SOLUTION FOR HOMEWORK #9

1. Section 11.3

6. The function $f(x) = e^{-x}$ is continuous, positive, and decreasing on $[1, \infty)$, so we can apply the integral test.

$$\int_{1}^{\infty} e^{-x} dx = \lim_{t \to \infty} \int_{1}^{t} e^{-x} dx = \lim_{t \to \infty} (-e^{-x}) |_{1}^{t} = \lim_{t \to \infty} (-e^{-t} + e^{-1}) = e^{-1},$$

thus $\sum_{n=1}^{\infty} e^{-n}$ converges.

10. Both $\sum_{n=1}^{\infty} n^{-1.4}$ and $\sum_{n=1}^{\infty} n^{-1.2}$ are *p*-series with p > 1, so they converge. Consequently, $\sum_{n=1}^{\infty} (n^{-1.4} + 3n^{-1.2})$ converges.

26. One has $(x \ln x [\ln(\ln x)]^p)' = (p + (\ln x - 1) \ln \ln x)(\ln \ln x)^{p-1} > 0$ when $x \ge M$ for some constant M > 3. Therefore the function $f(x) = \frac{1}{x \ln x [\ln(\ln x)]^p}$ is continuous, positive, and decreasing on $[M, \infty)$, and so we may apply the integral test. When $p \ne 1$,

$$\int_{3}^{\infty} \frac{1}{x \ln x [\ln(\ln x)]^{p}} \, dx = \lim_{t \to \infty} \left(\frac{(\ln \ln x)^{-p+1}}{-p+1} \right) |_{3}^{t}$$

converges exactly when $-p + 1 < 0 \Leftrightarrow p > 1$. When p = 1,

$$\int_{3}^{\infty} \frac{1}{x \ln x [\ln(\ln x)]} \, dx = \lim_{t \to \infty} (\ln \ln \ln x) |_{3}^{t}$$

diverges to ∞ . Thus the series converges exactly when p > 1.

2. Section 10.4

4. $\frac{2}{n^3+4} < \frac{2}{n^3}$ for all $n \ge 1$. The series $\sum_{n=1}^{\infty} \frac{2}{n^3}$ converges since it is a constant multiple of a convergent *p*-series. Thus the series $\sum_{n=1}^{\infty} \frac{2}{n^3+4}$ converges by the comparison test.

6. $\frac{1}{n-\sqrt{n}} > \frac{1}{n}$ for all $n \ge 2$, thus $\sum_{n=2}^{\infty} \frac{1}{n-\sqrt{n}}$ converges via comparison with the divergent series $\sum_{n=2}^{\infty} \frac{1}{n}$.

10. $\lim_{n\to\infty} \left(\frac{n^2-1}{3n^4+1}\right)/\left(\frac{1}{n^2}\right) = \frac{1}{3} > 0$. Since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is a convergent *p*-series, $\sum_{n=1}^{\infty} \frac{n^2-1}{3n^4+1}$ converges by the limit comparison test.