has completely positive entropy with
respect to Σ if every nontrivial measurable factor G y (X ′, µ′) of G y (X,µ) has positive measure-
theoretical sofic entropy with respect to Σ (by nontrivial we mean that ν does not have an atom of full
measure). A theorem of Kerr [52, Theorem 2.6] states that every Bernoulli measure has completely
positive entropy with respect to any sofic approximation sequence Σ.

Example 6.14. Let F2 = 〈a, b | ∅〉 be the free group on two generators. The perfect matchings
subshift Xpm is the SFT consisting of the configurations x ∈ {a, b, a−1, b−1}F2 such that for every
g ∈ F2 we have (x(g))−1 = x(g ·x(g)). By a result of Lyons and Nazarov there is an F2-invariant Borel
probability measure µpm on Xpm which is a nontrivial factor of a Bernoulli measure [75, Theorem 1.1].
By the result of Kerr, we obtain that hΣ

µpm
(F2 y Xpm) > 0 for every sofic approximation sequence

Σ. By the variational principle for actions of sofic groups, we conclude that F2 y Xpm has positive
topological sofic entropy for every sofic approximation sequence Σ. However, the next proposition
shows that F2 y Xpm has no off-diagonal asymptotic pairs.

Proposition 6.15. The action F2 y Xpm has no off-diagonal asymptotic pairs.

Proof. Let (x, y) ∈ (Xpm)2 be an asymptotic pair. Let F b G be the set of g ∈ F2 such that
x(g) 6= y(g). If x 6= y then F 6= ∅. Let g ∈ F such that the length of the reduced word
w1w2 . . . wk ∈ {a, b, a−1, b−1}∗ which represents g is maximized. Then we have that gs /∈ F for every
s ∈ {a, b, a−1, b−1}\{w−1

k }. If x(g) = s for some s ∈ {a, b, a−1, b−1}\{w−1
k }, then y(gs) = x(gs) = s−1

and thus y(g) = y(gss−1) = s which contradicts g ∈ F . Then we have x(g) = w−1
k . Using the same

argument we get y(g) = w−1
k and thus x(g) = y(g) contradicting again that g ∈ F . Therefore F = ∅

and thus x = y.

7 Applications

In this section we shall put together the results of Sections 3 to 6 to obtain several results about
Markovian measures, algebraic actions, and minimal actions.

7.1 Supports of Markovian measures

Recall that a p.m.p. action Gy (X,µ) of an amenable group has completely positive entropy if every
nontrivial measurable factor of Gy (X,µ) has positive measure-theoretical entropy.

Corollary 7.1. Let G be an amenable group, X a G-subshift, and µ a G-invariant Markovian measure
on X. The following hold:

1. If hµ(Gy X) > 0, then Gy supp(µ) has off-diagonal asymptotic pairs.
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2. If G y (X,µ) has completely positive entropy, then the asymptotic pairs of G y supp(µ) are
dense in supp(µ)× supp(µ).

Proof. If hµ(Gy X) > 0, we have that

htop(Gy supp(µ)) ≥ hµ(Gy supp(µ)) = hµ(Gy X) > 0,

where the first inequality comes from the variational principle.
If G y (X,µ) has completely positive entropy, then IE2(supp(µ), G) = supp(µ)× supp(µ) by [54,

Theorems 2.27 and 2.21].
By Proposition 3.15 we have that G y supp(µ) has the strong TMP. Now the corollary follows

from Corollary 6.10.

7.2 Algebraic actions

For an action G y X of G on a compact metrizable group X by continuous automorphisms, we say
x ∈ X is a homoclinic point [68] if sx→ eX as G 3 s→∞, where eX denotes the identity element
of X. The homoclinic points form a G-invariant normal subgroup of X, called the homoclinic group
and denoted by ∆(X,G). Using the fact that X admits a translation-invariant compatible metric (see
the proof of Proposition 4.1), it is easy to see that for each k ≥ 2, one has

Ak(X,G) = {(yx1, . . . , yxk) : x1, . . . , xk ∈ ∆(X,G), y ∈ X}
= {(x1y, . . . , xky) : x1, . . . , xk ∈ ∆(X,G), y ∈ X}.

We say x ∈ X is an IE point [26, Definition 7.2] [56, page 247] if (x, eX) ∈ IE2(X,G). The IE points
form a G-invariant closed normal subgroup of X [56, Theorem 6.4], called the IE group and denoted
by IE(X,G). Furthermore, for each k ∈ N, we have [56, Theorem 6.4]

IEk(X,G) = {(yx1, . . . , yxk) : x1, . . . , xk ∈ IE(X,G), y ∈ X}
= {(x1y, . . . , xky) : x1, . . . , xk ∈ IE(X,G), y ∈ X}.

Corollary 7.2. Let Gy X be an expansive action of G on a compact metrizable group X by contin-
uous automorphisms. We have:

1. ∆(X,G) ⊂ IE(X,G). In particular, ∆(X,G)k ⊂ IEk(X,G) for every k ∈ N.

2. If G is sofic and Σ is any sofic approximation sequence for G, then ∆(X,G)k ⊂ IEΣ
k (X,G) for

every k ∈ N.

Proof. It is quite easy to see that eX ∈ IE1(X,G) and eX ∈ IEΣ
1 (X,G). By Proposition 4.1 we have

that G y X has the TMP. Therefore, using Theorem 6.1 and Theorem 6.4 we obtain respectively
that {eX} ×∆(X,G) ⊂ IE2(X,G) and {eX} ×∆(X,G) ⊂ IEΣ

2 (X,G). From the first inclusion we get
(1). From the second inclusion we get that ∆(X,G) ⊂ IEΣ

1 (X,G). Therefore by repeating the above
argument we obtain that ∆(X,G)2 ⊂ IEΣ

2 (X,G). Iterating the above argument yields (2).

In the case X is abelian and G is amenable, part (1) of Corollary 7.2 was known first as a con-
sequence of [26, Theorems 5.6 and 7.8] and the fact that every expansive algebraic action of G is
finitely generated [90, Proposition 2.2 and Corollary 2.16]. In general, when X is abelian, part (1)
of Corollary 7.2 is also a consequence of [56, Theorem 6.5] and [26, Theorem 5.6].

A straightforward application of Corollary 7.2 together with Theorems 2.7 and 2.9 yields the fol-
lowing result:

Corollary 7.3. Let Gy X be an expansive action of G on a compact metrizable group X by contin-
uous automorphisms. The following hold:

1. If ∆(X,G) 6= {eX}, then hnv
top(Gy X) > 0.

2. If ∆(X,G) is dense in X, then Gy X has naive UPE of all orders.

Furthermore, if G is sofic with Σ a sofic approximation sequence for G, then:

1. If ∆(X,G) 6= {eX}, then hΣ
top(Gy X) > 0.
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2. If ∆(X,G) is dense in X, then Gy X has sofic UPE of all orders.

Remark 7.4. Note that we do not need to assume that X is abelian for any of the results so far in
this section.

The previous corollaries are false without the expansivity assumption. In [68, Example 7.5] Lind and
Schmidt constructed an algebraic action of Z3 with zero topological entropy and nontrivial homoclinic
points.

Possibly the most interesting corollary in this section is the following.

Corollary 7.5. Let Gy X be an expansive algebraic action of an amenable group such that either:

1. ZG is left Noetherian, or

2. G satisfies the strong Atiyah conjecture, there is an upper bound on the orders of finite subgroups
of G, and Gy X is finitely presented.

Then ∆(X,G) = IE(X,G).

Proof. By Theorem 4.3 the hypotheses above imply that G y X has the strong TMP. Using Theo-
rem 6.9 and Corollary 7.2 yields the result.

For an action G y X of an amenable group G on a compact metrizable group X by continuous
automorphisms, denoting by µX the normalized Haar measure of X, one has htop(Gy X) = hµX (Gy
X) [29, Theorem 2.2]. See also [58, Proposition 13.2]. For such an action, IE(X,G) 6= {eX} exactly
when htop(G y X) > 0 [26, Theorem 7.3]. Furthermore, IE(X,G) = X exactly when G y X has
completely positive topological entropy in the sense that every nontrivial (i.e. not reduced to a single
point) topological factor of G y X has positive topological entropy [26, Theorem 7.4], also exactly
when the p.m.p. action Gy (X,µX) has completely positive entropy in the sense that every nontrivial
measurable factor of G y (X,µX) has positive measure-theoretical entropy [26, Theorem 8.1]. Now
Theorem 1.1 follows from Corollary 7.5.

We will see now that Theorem 1.1 does not hold for naive topological entropy if the group is not
amenable (even if the finitely presented expansive algebraic action is an SFT).

Example 7.6. Let F2 = 〈a, b | ∅〉 be the free group on two generators. For g ∈ F2 denote by |g| the
length of the reduced word on {a, b, a−1, b−1}∗ representing g. Also, for g, h ∈ F2 define their distance
by δ(g, h) = |g−1h|. Write Bn = {g ∈ F2 : |g| ≤ n} and ∂Bn = Bn \Bn−1.

Consider the 5-dot shift in F2 given by

X =

{
x ∈ (Z/2Z)F2 :

∑
s∈B1

x(gs) = 0 for every g ∈ F2

}
.

Let F be the finite set of all p ∈ (Z/2Z)B1 such that
∑
s∈B1

p(s) 6= 0. Clearly

X = (Z/2Z)F2 \
⋃

g∈F2,p∈F
g[p].

Thus X is a subshift of finite type. It is also clear that F2 y X is an algebraic action and

X̂ = ZF2/J , where J is the left ideal of ZF2 generated by 2 and
∑
s∈B1

s. Thus F2 y X is a finitely
presented expansive algebraic action.

Proposition 7.7. X has no off-diagonal asymptotic pairs.

Proof. Suppose there exists an asymptotic pair (x, y) such that x 6= y. Let n be the smallest integer
such that x|F2\Bn = y|F2\Bn . It follows that there is g ∈ ∂Bn such that x(g) 6= y(g).

Let u ∈ B1 such that gu ∈ ∂Bn+1. For every h ∈ B1 \ {u−1, eF2
} we have guh ∈ ∂Bn+2. By

definition, we have that every z ∈ X satisfies
∑
s∈B1

z(gus) = 0 and thus z(g) =
∑
s∈B1\{u−1} z(gus).

Hence, using that x|F2\Bn = y|F2\Bn we obtain

x(g) =
∑

s∈B1\{u−1}

x(gus) =
∑

s∈B1\{u−1}

y(gus) = y(g),

which contradicts x(g) 6= y(g).
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Let X ⊂ ΛG be a G-subshift and let F ⊂
⋃
AbG ΛA. Fix F b G. The set of globally admissible

patterns of support F is LF (X) = {p ∈ ΛF : [p] ∩X 6= ∅}. The set of F-locally admissible patterns
of support F is Lloc

F (F) = {p ∈ ΛF : for every q ∈ F and g ∈ G, [p] 6⊂ g[q]}. Note that whenever F
generates X in the sense that X = ΛG \

⋃
g∈G,p∈F g[p], we have LF (X) ⊂ Lloc

F (F).

For s, t, g ∈ F2 let (s, t)g = 1
2 (δ(s, g) + δ(t, g) − δ(s, t)). For F b F2, the span of F is the set

Span(F ) of all g ∈ F2 for which there are s, t ∈ F such that (s, t)g = 0. We say that F is connected
if F = Span(F ). This is the same as saying that F is connected in the right Cayley graph of F2 given
by the generators {a, b, a−1, b−1}.

Lemma 7.8. Let A,B be connected finite subsets of F2 such that A ⊂ B and |B \ A| = 1. For every
p ∈ Lloc

A (F ) there exists q ∈ Lloc
B (F ) such that q|A = p.

Proof. As |B \A| = 1 and B ⊃ A is connected, there exists g ∈ A and s ∈ ∂B1 such that gs ∈ B \A.
As A is connected, if u ∈ B1 \ {s−1} then gsu /∈ A.

For h ∈ A we let q(h) = p(h). If gB1 ⊂ B, then we define q(gs) =
∑
v∈B1\{s} p(gv), otherwise we

define q(gs) = 0. By definition, q|A = p. Let us show that q ∈ Lloc
B (F ).

Suppose that q /∈ Lloc
B (F ). Then there is some h ∈ B such that hB1 ⊂ B and

∑
v∈B1

q(hv) 6= 0.

As q|A = p ∈ Lloc
A (F ), we have gs ∈ hB1. Since for every u ∈ B1 \ {s−1} we have gsu /∈ A, the only

possibility is that h = g. Then gB1 ⊂ B and by definition of q(gs) we have
∑
v∈B1

q(gv) = 0, which is
a contradiction.

Lemma 7.9. Let F be a connected finite subset of F2. Then Lloc
F (F ) = LF (X ).

Proof. Let p ∈ Lloc
F (F ) and consider an increasing sequence {An}n∈N of finite subsets of F2 with

union F2 such that A1 = F . In order to show that p ∈ LF (X ) it suffices to construct a sequence
pn ∈ Lloc

An
(F ) such that p1 = p and for n ≥ 1, pn+1|An = pn. Indeed, by definition [pn] ⊃ [pn+1]

and thus
⋂
n∈N[pn] is nonempty. As the sets An increase to F2, the set

⋂
n∈N[pn] is a singleton, say

{x}. If x ∈ g[p] for some g ∈ F2 and q ∈ F , then pn ⊆ g[q] for some large n, which is impossible as
pn ∈ Lloc

An
(F ). Therefore x ∈ X ∩ [p].

For m ≥ 0, consider Cm = FBm. Let h1, . . . , hk(m) be an enumeration of Cm+1 \ Cm and for
i ∈ {1, . . . , k(m)} let Dm,i = Cm ∪ {h1, . . . , hi} and note that Dm,k(m) = Cm+1. For n ∈ N define
recursively A1 = C1 = F and

An+1 =

{
Dm,i+1 if An = Dm,i and i < k(m)

Dm,1 if An = Cm
.

Note that each An is a connected subset of F2, |An+1\An| = 1 for every n ∈ N and that An increases
to F2. Assume inductively that we have pn ∈ Lloc

An
(F ). By Lemma 7.8 there is pn+1 ∈ Lloc

An+1
(F )

such that pn+1|An = pn.

We say a pair of sets A,B ⊂ F2 are k-separated if δ(A,B) = inf(g,h)∈A×B δ(g, h) ≥ k. We say a
collection A1, . . . , An ⊂ F2 is k-separated if it is pairwise k-separated.

Lemma 7.10. Let A,B be a 3-separated pair of connected subsets of F2. Then for every p ∈ Lloc
A∪B(F )

there exists q ∈ Lloc
Span(A∪B)(F ) such that q|A∪B = p.

Proof. Let hA ∈ A and hB ∈ B such that δ(hA, hB) = inf(g,h)∈A×B δ(g, h). As A,B are connected and
F2 has no cycles, it follows that Span(A∪B) = A∪B∪Span({hA, hB}). Let h0, h1, . . . , hn, hn+1 ∈ F2 be
an enumeration of Span({hA, hB}) such that h0 = hA, hn+1 = hB and A∪{h1, . . . , hk} is connected for
every 1 ≤ k ≤ n. As A,B are 3-separated, it follows that δ(hA, hB) ≥ 3 and thus n ≥ 2. By Lemma 7.8
there are pA ∈ Lloc

A∪{h1}(F ) and pB ∈ Lloc
B∪{hn}(F ) such that pA|A = p|A and pB |B = p|B . Let

q ∈ {0, 1}Span(A∪B) be defined by

q(g) =


pA(g) if g ∈ A ∪ {h1}
pB(g) if g ∈ B ∪ {hn}
0 otherwise.

It can be verified directly from the definition that q|A∪B = p and that q ∈ Lloc
Span(A∪B)(F ).
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Lemma 7.11. Let A be a 5-separated finite collection of finite connected subsets of F2. Let pA ∈
Lloc
A (F ) for each A ∈ A. Then there exists p ∈ Lloc

Span(
⋃
A∈A A)(F ) such that p|A = pA for all A ∈ A.

Proof. We proceed by induction on the size of A. If |A| = 1 the result is trivial. Let |A| = n > 1
and assume the result for all 5-separated collections of cardinality at most n− 1. By Lemma 7.10 it is
enough to show that there is A ∈ A which is 3-separated from Span(

⋃
C∈A\{A} C).

Let us verify the above property. Pick A0 ∈ A and choose A ∈ A such that δ(A,A0) achieves
the maximum. We claim that δ(A, Span(

⋃
C∈A\{A} C)) ≥ 3. Indeed, let g0 ∈ A0 and g ∈ A

such that δ(A,A0) = δ(g, g0). Assume that δ(A, Span(
⋃
C∈A\{A} C)) ≤ 2. Then there exist h ∈

Span(
⋃
C∈A\{A} C) \

⋃
C∈A\{A} C and ḡ ∈ A such that δ(ḡ, h) = δ(A, Span(

⋃
C∈A\{A} C)) ≤ 2. It

follows that there are distinct A1, A2 ∈ A\{A} and g1 ∈ A1, g2 ∈ A2 such that h ∈ Span({g1, g2}) and
Span({g1, g2}) ∩

⋃
C∈A\{A} C = {g1, g2}. Without loss of generality we may assume that A1 6= A0. If

ḡ 6= g, then

δ(A1, A0) = δ(g1, g0) = δ(g1, ḡ) + δ(ḡ, g) + δ(g, g0) > δ(g, g0) = δ(A,A0),

which contradicts our choice of A. Thus ḡ = g. We have Span({g, g0})∩Span({g, g1}) = Span({g, h1})
for some h1. If h1 ∈ Span({g, h}), then

δ(A0, A1) = δ(g0, g1)

= δ(g0, h1) + δ(h1, g1)

= δ(g0, g)− δ(h1, g) + δ(g, g1)− δ(g, h1)

≥ δ(g0, g) + δ(g, g1)− 2δ(h, g)

≥ δ(g0, g) + 5− 4 > δ(g0, g) = δ(A0, A),

which contradicts our choice of A. Thus h1 6∈ Span({g, h}). Then A2 6= A0, and Span({g, g0}) ∩
Span({g, g2}) = Span({g, h2}) for some h2 ∈ Span({g, h}). Similar to the above, we get δ(A0, A2) >
δ(A0, A), which again contradicts our choice of A.

Proposition 7.12. F2 y X has naive UPE of all orders.

Proof. It suffices to show IE(X ,F2) = X . Let (x1, x2) ∈ (X )2. Then it suffices to show that
for every n ∈ N there exists α > 0 such that for every D b F2 there exists a set A b D such that
|A| ≥ α|D| and for any map ϕ : A→ {1, 2} we have

X ∩
⋂
a∈A

a[xϕ(a)|Bn ] 6= ∅.

Put α = |B4+2n|−1. Fix D b F2 and let A be any maximal (5 + 2n)-separated subset of D. Then
AB4+2n ⊃ D, and hence |A| ≥ |B4+2n|−1|D| = α|D|. Consider the collection A = {aBn : a ∈ A} and
for each a ∈ A the pattern pa = (axϕ(a))|aBn . By definition, A is 5-separated and each pa ∈ LaBn(X ),
therefore, by Lemma 7.11, there exists p ∈ Lloc

Span(
⋃
a∈A aBn)(F ) such that p|aBn = pa for every a ∈ A.

In other words, [p] ⊂
⋂
a∈A a[xϕ(a)|Bn ].

Furthermore, as Span(
⋃
a∈A aBn) is connected, by Lemma 7.9 we have [p]∩X 6= ∅ and therefore

X ∩
⋂
a∈A a[xϕ(a)|Bn ] 6= ∅.

7.3 Minimal actions

Corollary 7.13. Let G be an amenable group and Gy X a minimal expansive action with the strong
TMP. Then htop(Gy X) = 0.

Proof. By Proposition 3.11 the action G y X has the TMP. Then by Theorem 5.1 there is no off-
diagonal asymptotic pair. From Corollary 6.10 we conclude that htop(Gy X) = 0.

The previous result was proven for minimal Zd-SFTs in [87, Corollary 2.3] and for minimal G-SFTs
of any amenable group in [4, Corollary 3.17] using the formalism of group quasi-tilings. Our result
jointly generalizes these previous theorems from the context of subshifts and the POTP.

Remark 7.14. Corollary 7.13 also holds if we just assume that G y X has the mean TMP instead
of the strong TMP.
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We do not know whether the result fails for non-amenable groups. We believe the following question
might not be easy.

Question 7.15. Does there exist a sofic group (and some sofic approximation sequence) for which
there exists a minimal SFT with positive topological sofic entropy?
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