SOLUTION FOR HOMEWORK \#11

1. Section 11.8

4. $\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1} x^{n+1} /(n+2)}{(-1)^{n} x^{n} /(n+1)}\right|=\lim _{n \rightarrow \infty}|x| \cdot \frac{n+1}{n+2}=|x|$. By the Ratio Test, the radius of convergence is 1 . When $x=1$, the series converges by the Alternating Series Test; when $x=-1$, the series diverges because it is the harmonic series. Thus the interval of convergence is $(-1,1]$.
5. $\lim _{n \rightarrow \infty}\left|\frac{\sqrt{n+1} x^{n+1}}{\sqrt{n} x^{n}}\right|=\lim _{n \rightarrow \infty}|x| \cdot \sqrt{1+\frac{1}{n}}=|x|$. By the Ratio Test, the radius of convergence is 1 . When $x= \pm 1, \lim _{n \rightarrow \infty}\left|\sqrt{n} x^{n}\right|=\infty$, so the series diverge by the Test for Divergence. Thus the interval of convergence is $(-1,1)$.
6. $\lim _{n \rightarrow \infty}\left|n^{n} x^{n}\right|^{\frac{1}{n}}=\lim _{n \rightarrow \infty} n|x|=\infty$ unless $x=0$. By the Ratio Test, the radius of convergence is 0 , and the interval of convergence is $\{0\}$.
7. $\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1} x^{2(n+1)} /(2(n+1))!}{(-1)^{n} x^{2 n} /(2 n)!}\right|=\lim _{n \rightarrow \infty} \frac{x^{2}}{(2 n+1)(2 n+2)}=0$. By the Ratio Test, the radius of convergence is ∞ and the interval of convergence is $(-\infty, \infty)$.
8. $\lim _{n \rightarrow \infty}\left|\frac{(n+1)^{3}(x-5)^{n+1}}{n^{3}(x-5)^{n}}\right|=\lim _{n \rightarrow \infty}|x-5| \cdot\left(1+\frac{1}{n}\right)^{3}=|x-5|$. By the Ratio Test, the radius of convergence is 1 . When $x=6$ or 4 , $\lim _{n \rightarrow \infty}\left|n^{3}(x-5)^{n}\right|=\infty$, so the series diverge by the Test for Divergence. Thus the interval of convergence is $(4,6)$.
9. $\lim _{n \rightarrow \infty}\left|\frac{(n+1)^{2} x^{n+1} /(2 \cdot 4 \cdots \cdots(2 n+2))}{n^{2} x^{n} /(2 \cdot 4 \cdots \cdots(2 n))}\right|=\lim _{n \rightarrow \infty}|x| \cdot \frac{n+1}{2 n^{2}}=0$. By the Ratio Test, the radius of convergence is ∞ and the interval of convergence is $(-\infty, \infty)$.

2. Section 11.9

4. Since $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ exactly for all x with $|x|<1$ and the power series converges exactly on $(-1,1)$, we have $f(x)=\frac{3}{1-x^{4}}=$ $3 \sum_{n=0}^{\infty}\left(x^{4}\right)^{n}=\sum_{n=0}^{\infty} 3 x^{4 n}$ for all x such that $\left|x^{4}\right|<1 \Leftrightarrow|x|<1$ and the interval of convergence for this power series is $(-1,1)$.
5. Since $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ exactly for all x with $|x|<1$ and the power series converges exactly on $(-1,1)$, we have $f(x)=\frac{x}{4 x+1}=$ $x \sum_{n=0}^{\infty}(-4 x)^{n}=\sum_{n=0}^{\infty}(-4)^{n} x^{n+1}$ for all x such that $|-4 x|<1 \Leftrightarrow$ $|x|<\frac{1}{4}$ and the interval of convergence for this power series is $\left(-\frac{1}{4}, \frac{1}{4}\right)$.
6. Since $\ln (1-t)=-\sum_{n=1}^{\infty} \frac{t^{n}}{n}$ for all t with $|t|<1$ and the radius of convergence for the power series is 1 , we have $\frac{\ln (1-t)}{t}=-\sum_{n=0}^{\infty} \frac{t^{n}}{n+1}$ for all t with $|t|<1$ and the radius of convergence for this power series is also 1. Thus, we have $\int \frac{\ln (1-t)}{t} d t=C-\sum_{n=0}^{\infty} \frac{t^{n+1}}{(n+1)^{2}}=C-\sum_{n=1}^{\infty} \frac{t^{n}}{n^{2}}$ for all t with $|t|<1$ and C being a constant and the radius of convergence for this power series is also 1 .

3. Section 11.10

4. $f^{(2 n)}(x)=(-1)^{n} 2^{2 n} \sin 2 x$ and $f^{(2 n+1)}(x)=(-1)^{n} 2^{2 n+1} \cos 2 x$ for all nonnegative integers n. Thus $f^{(2 n)}(0)=0$ and $f^{(2 n+1)}(0)=(-1)^{n} 2^{2 n+1}$. So the Maclaurin series of $f(x)$ is $\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{2 n+1}}{(2 n+1)!} x^{2 n+1}$. Since

$$
\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1} 2^{2 n+3} x^{2 n+3} /(2 n+3)!}{(-1)^{n} 2^{2 n+1} x^{2 n+1} /(2 n+1)!}\right|=\lim _{n \rightarrow \infty} \frac{4 x^{2}}{(2 n+2)(2 n+3)}=0
$$

the radius of convergence for this power series is ∞ be the Ratio Test.
6. $f^{(n)}(x)=(-1)^{n-1}(n-1)!(1+x)^{-n}$ for all positive integers n. Thus $f^{(n)}(0)=(-1)^{n-1}(n-1)$! for all positive integers n. So the Maclaurin series of $f(x)$ is $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^{n}$. Since

$$
\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n} x^{n+1} /(n+1)}{(-1)^{n-1} x^{n} / n}\right|=\lim _{n \rightarrow \infty} \frac{n|x|}{n+1}=|x|,
$$

the radius of convergence for this power series is 1 be the Ratio Test.
8. $f^{(n)}(x)=(x+n) e^{x}$ for all nonnegative integers n. Thus $f^{(n)}(0)=n$. So the Maclaurin series of $f(x)$ is $\sum_{n=0}^{\infty} \frac{n}{n!} x^{n}=\sum_{n=1}^{\infty} \frac{1}{(n-1)!} x^{n}$. Since

$$
\lim _{n \rightarrow \infty}\left|\frac{x^{n+1} / n!}{x^{n} /(n-1)!}\right|=\lim _{n \rightarrow \infty} \frac{|x|}{n}=0
$$

the radius of convergence for this power series is ∞ be the Ratio Test.
12. $f(x)=x^{3}=((x+1)-1)^{3}=-1+3(x+1)-3(x+1)^{2}+(x+1)^{3}$ for all x. Thus $-1+3(x+1)-3(x+1)^{2}+(x+1)^{3}$ must be the Taylor series of f centered at -1 .
16. $f^{(2 n)}(x)=(-1)^{n} \sin x$ and $f^{(2 n+1)}(x)=(-1)^{n} \cos x$ for all nonnegative integers n. Thus $f^{(2 n)}\left(\frac{\pi}{2}\right)=(-1)^{n}$ and $f^{(2 n+1)}\left(\frac{\pi}{2}\right)=0$. So the Taylor series of $f(x)$ centered at $\frac{\pi}{2}$ is $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!}\left(x-\frac{\pi}{2}\right)^{2 n}$.
40. Since $\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$ for all x, we have $\frac{\sin x}{x}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n+1)!}$ for all x. Thus, we have $\int \frac{\sin x}{x} d x=C+\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!(2 n+1)}$ for all x and C being a constant.
56. Since $\cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$ for all x, we have $\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n}}{6^{2 n}(2 n)!}=$ $\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}$.

