SOLUTION FOR HOMEWORK \#9

1. Section 11.3

6. The function $f(x)=e^{-x}$ is continuous, positive, and decreasing on $[1, \infty)$, so we can apply the integral test.
$\int_{1}^{\infty} e^{-x} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} e^{-x} d x=\left.\lim _{t \rightarrow \infty}\left(-e^{-x}\right)\right|_{1} ^{t}=\lim _{t \rightarrow \infty}\left(-e^{-t}+e^{-1}\right)=e^{-1}$, thus $\sum_{n=1}^{\infty} e^{-n}$ converges.
7. Both $\sum_{n=1}^{\infty} n^{-1.4}$ and $\sum_{n=1}^{\infty} n^{-1.2}$ are p-series with $p>1$, so they converge. Consequently, $\sum_{n=1}^{\infty}\left(n^{-1.4}+3 n^{-1.2}\right)$ converges.
8. One has $\left(x \ln x[\ln (\ln x)]^{p}\right)^{\prime}=(p+(\ln x-1) \ln \ln x)(\ln \ln x)^{p-1}>0$ when $x \geq M$ for some constant $M>3$. Therefore the function $f(x)=$ $\frac{1}{x \ln x[\ln (\ln x)]^{p}}$ is continuous, positive, and decreasing on $[M, \infty)$, and so we may apply the integral test. When $p \neq 1$,

$$
\int_{3}^{\infty} \frac{1}{x \ln x[\ln (\ln x)]^{p}} d x=\left.\lim _{t \rightarrow \infty}\left(\frac{(\ln \ln x)^{-p+1}}{-p+1}\right)\right|_{3} ^{t}
$$

converges exactly when $-p+1<0 \Leftrightarrow p>1$. When $p=1$,

$$
\int_{3}^{\infty} \frac{1}{x \ln x[\ln (\ln x)]} d x=\left.\lim _{t \rightarrow \infty}(\ln \ln \ln x)\right|_{3} ^{t}
$$

diverges to ∞. Thus the series converges exactly when $p>1$.

2. Section 10.4

4. $\frac{2}{n^{3}+4}<\frac{2}{n^{3}}$ for all $n \geq 1$. The series $\sum_{n=1}^{\infty} \frac{2}{n^{3}}$ converges since it is a constant multiple of a convergent p-series. Thus the series $\sum_{n=1}^{\infty} \frac{2}{n^{3}+4}$ converges by the comparisen test.
5. $\frac{1}{n-\sqrt{n}}>\frac{1}{n}$ for all $n \geq 2$, thus $\sum_{n=2}^{\infty} \frac{1}{n-\sqrt{n}}$ converges via comparison with the divergent series $\sum_{n=2}^{\infty} \frac{1}{n}$.
6. $\lim _{n \rightarrow \infty}\left(\frac{n^{2}-1}{3 n^{4}+1}\right) /\left(\frac{1}{n^{2}}\right)=\frac{1}{3}>0$. Since $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is a convergent p series, $\sum_{n=1}^{\infty} \frac{n^{2}-1}{3 n^{4}+1}$ converges by the limit comparison test.
