SOLUTION FOR HOMEWORK \#8

1. Section 11.1

16. $a_{n}=\frac{1+1 / n}{3-1 / n} \rightarrow \frac{1}{3}$ as $n \rightarrow \infty$.
17. $a_{n}=\frac{\sqrt{n}}{1 / \sqrt{n}+1}$ diverges to ∞ as $n \rightarrow \infty$.
18. As $n \rightarrow \infty, 2 / n \rightarrow 0$, so $a_{n}=\cos (2 / n) \rightarrow 1$.
19. $\frac{\ln n}{\ln 2 n}=\frac{\ln n}{\ln 2+\ln n}=\frac{1}{\frac{\ln 2}{\ln n}+1} \rightarrow 1$ as $n \rightarrow \infty$.
20. $a_{n}=\ln \frac{n+1}{n} \rightarrow \ln 1=0$ as $n \rightarrow \infty$.
21. $\left|a_{n}\right|=\frac{|\sin 2 n|}{1+\sqrt{n}} \leq \frac{1}{1+\sqrt{n}}$. Since $\lim _{n \rightarrow \infty} \frac{1}{1+\sqrt{n}}=0, \lim _{n \rightarrow \infty}\left|a_{n}\right|=0$ by the squeeze theorem. Thus $\lim _{n \rightarrow \infty} a_{n}=0$.
22. (a). Note that $a_{1} \leq 2$. Suppose that $a_{n} \leq 2$. Then $a_{n+1}=$ $\sqrt{2+a_{n}} \leq \sqrt{2+2}=2$. Thus $a_{n} \leq 2$ for all $n \geq 1$ by induction. Then $a_{n+1}-a_{n}=\sqrt{2+a_{n}}-a_{n}=\frac{2+a_{n}-a_{n}^{2}}{\sqrt{2+a_{n}+a_{n}}}=\frac{\left(2-a_{n}\right)\left(1+a_{n}\right)}{\sqrt{2+a_{n}+a_{n}}} \geq 0$ for all $n \geq 1$. In other words, $\left\{a_{n}\right\}$ is increasing. Therefore $\lim _{n \rightarrow \infty} a_{n}$ exists.
(b). Set $L=\lim _{n \rightarrow \infty} a_{n}$. Taking limits on both sides of $a_{n+1}=$ $\sqrt{2+a_{n}}$ we get $L=\sqrt{2+L}$. Thus $L^{2}=2+L$, and hence $L=2$. So $\lim _{n \rightarrow \infty} a_{n}=2$.

2. Section 11.2

12. $\frac{1}{8}-\frac{1}{4}+\frac{1}{2}-1+\cdots$ is a geometric series with $r=-2$. Since $|r|=2>1$, the series diverges.
13. The series $\sum_{n=0}^{\infty} \frac{1}{(\sqrt{2})^{n}}$ is a geometric series with $r=\frac{1}{\sqrt{2}}$. Since $|r|=\frac{1}{\sqrt{2}}<1$, the series converges to $\frac{1}{1-\frac{1}{\sqrt{2}}}=\frac{\sqrt{2}}{\sqrt{2}-1}=\sqrt{2}(\sqrt{2}+1)=$ $2+\sqrt{2}$.
14. The series $\sum_{n=1}^{\infty} \frac{e^{n}}{3^{n-1}}$ is a geometric series with $r=\frac{e}{3}$. Since $|r|=\frac{e}{3}<1$, it converges to $\frac{e}{1-\frac{e}{3}}=\frac{3 e}{3-e}$.
15. Since $\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{n(n+2)}=1 \neq 0$, the series $\sum_{n=1}^{\infty} \frac{(n+1)^{2}}{n(n+2)}$ diverges.
16. The series $\sum_{n=1}^{\infty} \frac{3}{5^{n}}$ is a geometric series with $|r|=\frac{1}{5}$ and hence converges. The series $\sum_{n=1}^{\infty} \frac{2}{n}$ diverges. Thus the series $\sum_{n=1}^{\infty}\left(\frac{3}{5^{n}}+\frac{2}{n}\right)$ diverges.
17. $0 . \overline{73}=\sum_{n=0}^{\infty} \frac{73}{100} \cdot \frac{1}{100^{n}}=\frac{73 / 100}{1-\frac{1}{100}}=\frac{73}{99}$.
