SOLUTION FOR HOMEWORK \#10

1. Section 11.5

6. $\frac{1}{3 n-1}$ is decreasing and $\lim _{n \rightarrow \infty} \frac{1}{3 n-1}=0$. Thus the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{3 n-1}$ is convergent.
7. $\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{1+2 \sqrt{n}}=\lim _{n \rightarrow \infty} \frac{1}{2+1 / \sqrt{n}}=\frac{1}{2} \neq 0$. Thus the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{\sqrt{n}}{1+2 \sqrt{n}}$ diverges.

2. Section 11.6

2. $\lim _{n \rightarrow \infty} \frac{(n+1)^{2} / 2^{n+1}}{n^{2} / 2^{n}}=\lim _{n \rightarrow \infty} \frac{1}{2} \cdot\left(1+\frac{1}{n}\right)^{2}=\frac{1}{2}<1$. Thus the series $\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}$ converges absolutely by the Ratio Test.
3. $\lim _{n \rightarrow \infty} \frac{2^{n}}{n^{4}}=\infty$. Thus $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{2^{n}}{n^{4}}$ diverges.
4. $\lim _{n \rightarrow \infty} \frac{n /\left(n^{2}+1\right)}{1 / n}=\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}+1}=1$. Since the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, the series $\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}$ diverges by the limit comparison test. Since $\left(\frac{x}{x^{2}+1}\right)^{\prime}=\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}} \leq 0$ for $x \geq 1, \frac{n}{n^{2}+1}$ is decreasing. As $\lim _{n \rightarrow \infty} \frac{n}{n^{2}+1}=0$, the series $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{n}{n^{2}+1}$ converges by the alternating series test. Thus $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{n}{n^{2}+1}$ converges conditionally.
5. $\lim _{n \rightarrow \infty} \sqrt[n]{\frac{1}{(\ln n)^{n}}}=\lim _{n \rightarrow \infty} \frac{1}{\ln n}=0<1$, so the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(\ln n)^{n}}$ converges absolutely by the Root Test.

3. Section 11.7

2. $\lim _{n \rightarrow \infty} \frac{(n-1) /\left(n^{2}+n\right)}{1 / n}=\lim _{n \rightarrow \infty} \frac{n^{2}-n}{n^{2}+n}=1$. Since the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, the series $\sum_{n=1}^{\infty} \frac{n-1}{n^{2}+n}$ diverges by the limit comparison test.
3. $\lim _{n \rightarrow \infty} \sqrt[n]{\left(\frac{3 n}{1+8 n}\right)^{n}}=\lim _{\infty} \frac{3 n}{1+8 n}=\frac{3}{8}<1$, so the series $\sum_{n=1}^{\infty}\left(\frac{3 n}{1+8 n}\right)^{n}$ converges absolutely by the Root Test.
4. $\lim _{k \rightarrow \infty} \frac{\left(2^{k+1}(k+1)!\right) /((k+3)!)}{\left.\left(2^{k} k!\right) /(k+2)!\right)}=\lim _{k \rightarrow \infty} \frac{2(k+1)}{k+3}=2>1$, so the series $\sum_{k=1}^{\infty} \frac{2^{k} k!}{(k+2)!}$ diverges by the Ratio Test.
5. Since $\left(\frac{x}{x^{2}+25}\right)^{\prime}=\frac{25-x^{2}}{\left(x^{2}+25\right)^{2}} \leq 0$ for $x \geq 5, \frac{n}{n^{2}+25}$ is decreasing from $n=5$ on. As $\lim _{n \rightarrow \infty} \frac{n}{n^{2}+25}=0$, the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{n^{2}+25}$ converges by the alternating series test.
6. $\lim _{n \rightarrow \infty} \sqrt[n]{\frac{(2 n)^{n}}{n^{2 n}}}=\lim _{n \rightarrow \infty} \frac{2 n}{n^{2}}=0<1$, so the series $\sum_{n=1}^{\infty} \frac{(2 n)^{n}}{n^{2 n}}$ converges by the Root Test.
