
SOLUTION FOR HOMEWORK #10

1. Section 11.5

6. 1
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is convergent.
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diverges.

2. Section 11.6

2. limn→∞
(n+1)2/2n+1
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2
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n
)2 = 1

2
< 1. Thus the series∑∞
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2n converges absolutely by the Ratio Test.

4. limn→∞ 2n

n4 = ∞. Thus
∑∞

n=1(−1)n−1 2n

n4 diverges.

8. limn→∞
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1/n
= limn→∞ n2

n2+1
= 1. Since the harmonic series∑∞

n=1
1
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diverges, the series
∑∞

n=1
n

n2+1
diverges by the limit compari-

son test. Since ( x
x2+1

)′ = 1−x2

(x2+1)2
≤ 0 for x ≥ 1, n

n2+1
is decreasing. As

limn→∞ n
n2+1

= 0, the series
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n=1(−1)n−1 n
n2+1

converges by the alter-

nating series test. Thus
∑∞
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converges conditionally.
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√
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= 0 < 1, so the series
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converges absolutely by the Root Test.

3. Section 11.7

2. limn→∞
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1/n
= limn→∞ n2−n

n2+n
= 1. Since the harmonic series∑∞
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1
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diverges, the series
∑∞
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diverges by the limit comparison
test.
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converges absolutely by the Root Test.

8. limk→∞
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= 2 > 1, so the series∑∞
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diverges by the Ratio Test.

1



2 SOLUTION FOR HOMEWORK #10

12. Since ( x
x2+25

)′ = 25−x2

(x2+25)2
≤ 0 for x ≥ 5, n

n2+25
is decreasing from

n = 5 on. As limn→∞ n
n2+25

= 0, the series
∑∞

n=1(−1)n n
n2+25

converges
by the alternating series test.

32. limn→∞
n

√
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n2n = limn→∞ 2n
n2 = 0 < 1, so the series

∑∞
n=1

(2n)n
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converges by the Root Test.


