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Abstract. Answering a question of Glasner, we show that any finitely generated
nonabelian free group has a minimal null action which is a RIM non-open extension
of an effective strongly proximal action.

1. Introduction

In this work we consider continuous actions of a countably infinite discrete group
Γ on a compact metrizable space X. Such an action is called tame [7, 18] if the
induced Γ-action on the space C(X) of all complex-valued continuous functions on
X contains no isomorphic dynamical copy of `1(Γ), i.e. for any f ∈ C(X) there is
no constant C > 0 such that

C‖g‖1 ≤ ‖
∑
s∈Γ

g(s)(sf)‖∞ ≤ C−1‖g‖1

for all g ∈ `1(Γ), where (sf)(x) = f(s−1x) for all x ∈ X. Tameness can also be
described in terms of the Ellis enveloping semigroup E(X,Γ) of the action Γ y X,
which is the closure of the image of Γ in the product space XX . Indeed, the following
conditions are equivalent [2, 7, 10, 12]:

(1) Γ y X is tame,
(2) E(X,Γ) is a separate Fréchet compact space, hence with cardinality at most

2ℵ0 ,
(3) E(X,Γ) does not contain a homeomorphic copy of the Stone-C̆ech compact-

ification of N,
(4) every element of E(X,Γ) is a Baire class 1 function from X to itself.

Actually the equivalence between (2) and (3) is a dynamical version of the Bourgain-
Fremlin-Talagrand dichotomy theorem [7, 10].

In [9] Glasner established a structure theorem for tame minimal actions, extending
the results for abelian Γ in [8, 14, 16]. The action Γ y X is called minimal if there is
no proper nonempty closed Γ-invariant subset of X. It is called strongly proximal if
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for the induced Γ-action on the compact space M (X) of all Borel probability mea-
sures on X, every nonempty closed Γ-invariant subset intersects with X [3]. Given
another continuous action of Γ on a compact metrizable space Y , a Γ-equivariant
continuous surjective map π : X → Y is called a factor map or extension. The
extension π is said to be strongly proximal if for every y ∈ Y and every µ ∈M (X)
with support contained in π−1(y), the orbit closure of µ in M (X) intersects with
X [3]. A relative invariant measure (RIM) for π is a continuous Γ-equivariant map
from Y to M (X) such that the support of the image of each y ∈ Y is contained
in π−1(y) [4]. The extension π is called point-distal if there is a point x ∈ X with
dense orbit such that for any x 6= x′ ∈ X with π(x) = π(x′) the orbit closure of
(x, x′) does not intersect with the diagonal [24, VI.4.1]. It is called almost one-to-
one if there is some x ∈ X with dense orbit in X such that π−1(π(x)) = {x} [24,
IV.6.1]. It is called equicontinuous or isometric if, given a compatible metric ρ on
X, for any ε > 0 there exists δ > 0 such that for any x, x′ ∈ X with π(x) = π(x′)
and ρ(x, x′) < δ one has ρ(sx, sx′) < ε for all s ∈ Γ [24, V.2.1]. Then Glasner’s
structure theorem states as follows: for every tame minimal action Γ y X there is
a commutative diagram of minimal Γ-actions

X̃

π

��

η

��

X∗
θ∗
oo

ι
��

X Z

σ
��

Y Y ∗
θ

oo

such that Γ y X̃ is tame, η is a strongly proximal extension, Γ y Y is a strongly
proximal action, π is a point-distal extension with a unique RIM, θ, θ∗ and ι are
almost one-to-one extensions, and σ is an isometric extension.

The map π is open exactly when θ and θ∗ are trivial. In such case the above
diagram reduces to

X̃
η

��

ι
��

π

��

X Z

σ
��

Y

This leads Glasner to ask the following question [9, Problem 5.5]

Problem 1.1. Let Γ y X̃ be a tame minimal action, and let Γ y Y be a strongly
proximal action. If π : X̃ → Y is a RIM extension, then must π be open?
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When Γ is amenable, every minimal strongly proximal action is the trivial action
on a singleton [5, Theorem III.3.1]. Thus Problem 1.1 has affirmative answer in this
case, even without assuming Γ y X̃ to be tame.

Our goal in this paper is to answer Problem 1.1 negatively. In fact we shall
construct counterexample for a weaker statement. Recall that for a sequence s =
{sn}n∈N in Γ, the sequence topological entropy of an action Γ y X with respect to
s and a finite open cover U of X is defined as

htop(X,U; s) = lim sup
n→∞

1

n
logN(

n∨
i=1

s−1
i U),

where N(
∨n
i=1 s

−1
i U) denotes the minimal number of elements of

∨n
i=1 s

−1
i U needed

to cover X. The action Γ y X is called null if htop(X,U; s) = 0 for all s and U

[13, 15]. It is known that null actions are tame (see Section 2). An action Γ y Y
is called effective if for any distinct s, t in Γ one has sy 6= ty for some y ∈ Y . Our
main result is

Theorem 1.2. For any nonabelian finitely generated free group Γ, there are a null
(hence tame) minimal action Γ y X̃, an effective strongly proximal action Γ y Y ,
and a point-distal non-open extension X̃ → Y with a unique RIM.

There are two ingredients in our construction. McMahon [20, Example 3.2.(1)]
constructed examples of RIM non-open extension Γ y X̃ of minimal equicontinu-
ous actions Γ y Y for Γ = G × Z, where G is any dense countable subgroup of
the p-adic integer group Zp. These examples do not provide counterexamples for
Problem 1.1 for three reasons. The first is that Γ in these examples is abelian. The
second is that Γ y Y is equicontinuous instead of strongly proximal. The third
is that it is not clear whether Γ y X̃ in these examples are tame or not. Among
these difficulties, the third one is most difficult. To prove Theorem 1.2 we modify
McMahon’s construction to handle these three difficulties. Our second ingredient is
the combinatorial independence developed in [16]. It enables us to turn the ques-
tion of checking tameness or nullness to a combinatorial problem. The latter is still
nontrivial but manageable.

This paper is organized as follows. We recall the basic of combinatorial indepen-
dence in Section 2. McMahon’s construction is recalled in Section 3. As a showcase
of our technique, we construct some null minimal actions for every residually finite
group in Section 4. Theorem 1.2 is proved in Section 5.

Throughout this paper Γ will be a countably infinite group with identity element
eΓ. All Γ-actions are assumed to be continuous actions on compact metrizable
spaces unless specified otherwise. For each compact metrizable space X, we denote
by M (X) the space of all Borel probability measures on X, equipped with the
weak∗-topology.
Acknowledgments. H. L. was partially supported by NSF and NSFC grants. We are
grateful to Eli Glasner for helpful comments.
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2. Combinatorial independence

In this section we recall the combinatorial independence description of tameness
and nullness [16, 17]. Let Γ act on a compact metrizable space X continuously.

Let (A1, A2) be a pair of subsets of X. We say that a set M ⊆ Γ is an independence
set for (A1, A2) if the collection {(s−1A1, s

−1A2) : s ∈M} is independent in the sense
that

⋂
s∈F s

−1Aω(s) 6= ∅ for every nonempty finite set F ⊆M and ω ∈ {1, 2}F .
We say that a pair (x1, x2) ∈ X2 is an IT-pair if for every product neighborhood

U1 × U2 of (x1, x2) the pair (U1, U2) has an infinite independence set.
The following is the combinatorial independence characterization of tameness [16,

Proposition 6.4] [17, Proposition 8.14]. It’s based on the proof of Rosenthal’s `1

theorem [21, 22].

Proposition 2.1. The action Γ y X is tame if and only if X has no non-diagonal
IT-pairs.

We say that a pair (x1, x2) ∈ X2 is an IN-pair if for every product neighborhood
U1 × U2 of (x1, x2) the pair (U1, U2) has arbitrarily large finite independence sets.
We denote by IN2(X,Γ) the set of all IN-pairs.

The following summarizes the basic properties of IN-pairs and gives the combina-
torial independence characterization of nullness [16, Proposition 5.4].

Proposition 2.2. The following are true:

(1) Let (A1, A2) be a pair of closed subsets of X which has arbitrarily large finite
independence sets. Then there exists an IN-pair (x1, x2) with xj ∈ Aj for
j = 1, 2.

(2) The action Γ y X is null if and only if X has no non-diagonal IN-pairs.
(3) IN2(X,Γ) is a closed Γ-invariant subset of X2.
(4) Let π : (X,Γ)→ (Y,Γ) be a factor map. Then π2(IN2(X,Γ)) = IN2(Y,Γ).

It follows from Propositions 2.1 and 2.2 that null actions are tame. We remark
that there are minimal tame nonnull subshifts for Z [16, Section 11].

3. McMahon’s construction

We recall McMahon’s construction of RIM extensions in [19, 20]. See [24, VI.6.5]
for details.

Let Γ act on a compact metrizable space X continuously and assume that the
action is minimal and X consists of more than one orbit. Let x1 be a point of
X such that the stabilizer group {s ∈ Γ : sx1 = x1} of x1 is trivial. Also let
f : X \ {x1} → {1,−1} be a continuous function such that it cannot be extended
to X continuously. Then Γ has a minimal continuous action on some compact
metrizable space Xf with the following properties:

(1) there is a continuous Γ-equivariant surjective map πf : Xf → X such that
π−1
f (x) consists of one point if x ∈ X \ Γx1 and two points if x ∈ Γx1,
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(2) the function f ◦ πf on Xf \ π−1
f (x1) extends to a continuous function f̃ :

Xf → {1,−1}.
Furthermore, as an extension of Γ y X, the action Γ y Xf is unique up to
conjugacy. Indeed, Xf is constructed as follows. Take a point x0 ∈ X \ Γx1 and

denote by Z the Stone-C̆ech compactification of Γx0 equipped with the relative
topology from Γx0 ⊆ X. Then the induced Γ-action on Z is minimal and f ◦ πZ |Γx0
extends uniquely to a continuous function fZ : Z → {1,−1}, where πZ : Z → X is
the factor map extending the embedding Γx0 ↪→ X. Define an equivalence relation
on Z by z1 ∼ z2 if fZ(sz1) = fZ(sz2) for all s ∈ Γ and πZ(z1) = πZ(z2). This
equivalent relation is Γ-invariant and closed. Then Xf is defined as the quotient
space Z/ ∼. Though Z is possibly not metrizable, Xf is. Since z1 ∼ z2 implies
that πZ(z1) = πZ(z2), there is a unique continuous map πf : Xf → X such that

the composition map Z → Xf
πf→ X is equal to πZ . As both Z → Xf and πZ are

Γ-equivariant, so is πf . Since z1 ∼ z2 implies that fZ(z1) = fZ(z2), there is also a

unique continuous function f̃ : Xf → {1,−1} such that the composition function

Z → Xf
f̃→ {1,−1} is equal to fZ . Then f ◦ πf = f̃ on the image of Γx0 under

the quotient map Z → Xf . As this image is dense in Xf and both f ◦ πf and the

restriction of f̃ are continuous on Xf \ π−1
f (x1), one has f ◦ πf = f̃ on Xf \ π−1

f (x1).
We remark that another way of defining Xf is to let it be the Gelfand spectrum of the
Γ-invariant C∗-subalgebra of `∞(Γ) generated by functions of the form t 7→ g(tx0)
for t ∈ Γ and g ∈ C(X) or g = f , where `∞(Γ) is equipped with the supremum
norm and pointwise multiplication, addition and conjugation and Γ acts on `∞(Γ)
via (sh)(t) = h(s−1t) for all s, t ∈ Γ and h ∈ `∞(X).

We take an excursion to discuss when Γ y Xf is null. Set Xf,+ = f̃−1(1) and

Xf,− = f̃−1(−1). Also set X+ = f−1(1) and X− = f−1(−1). The following result
tells us how to characterize nullness of Γ y Xf from information on Γ y X and f .

Proposition 3.1. The action Γ y Xf is null if and only if Γ y X is null and the
pair (X+, X−) does not have arbitrarily large finite independence sets.

Note that as the sets X+ and X− are not closed, the condition “not having
arbitrarily large finite independence sets” is not automatically satisfied if Γ y X is
null.

Proposition 3.1 follows from Lemmas 3.2 and 3.3 below.

Lemma 3.2. The action Γ y Xf is null if and only if Γ y X is null and the pair
(Xf,+, Xf,−) does not have arbitrarily large finite independence sets.

Proof. Assume that Γ y Xf is null. Since Xf,+ and Xf,− are disjoint closed subsets
ofXf , by (1) and (2) of Proposition 2.2 the pair (Xf,+, Xf,−) does not have arbitrarily
large finite independence sets. Also from (2) and (4) of Proposition 2.2 we know
that factors of null actions are null. Thus Γ y X is null. This proves the “only if”
part.
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Assume that Γ y Xf is nonnull and Γ y X is null. By (2) of Proposition 2.2
there is an IN-pair (z1, z2) in X2

f with z1 6= z2. By (4) of Proposition 2.2 the pair

(πf (z1), πf (z2)) is an IN-pair in X2. Since Γ y X is null, by (2) of Proposition 2.2
the IN-pairs in X2 must be diagonal ones. Thus πf (z1) = πf (z2). Then πf (z1) ∈ Γx1.
Say, πf (z1) = sx1 for some s ∈ Γ. Then πf (s

−1z1) = πf (s
−1z2) = x1, and hence

{s−1z1, s
−1z2} = π−1

f (x1). By (3) of Proposition 2.2 the pair (s−1z1, s
−1z2) is also

an IN-pair. Note that Xf,+ and Xf,− are both closed and open subsets of Xf , and
each of them contains exactly one of s−1z1 and s−1z2. Thus the pair (Xf,+, Xf,−)
has arbitrarily large finite independence sets. This proves the “if” part. �

Lemma 3.3. The pair (Xf,+, Xf,−) has arbitrarily large finite independence sets if
and only if the pair (X+, X−) has arbitrarily large finite independence sets.

Proof. Since π−1
f (X+) ⊆ Xf,+ and π−1

f (X−) ⊆ Xf,−, the “if” part is trivial.
Assume that (Xf,+, Xf,−) has an independence set M with cardinality 2m for some

positive integer m. Then for any map ω : M → {+,−} one has
⋂
s∈M s−1Xf,ω(s) 6= ∅.

For each such ω, fix a point zω ∈
⋂
s∈M s−1Xf,ω(s). Then for each such ω and

s ∈ M , one has szω ∈ Xf,ω(s) ⊆ π−1
f (Xω(s)) ∪ π−1

f (x1). List the elements of M as
s1, s2, . . . , s2m. Denote by A the set of integers 1 ≤ n ≤ m such that s2n−1zω ∈
π−1
f (x1) for some ω.

Let n ∈ A and take one ωn such that s2n−1zωn ∈ π−1
f (x1). Then s2n−1πf (zωn) = x1.

Since the stabilizer group of x1 is trivial, we have

πf (s2nzωn) = s2nπf (zωn) = s2ns
−1
2n−1x1 6= x1.

If s2ns
−1
2n−1x1 ∈ X+, then s2nzωn ∈ Xf,+ and hence ωn(s2n) = +. Similarly, if

s2ns
−1
2n−1x1 ∈ X−, then s2nzωn ∈ Xf,− and hence ωn(s2n) = −. Thus for any map

ω : M → {+,−}, if ω(s2n) 6= ωn(s2n), then s2n−1zω ∈ π−1
f (Xω(s2n−1)) and hence

s2n−1πf (zω) ∈ Xω(s2n−1).
Set M ′ = {s2n−1 : n = 1, . . . ,m}. For each map ω′ : M ′ → {+,−}, extend

it to a map ω : M → {+,−} such that ω(s2n) 6= ωn(s2n) for all n ∈ A. By the
above we have s2n−1πf (zω) ∈ Xω(s2n−1) = Xω′(s2n−1) for all n = 1, . . . ,m. Therefore⋂
s∈M ′ s

−1Xω′(s) 6= ∅, i.e. M ′ is an independence set for (X+, X−). This proves the
“only if” part. �

Remark 3.4. The analogues of Proposition 3.1 and Lemmas 3.2 and 3.3 for tame-
ness all hold with similar proofs.

We come back to the construction of McMahon. Denote by M ∗(X) the set of
nonatomic µ in M (X), i.e. µ({x}) = 0 for every x ∈ X. Also denote by πf∗ the
continuous surjective map M (Xf )→M (X) induced by πf .

Lemma 3.5. For each µ ∈ M ∗(X), the set (πf∗)
−1(µ) consists of a single point,

which we denote by µf . The map M ∗(X)→M (Xf ) sending µ to µf is continuous.
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Proof. Let ν ∈M (Xf ) with πf∗(ν) = µ. Since µ is nonatomic, we have

ν(π−1
f (Γx1)) = µ(Γx1) = 0.

Restrict πf to π−1
f (X \ Γx1) we get a map ψ : π−1

f (X \ Γx1) → X \ Γx1. We
claim that ψ is a homeomorphism. Since ψ is continuous and bijective, it suffices
to show that ψ−1 is continuous. Let (xj)j∈J be a net in X \ Γx1 converging to some
x∞ ∈ X \Γx1. We just need to show that ψ−1(xj)→ ψ−1(x∞) as j →∞. Since Xf

is compact, passing to a subnet if necessary, we may assume that ψ−1(xj) converges
to some z ∈ Xf as j → ∞. Then xj = πf (ψ

−1(xj)) converges to πf (z), and hence
πf (z) = x∞. Thus z = ψ−1(x∞), and we conclude that ψ−1(xj) → ψ−1(x∞) as
desired. This proves our claim.

Since ψ is a homeomorphism, it is a Borel isomorphism. Then for any Borel set
A ⊆ Xf , we have

ν(A) = ν(A \ π−1
f (Γx1)) = µ(ψ(A \ π−1

f (Γx1))) = µ(πf (A) \ Γx1).

Therefore ν is unique.
Denote by ϕ the map M ∗(X)→M (Xf ) sending µ to µf . We shall show that ϕ is

continuous. Let {µj}j∈J be a net in M ∗(X) converging to some µ∞ ∈M ∗(X). We
just need to show that ϕ(µj)→ ϕ(µ∞) as j →∞. Since M (Xf ) is compact, passing
to a subnet if necessary, we may assume that ϕ(µj) converges to some ν ∈M (Xf )
as j → ∞. Then µj = πf∗(ϕ(µj)) converges to πf∗(ν), and hence πf∗(ν) = µ∞.
Thus ν = ϕ(µ∞), and we conclude that ϕ(µj) → ϕ(µ∞) as desired. Therefore ϕ is
continuous. �

Now assume that Γ y Y and Γ y Z are continuous actions on compact metrizable
spaces such that X = Y ×Z and the action Γ y X is the product action Γ y Y ×Z.
Also assume that there is some Γ-invariant nonatomic µZ ∈ M (Z). Denote by
πY the projection X → Y . For each y ∈ Y , we have the nonatomic measure
δy × µZ ∈ M (X), where δy denotes the point mass at y. Then y 7→ δy × µZ is a
RIM for the extension πY . Thus by Lemma 3.5 the map y 7→ (δy × µZ)f is a RIM
for the extension πY ◦ πf .

In [19, 20] McMahon took Γ = G× Z for G being any dense countable subgroup
of the p-adic integer group Zp, and Y = Z = Zp. His actions Γ y Y and Γ y Z are
the ones factoring through the shift actions G y Y and Z y Z via treating Z as
a dense subgroup of Zp naturally. His measure µZ is the normalized Haar measure
of Z. Taking suitable choices of f , he showed that the extension πY ◦ πf could be
either open or non-open.

4. Residually finite groups

As a warm up, in this section we apply the construction in Section 3 to residually
finite groups, and show that sometimes it yields null actions. Though the results of
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this section will not be used for the proof of Theorem 1.2, the method in this section
will be used in Section 5 in a much more complicated way.

Let Γ be a countably infinite residually finite group with identity element eΓ.
This means that there is a strictly decreasing sequence {Γn} of finite-index normal
subgroups of Γ such that

⋂
n∈N Γn = {eΓ}.

Denote by X the inverse limit lim←−n→∞ Γ/Γn, which is the subset of
∏
n∈N Γ/Γn

consisting of (xn)n∈N satisfying πn,n+1(xn+1) = xn for all n ∈ N. Here πn,n+1 denotes
the natural homomorphism Γ/Γn+1 → Γ/Γn. This is a compact metrizable totally
disconnected group. Denote by πn the quotient map X → Γ/Γn. The group Γ is
naturally a subgroup of X, and hence has a natural left shift action on X. Clearly
the action Γ y X is minimal and free in the sense that every point of X has trivial
stabilizer group. Note that X is a Cantor set, so it contains more than one orbit.

Lemma 4.1. The action Γ y X is null.

Proof. The compact metrizable group X has a translation-invariant metric, which
is invariant under the Γ-action. It follows from (2) of Proposition 2.2 that Γ y X
is null. �

For each n ≥ 2 take γn ∈ Γn−1 \ Γn. Set Cn = π−1
n (γnΓn), which is a closed

and open subset of X. The sets Cn for n ≥ 2 are pairwise disjoint, eΓ 6∈ Cn, and
Cn → {eΓ} as n → ∞ in the sense that for every neighborhood U of eΓ in X one
has Cn ⊆ U for all large enough n. Set X+ =

⋃
n≥2Cn and X− = X \ (X+ ∪ {eΓ}).

Lemma 4.2. Each independence set M ⊆ Γ for (X+, X−) has cardinality at most
5.

We leave the proof of Lemma 4.2 to the end of this section. Consider the function
f : X \ {eΓ} → {1,−1} defined by f(x) = 1 if x ∈ X+ and f(x) = −1 if x ∈ X−.
Since Cn → {eΓ} as n → ∞, the function f is continuous. Assume further that
[Γn : Γn+1] > 2 for all n. Then every neighborhood of eΓ in X intersects with both
X+ and X−. Thus f cannot be extended to X continuously. Then we can apply
McMahon’s construction in Section 3 to obtain the minimal action Γ y Xf and the
fact map πf : Xf → X. From Proposition 3.1 we conclude

Theorem 4.3. The action Γ y Xf is null.

Remark 4.4. Fix distinct prime numbers p, q ≥ 3. For Γ = Z, we can take
Γn = pnqnZ. Then X is the product of the p-adic integer group Zp and the q-adic
integer group Zq. Denote by πp the projection X → Zp. As the normalized Haar
measure of Zq is nonatomic, from the discussion at the end of Section 3 we know
that the extension πp ◦πf has a RIM. The proofs of Lemmas 5.2 and 5.4 in the next
section also work in this case to show that πp ◦πf has a unique RIM and is not open.

To prove Lemma 4.2, we need to make some preparation.
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Lemma 4.5. Let s1, s2 ∈ Γ and x, y ∈ X such that s1x ∈ Cn1 and s2x ∈ Cn2 with
n1 < n2, and s1y 6∈ Cn1 and s2y ∈ Cm2. Then m2 ≤ n1.

Proof. Set t = s1s
−1
2 . Then tCn2 ∩ Cn1 6= ∅, and hence

tΓn1 = tγn2Γn1 = γn1Γn1 .

That is, t ∈ γn1Γn1 . If m2 > n1, then

πn1(s1y) = πn1(ts2y) = tπn1(s2y) = tΓn1 = γn1Γn1 ,

and hence s1y ∈ Cn1 , which is a contradiction. Therefore m2 ≤ n1. �

Lemma 4.6. Let s1, s2, s3 ∈ Γ and x ∈ X such that s1x ∈ Cn1 , s2x ∈ Cn2 and
s3x ∈ Cn3 with n1 < min(n2, n3). Then there is no y ∈ X satisfying s1y, s2y 6∈ X+

and s3y ∈ X+.

Proof. For each i = 2, 3 we have siπni
(x) = γni

Γni
, and hence siπn1(x) = Γn1 . It

follows that s2Γn1 = s3Γn1 .
Suppose that for some y ∈ X we have s1y, s2y 6∈ X+ and s3y ∈ X+. Say,

s3y ∈ Cm3 . Applying Lemma 4.5 to s1, s3 ∈ Γ and x, y ∈ X we have m3 ≤ n1. Thus
s2Γm3 = s3Γm3 , and hence s2πm3(y) = s3πm3(y). Since s2y 6∈ Cm3 and s3y ∈ Cm3 ,
we have s2πm3(y) 6= γm3Γm3 and s3πm3(y) = γm3Γm3 , which is a contradiction. �

We are ready to prove Lemma 4.2.

Proof of Lemma 4.2. Assume that (X+, X−) has an independence set M with car-
dinality 6. For each map ω : M → {+,−}, fix a point xω ∈

⋂
s∈M s−1Xω(s). For any

such ω and any s ∈ ω−1(+), the point sxω lies in Cn for a unique n ≥ 2. Denote
this n by g(ω, s). By Lemma 4.6 for each such ω there is a set Bω ⊆ ω−1(+) with
cardinality at most 1 such that the function s 7→ g(ω, s) is constant on ω−1(+)\Bω.

Take distinct s1, s2 ∈ M . Define a map ω : M → {+,−} by ω(s1) = ω(s2) = −
and ω(s) = + for all s ∈M \ {s1, s2}. Then ω−1(+) \Bω has cardinality at least 3.
Say, g(ω, s) = n1 for all s ∈ ω−1(+) \Bω.

Take s3 ∈ ω−1(+) \ Bω. Define a map ω̃ : M → {+,−} by ω̃(s3) = − and
ω̃(s) = + for all s ∈ M \ {s3}. Say, g(ω̃, s) = n2 for all s ∈ ω̃−1(+) \ Bω̃. Then
ω̃−1(+)\Bω̃ has nonempty intersection with both {s1, s2} and ω−1(+)\ (Bω∪{s3}).
Without loss of generality, we may assume s1 ∈ ω̃−1(+) \ Bω̃. Take s4 ∈ (ω̃−1(+) \
Bω̃) ∩ (ω−1(+) \ (Bω ∪ {s3})).

Now we have s1, s3, s4 pairwise distinct. We also have s3xω, s4xω ∈ Cn1 , s1xω̃, s4xω̃ ∈
Cn2 , and s1xω, s3xω̃ 6∈ X+.

From s3xω, s4xω ∈ Cn1 and s1xω 6∈ Cn1 we have

s3πn1(xω) = γn1Γn1 = s4πn1(xω) 6= s1πn1(xω),

and hence s3Γn1 = s4Γn1 6= s1Γn1 . Similarly, from s1xω̃, s4xω̃ ∈ Cn2 and s3xω̃ 6∈ Cn2

we have s1Γn2 = s4Γn2 6= s3Γn2 .
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If n1 ≥ n2, then from s3Γn1 = s4Γn1 we have s3Γn2 = s4Γn2 , which is a contradic-
tion. If n2 ≥ n1, then from s1Γn2 = s4Γn2 we have s1Γn1 = s4Γn1 , which is also a
contradiction. �

5. Free groups

In this section we prove Theorem 1.2.
Let r ≥ 2 and Γ = Fr be the free group with r generators S = {a, b, a3, . . . , ar}.
Denote by Y the Gromov boundary of Γ. This is the set of all infinite reduced

words in S ∪ S−1, i.e. the set of elements x = (xn)n∈N in (S ∪ S−1)N satisfying
xn+1 6= x−1

n for all n ∈ N. It is a closed subset of (S ∪ S−1)N, hence compact
metrizable. The group Γ acts on Y continuously by concatenation and cancellation.
Clearly this action is minimal and effective. By [3, page 161] this action is also
strongly proximal.

It is well known that Γ is residually finite [23, Corollary C-1.126]. Let {Γn} be a
strictly decreasing sequence of finite-index normal subgroups of Γ with

⋂
n∈N Γn =

{eΓ}. Set Z = lim←−n→∞ Γ/Γn and X = Y × Z. As in Section 4, Γ is naturally a
subgroup of the compact metrizable totally disconnected group Z and has a natural
left shift action on Z. This action Γ y Z is minimal and free. Then the product
action Γ y X is also free. Denote by µZ the normalized Haar measure on Z,
which is nonatomic and Γ-invariant. For each n ∈ N, denote by πn the natural
homomorphism Z → Γ/Γn.

Lemma 5.1. The product action Γ y X is minimal.

Proof. An action Γ y Z ′ is called weakly non-contractible if it is minimal and there
is some µ ∈ M (Z ′) with support Z ′ such that the orbit closure of µ in M (Z ′)
is minimal. Every weakly non-contractible action Γ y Z ′ is disjoint from every
minimal strongly proximal action Γ y Y ′ in the sense that the product action
Γ y Y ′ × Z ′ is minimal [3, Theorem 6.1]. Since µZ has support Z and is Γ-
invariant, we know that Γ y Z is weakly non-contractible. Therefore the product
action Γ y Y × Z is minimal. �

For each nontrivial s ∈ Γ, we say that y ∈ Y starts with s if y = sy′ for some
y′ ∈ Y such that the last letter of (the reduced form of) s is different from the
inverse of the first letter of y′. Similarly, we shall talk about t ∈ Γ starting or ending
with s. For any nontrivial s ∈ Γ, denote by Vs the set of elements in Y starting with
s. Denote by a∞ the element in Y taking constant value a.

For each n ≥ 2 take γn ∈ Γn−1 \ Γn, and set un = anba−nb−1, Dn = Vun and
Cn = π−1

n (γnΓn). Then Dn×Cn is a closed and open subset of X. The sets Dn×Cn
are pairwise disjoint, (a∞, eΓ) 6∈ Dn × Cn, and Dn × Cn → {(a∞, eΓ)} as n→∞ in
the sense that for every neighborhood U of (a∞, eΓ) in X one has Dn × Cn ⊆ U for
all large enough n ∈ N. Set X+ =

⋃
n≥2(Dn×Cn) and X− = X \ (X+ ∪{(a∞, eΓ)}).

Then every neighborhood of (a∞, eΓ) in X intersects with both X+ and X−.
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Define a function f : X \ {(a∞, eΓ)} → {1,−1} by f(x) = 1 if x ∈ X+ and
f(x) = −1 if x ∈ X−. Since Dn × Cn → {(a∞, eΓ)} as n → ∞, the function f is
continuous. Since every neighborhood of (a∞, eΓ) in X intersects with both X+ and
X−, the function f cannot be extended to X continuously. Therefore we can apply
McMahon’s construction in Section 3 to obtain the minimal action Γ y Xf and the
factor map πf : Xf → X.

Denote by πY the projection X → Y .

Lemma 5.2. The extension πY ◦ πf has a unique RIM.

Proof. From our discussion at the end of Section 3 and using the notation there, we
know that y 7→ δy × µZ is a RIM for πY and y 7→ (δy × µZ)f is a RIM for πY ◦ πf .

An extension π′ : X ′ → Y ′ between continuous actions Γ y X ′ and Γ y Y ′ is
called a group extension if there is a compact metrizable group Z ′ acting continuously
on X ′ denoted by (x′, z′)→ x′z′ for x′ ∈ X ′ and z′ ∈ Z ′ such that s(x′z′) = (sx′)z′

for all s ∈ Γ, x′ ∈ X ′, z′ ∈ Z ′, and (π′)−1(π′(x′)) = x′Z ′ for all x′ ∈ X ′. Every group
extension between minimal actions has a unique RIM [4, Corollary 3.7].

Clearly πY is a group extension. By Lemma 5.1 the action Γ y X is minimal.
Therefore πY has a unique RIM, which must be y 7→ δy × µZ .

Let y 7→ µy be a RIM for πY ◦ πf . Then y 7→ πf∗(µy) is a RIM for πY . Thus
πf∗(µy) = δy × µZ for every y ∈ Y . By Lemma 3.5 we get µy = (δy × µZ)f for every
y ∈ Y . Therefore πY ◦ πf has a unique RIM. �

Lemma 5.3. The extension πY ◦ πf is point-distal.

Proof. Denote by πZ the projection X → Z.
Let x̃ ∈ π−1

f (X \ Γ(a∞, eΓ)) and x̃′ ∈ Xf with πY ◦ πf (x̃) = πY ◦ πf (x̃′) such that

the orbit closure of (x̃, x̃′) in X2
f intersects with the diagonal. Then the orbit closure

of (πZ ◦πf (x̃), πZ ◦πf (x̃′)) in Z2 intersects with the diagonal. Note that the compact
metrizable group Z has a translation-invariant metric, which is then invariant under
the Γ-action. It follows that πZ ◦ πf (x̃) = πZ ◦ πf (x̃′). Therefore πf (x̃) = πf (x̃′),
and hence x̃ = x̃′. Since Γ y X is minimal by Lemma 5.1, this means that every
point in π−1

f (X \ Γ(a∞, eΓ)) witnesses the definition of point-distality. �

We remark that Glasner showed that every RIM extension between tame minimal
actions is point-distal [9, Theorem 4.4]. Thus Lemma 5.3 also follows directly once
we show later that Γ y Xf is null.

Lemma 5.4. The map πY ◦ πf is not open.

Proof. Denote by f̃ the continuous extension of f ◦ πf : π−1
f (X \ {(a∞, eΓ)}) →

{1,−1} to Xf . Set Xf,+ = f̃−1(1). Then Xf,+ is an open subset of Xf . But

πY ◦ πf (Xf,+) = πY ({(a∞, eΓ)} ∪X+) = {a∞} ∪
⋃
n≥2

Dn

is not open. Therefore πY ◦ πf is not open. �
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We are left to show that Γ y Xf is null, which is also the most technical part.
For this purpose we need to make some preparation.

Lemma 5.5. Let t ∈ Γ and y ∈ Y . Assume that t does not start with un. Then
ty ∈ Dn if and only if y starts with t−1un.

Proof. Since t does not start with un, the element t−1un ends with b−1.
Suppose that y starts with t−1un. Then y = t−1uny

′ for some y′ ∈ Y not starting
with b. We have ty = uny

′. Since y′ does not start with b, the point uny
′ starts with

un. Thus ty ∈ Dn. This proves the “if” part.
Now suppose that ty ∈ Dn. Then ty = uny

′ for some y′ ∈ Y not starting with
b. We have y = t−1uny

′. Since t−1un ends with b−1 and y′ does not start with b,
t−1uny

′ starts with t−1un. This proves the “only if” part. �

Lemma 5.6. Let t ∈ Γ and y ∈ Y . Assume that t starts with un. Then ty ∈ Dn if
and only if y does not start with t−1unb.

Proof. We have t = uns for some s ∈ Γ not starting with b. Then ty 6∈ Dn if and
only if y starts with (b−1s)−1 = t−1unb. �

Lemma 5.7. Let t ∈ Γ be nontrivial such that tDn2 ∩ Dn1 6= ∅. Then one of the
following 3 situations must hold:

(1) t ends with u−1
n2

= ban2b−1a−n2,
(2) t starts with un1 = an1ba−n1b−1,
(3) n2 6= n1 and t = un1u

−1
n2

= an1ban2−n1b−1a−n2.

Proof. Assume that (1) and (2) do not hold. Take y ∈ Dn2 with ty ∈ Dn1 . Then y
starts with un2 . Since t does not start with un1 , we know that t−1un1 ends with b−1

and by Lemma 5.5 the element y also starts with t−1un1 . Then either un2 starts with
t−1un1 or t−1un1 starts with un2 . Since t−1un1 ends with b−1, if un2 starts with t−1un1 ,
then we must have un2 = t−1un1 , i.e. (3) holds. If t−1un1 starts with un2 , since t−1

does not start with un2 , then it is easy to see that we still have t−1un1 = un2 . �

Lemma 5.8. Let s1, s2 ∈ Γ and z, z′ ∈ Z such that s1z, s2z ∈ Cn, and s2z
′ ∈ Cm.

Then m = n if and only if s1z
′ ∈ Cn.

Proof. Set t = s1s
−1
2 . Then tCn ∩ Cn 6= ∅, and hence tγnΓn = γnΓn. It follows that

t ∈ Γn.
Assume that m = n. Then s1z

′ = t(s2z
′) ∈ tCn = Cn. This proves the “only if”

part.
Conversely, assume that s1z

′ ∈ Cn. Then s2z
′ = t−1(s1z

′) ∈ t−1Cn = Cn, and
hence m = n. This proves the “if” part. �

Note that for each n ∈ N, Γn is torsion-free. Since
⋂
m∈N Γm = {eΓ}, for each

n ∈ N, when m is large enough, Γn/Γn+m has nontrivial elements with order strictly
bigger than 2. Thus replacing {Γn} by a suitable subsequence, we may choose
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γn ∈ Γn−1 \ Γn such that γ2
n 6∈ Γn for every n ≥ 2, which we shall assume from now

on.

Lemma 5.9. Let s1, s2 ∈ Γ and z, z′ ∈ Z such that s1z ∈ Cn1 and s2z ∈ Cn2 with
n1 < n2, and s1z

′ ∈ Cm1 and s2z
′ ∈ Cm2. Then s1s

−1
2 ∈ γn1Γn1, and one of the

following two situations must hold:

(1) m1 = n1 < m2,
(2) m1 = m2 < n1.

Proof. Set t = s1s
−1
2 . Then tCn2 ∩ Cn1 6= ∅, and hence

tΓn1 = tγn2Γn1 = γn1Γn1 .

That is, t ∈ γn1Γn1 . We consider three cases.
Consider first the case m1 < m2. Similarly we have t ∈ γm1Γm1 . Then t ∈

Cn1 ∩ Cm1 , and hence m1 = n1.
Next we consider the case m1 = m2. Then tCm1 ∩ Cm1 6= ∅, and hence t ∈ Γm1 ,

which implies m1 < n1.
Finally we consider the case m1 > m2. Similarly we have t−1 ∈ γm2Γm2 . Then

t ∈ γn1Γn1 ∩ γ−1
m2

Γm2 , and hence n1 = m2. It follows that γn1Γn1 = γ−1
n1

Γn1 , and
hence γ2

n1
∈ Γn1 , which is a contradiction to our assumption. Therefore the case

m1 > m2 does not happen. �

Lemma 5.10. Let s1, s2 ∈ Γ be distinct such that s−1
1 X+∩s−1

2 X+ 6= ∅. Set t = s1s
−1
2 .

Then at least one of the following 10 situations must hold:

(1) Type (A1) for (s1, s2): t = umvu
−1
n2

for some 2 ≤ m < n1 < n2 determined
by t and some nontrivial v ∈ Γ not starting with b and not ending with b−1;
for any x′′ = (y′′, z′′) ∈ X with s2x

′′ ∈ Dk2 × Ck2, we have s1x
′′ ∈ X+ if and

only if either k2 = m, in which case s1x
′′ ∈ Dm × Cm, or k2 = n2 and s2y

′′

starts with t−1un1, in which case s1x
′′ ∈ Dn1 × Cn1.

(2) Type (A2) for (s1, s2): t = un1vu
−1
m for some 2 ≤ m < n1 determined by t

and some nontrivial v ∈ Γ not starting with b and not ending with b−1; for
any x′′ = (y′′, z′′) ∈ X with s2x

′′ ∈ Dk2×Ck2, we have s1x
′′ ∈ X+ if and only

if either k2 > n1, in which case s1x
′′ ∈ Dn1 ×Cn1, or k2 = m and s2y

′′ starts
with t−1um, in which case s1x

′′ ∈ Dm × Cm.
(3) Type (B1) for (s1, s2): t = un1vu

−1
m for some 2 ≤ n1 < m determined by t

and some nontrivial v ∈ Γ not starting with b and not ending with b−1; for
any x′′ = (y′′, z′′) ∈ X with s2x

′′ ∈ Dk2×Ck2, we have s1x
′′ ∈ X+ if and only

if s1x
′′ ∈ Dn1 × Cn1 if and only if either m 6= k2 > n1, or k2 = m and s2y

′′

does not start with t−1un1b.
(4) Type (B2) for (s1, s2): t = un1v for some n1 ≥ 2 determined by t and some

v ∈ Γ not starting with b and not ending with u−1
m for any m > n1; for any

x′′ = (y′′, z′′) ∈ X with s2x
′′ ∈ Dk2 × Ck2, we have s1x

′′ ∈ X+ if and only if
k2 > n1 and t 6= un1a

−k2, in which case s1x
′′ ∈ Dn1 × Cn1.
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(5) Type (B3) for (s1, s2): t = un1u
−1
n2

for some 2 ≤ n1 < n2 determined by t;
for any x′′ = (y′′, z′′) ∈ X with s2x

′′ ∈ Dk2 × Ck2, we have s1x
′′ ∈ X+ if and

only if k2 = n2, in which case s1x
′′ ∈ Dn1 × Cn1.

(6) Type (B4) for (s1, s2): t = vu−1
n2

for some 2 ≤ n1 < n2 determined by t
and some v ∈ Γ not ending with b−1 and not starting with un1; for any
x′′ = (y′′, z′′) ∈ X with s2x

′′ ∈ Dk2 × Ck2, we have s1x
′′ ∈ X+ if and only if

k2 = n2 and s2y
′′ starts with t−1un1, in which case s1x

′′ ∈ Dn1 × Cn1.
(7) Type (C1) for (s1, s2): t = un1vu

−1
n2

for some distinct n1, n2 ≥ 2 determined
by t and some nontrivial v ∈ Γ not starting with b and not ending with b−1;
for any x′′ = (y′′, z′′) ∈ X with s2x

′′ ∈ Dk2 × Ck2, we have s1x
′′ ∈ X+ if and

only if either k2 = n1, in which case s1x
′′ ∈ Dn1 × Cn1, or k2 = n2 and s2y

′′

starts with t−1un2, in which case s1x
′′ ∈ Dn2 × Cn2.

(8) Type (C2) for (s1, s2): t = umvu
−1
m for some m ≥ 2 determined by t and

some nontrivial v ∈ Γ not starting with b and not ending with b−1; for any
x′′ = (y′′, z′′) ∈ X with s2x

′′ ∈ Dk2 × Ck2, we have s1x
′′ ∈ X+ if and only if

k2 = m and s2y
′′ does not start with t−1umb, in which case s1x

′′ ∈ Dm×Cm.
(9) Type (C3) for (s1, s2): t = vu−1

m for some m ≥ 2 determined by t and some
v ∈ Γ not starting with um and not ending with b−1; for any x′′ = (y′′, z′′) ∈ X
with s2x

′′ ∈ Dk2 × Ck2, we have s1x
′′ ∈ X+ if and only if k2 = m and s2y

′′

starts with t−1um, in which case s1x
′′ ∈ Dm × Cm.

(10) The pair (s2, s1) has one of the above types.

Proof. We consider first the case that there exist x = (y, z), x′ = (y′, z′) ∈ X such
that s1x ∈ Dn1 ×Cn1 , s2x ∈ Dn2 ×Cn2 and s1x

′, s2x
′ ∈ Dm ×Cm with n1 6= n2. By

symmetry we may assume that n1 < n2. By Lemma 5.9 we have t ∈ γn1Γn1 ⊆ Γn1−1

and m < n1. Since tDm ∩Dm 6= ∅, by Lemma 5.7 either t starts with um or t ends
with u−1

m . We separate the case into two subcases.
Consider first the subcase t ends with u−1

n2
. Then t must start with um. Thus

t = umvu
−1
n2

for some nontrivial v ∈ Γ not starting with b and not ending with b−1.
We say that (s1, s2) has type (A1). Clearly m and n2 are determined by t. Also n1

is determined by t as t ∈ Cn1 . Let x′′ = (y′′, z′′) ∈ X such that s2x
′′ ∈ Dk2 × Ck2 .

If k2 6= n2, then s1y
′′ = t(s2y

′′) ∈ Dm. Thus if k2 6= n2 and s1x
′′ ∈ X+ then

s1x
′′ ∈ Dm × Cm and hence k2 = m by Lemma 5.9. Conversely, if k2 = m, then

by Lemma 5.8 we do have s1x
′′ ∈ Dm × Cm. If k2 = n2 and s1x

′′ ∈ X+, then
by Lemma 5.9 we have s1x

′′ ∈ Dn1 × Cn1 and hence by Lemma 5.5 the point s2y
′′

must start with t−1un1 = un2v
−1u−1

m un1 . Conversely, if k2 = n2 and s2y
′′ starts with

t−1un1 , then by Lemma 5.5 we do have s1x
′′ ∈ Dn1 × Cn1 .

Next consider the subcase t does not end with u−1
n2

. Since tDn2 ∩ Dn1 6= ∅, by
Lemma 5.7 either t = un1u

−1
n2

or t starts with un1 . Then t cannot start with um, and
hence t ends with u−1

m . It follows that t starts with un1 . Thus t = un1vu
−1
m for some

nontrivial v ∈ Γ not starting with b and not ending with b−1. We say that (s1, s2)
has type (A2). Clearly m and n1 are determined by t. Let x′′ = (y′′, z′′) ∈ X such
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that s2x
′′ ∈ Dk2 × Ck2 . If k2 6= m, then s1y

′′ = t(s2y
′′) ∈ Dn1 . Thus if k2 6= m and

s1x
′′ ∈ X+, then s1x

′′ ∈ Dn1 × Cn1 and hence k2 > n1 by Lemma 5.9. Conversely,
if k2 > n1, then we do have s1x

′′ ∈ Dn1 × Cn1 . If k2 = m and s1x
′′ ∈ X+, then by

Lemma 5.9 we have s1x
′′ ∈ Dm×Cm and hence by Lemma 5.5 the point s2y

′′ starts
with t−1um = umv

−1u−1
n1
um. Conversely, if k2 = m and s2y

′′ starts with t−1um, then
by Lemma 5.5 we do have s1x

′′ ∈ Dm × Cm.
Now consider the case there exist x = (y, z) ∈ X such that s1x ∈ Dn1 × Cn1 ,

s2x ∈ Dn2×Cn2 with n1 6= n2, but there is no x′ ∈ X such that s1x
′, s2x

′ ∈ Dm×Cm.
By symmetry we may assume that n1 < n2. By Lemma 5.9 we have t ∈ γn1Γn1 , and
for any x′ = (y′, z′) ∈ X such that s1x

′ ∈ Dm1 ×Cm1 and s2x
′ ∈ Dm2 ×Cm2 we have

m1 = n1 < m2.(1)

We separate the case into four subcases.
We consider first the subcase that there are some x] = (y], z]), x′ = (y′, z′) ∈ X

such that s1x
], s1x

′ ∈ Dn1 × Cn1 and s2x
] ∈ Dm2 × Cm2 and s2x

′ ∈ Dm × Cm with
n1 < min(m2,m) and m2 6= m, and t ends with u−1

m . Since tDm2 ∩ Dn1 6= ∅, by
Lemma 5.7 the element t starts with un1 . Thus t = un1vu

−1
m for some nontrivial v ∈ Γ

not starting with b and not ending with b−1. We say (s1, s2) has type (B1). Clearly
n1 and m are determined by t. Let x′′ = (y′′, z′′) ∈ X such that s2x

′′ ∈ Dk2 × Ck2 .
If s1x

′′ ∈ X+, then by (1) we have k2 > n1 and s1x
′′ ∈ Dn1 × Cn1 , and hence

by Lemma 5.6 the point s2y
′′ does not start with t−1un1b = umv

−1b. Conversely,
if k2 > n1 and s2y

′′ does not start with t−1un1b, then by Lemma 5.6 we do have
s1x
′′ ∈ Dn1 × Cn1 . In particular, if m 6= k2 > n1, then s1x

′′ ∈ Dn1 × Cn1 .
Next consider the subcase that for any x′ ∈ X such that s1x

′ ∈ Dn1 × Cn1 and
s2x
′ ∈ Dm2 × Cm2 the element t does not end with u−1

m2
and we do have some

x′ = (y′, z′) ∈ X such that s1x
′ ∈ Dn1 × Cn1 and s2x

′ ∈ Dm2 × Cm2 with m2 6= n2.
Since tDm2 ∩Dn1 and tDn2 ∩Dn1 are nonempty, by Lemma 5.7 the element t must
start with un1 . Say, t = un1v for some v ∈ Γ not starting with b. We say (s1, s2) has
type (B2). Clearly n1 is determined by t. Note that v cannot end with u−1

k for any
k > n1, otherwise we can easily find some x̃ ∈ X such that s1x̃ ∈ Dn1 × Cn1 and
s2x̃ ∈ Dk × Ck contradicting to our assumption. Let x′′ = (y′′, z′′) ∈ X such that
s2x
′′ ∈ Dk2 ×Ck2 . If s1x

′′ ∈ X+, then by (1) we have k2 > n1 and s1x
′′ ∈ Dn1 ×Cn1 ,

and hence by Lemma 5.6 the point s2y
′′ does not start with t−1un1b = v−1b, which

implies that t 6= un1a
−k2 . Conversely, if k2 > n1 and t 6= un1a

−k2 , then s2y
′′ does not

start with t−1un1b = v−1b and hence by Lemma 5.6 we do have s1x
′′ ∈ Dn1 × Cn1 .

Next consider the subcase that for any x̃ ∈ X such that s1x̃ ∈ Dn1 × Cn1 and
s2x̃ ∈ Dm × Cm we have m = n2. If t starts with un1 , then for any large enough
m > n1 and any x̃ ∈ X with s2x̃ ∈ Dm × Cm one has s1x̃ ∈ Dn1 × Cn1 , which
contradicts our assumption. Since tDn2 ∩ Dn1 is nonempty, by Lemma 5.7 either
t = un1u

−1
n2

or t ends with u−1
n2

. Suppose that t = un1u
−1
n2

. We say (s1, s2) has
type (B3). Clearly n1 and n2 are determined by t. Let x′′ = (y′′, z′′) ∈ X with
s2x
′′ ∈ Dk2 × Ck2 . If s1x

′′ ∈ X+, then by (1) and our assumption k2 = n2 and
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s1x
′′ ∈ Dn1 × Cn1 . Conversely, if k2 = n2, then by Lemma 5.5 we do have s1x

′′ ∈
Dn1 × Cn1 . Now suppose that t ends with u−1

n2
instead. Then t = vu−1

n2
for some

v ∈ Γ not ending with b−1 and not starting with un1 . We say (s1, s2) has type
(B4). Clearly n2 is determined by t. Also n1 is determined by t as t ∈ Cn1 . Let
x′′ = (y′′, z′′) ∈ X with s2x

′′ ∈ Dk2 × Ck2 . If s1x
′′ ∈ X+, then by (1) and our

assumption k2 = n2 and s1x
′′ ∈ Dn1 ×Cn1 , and hence by Lemma 5.5 the point s2y

′′

starts with t−1un1 = un2v
−1un1 . Conversely, if k2 = n2 and s2y

′′ starts with t−1un1 ,
then by Lemma 5.5 we do have s1x

′′ ∈ Dn1 × Cn1 .
Finally consider the case there is no x ∈ X such that s1x ∈ Dn1 × Cn1 , s2x ∈

Dn2 × Cn2 with n1 6= n2. We separate it into three subcases.
Consider first the subcase that there are x, x′ ∈ X such that s1x, s2x ∈ Dn2 ×Cn2

and s1x
′, s2x

′ ∈ Dn1 × Cn1 with n1 6= n2. Since tDn2 ∩ Dn2 and tDn1 ∩ Dn1 are
nonempty, by Lemma 5.7 the element t must end with either u−1

n1
or u−1

n2
. With-

out loss of generality, assume that t ends with u−1
n2

. As tDn1 ∩ Dn1 is nonempty,
Lemma 5.7 implies that t starts with un1 . Thus t = un1vu

−1
n2

for some nontriv-
ial v ∈ Γ not starting with b and not ending with b−1. We say (s1, s2) has type
(C1). Clearly n1 and n2 are determined by t. Let x′′ = (y′′, z′′) ∈ X such that
s2x
′′ ∈ Dk2 × Ck2 . If k2 6= n2, then s1y

′′ = t(s2y
′′) ∈ Dn1 . Thus if k2 6= n2 and

s1x
′′ ∈ X+ then s1x

′′ ∈ Dn1 × Cn1 and hence k2 = n1 by Lemma 5.8. Conversely, if
k2 = n1, then by Lemma 5.8 we do have s1z

′′ ∈ Cn1 and hence s1x
′′ ∈ Dn1 ×Cn1 . If

k2 = n2, then by Lemma 5.8 we have s1z
′′ ∈ Cn2 . Thus if k2 = n2 and s1x

′′ ∈ X+,
then s1x

′′ ∈ Dn2 × Cn2 and hence by Lemma 5.5 the point s2y
′′ must start with

t−1un2 = un2v
−1u−1

n1
un2 . Conversely, if k2 = n2 and s2y

′′ starts with t−1un2 , then by
Lemma 5.5 we do have s1x

′′ ∈ Dn2 × Cn2 .
Next consider the subcase that there is some m ≥ 2 such that for any x = (y, z) ∈

X such that s1x ∈ Dn1 × Cn1 , s2x ∈ Dn2 × Cn2 one has n1 = n2 = m. Since
tDm ∩ Dm is nonempty, by Lemma 5.7 either t starts with um or t ends with u−1

m .
Note that t starts with um exactly when t−1 ends with u−1

m . By symmetry we may
assume that t ends with u−1

m . Suppose that t also starts with um. Then t = umvu
−1
m

for some nontrivial v ∈ Γ not starting with b and not ending with b−1. We say that
(s1, s2) has type (C2). In this case m is determined by t. Let x′′ = (y′′, z′′) ∈ X
such that s2x

′′ ∈ Dk2 × Ck2 . If s1x
′′ ∈ X+, then by our assumption k2 = m and

s1x
′′ ∈ Dm × Cm, and hence by Lemma 5.6 the point s2y

′′ does not start with
t−1umb = umv

−1b. Conversely, if k2 = m and s2y
′′ does not start with t−1umb, then

by Lemmas 5.6 and 5.8 we do have s1x
′′ ∈ Dm × Cm. Now suppose instead that t

does not start with um. Then t = vu−1
m for some v ∈ Γ not starting with um and

not ending with b−1. We say that (s1, s2) has type (C3). In this case m is also
determined by t. Let x′′ = (y′′, z′′) ∈ X such that s2x

′′ ∈ Dk2 × Ck2 . If s1x
′′ ∈ X+,

then by our assumption k2 = m and s1x
′′ ∈ Dm × Cm, and hence by Lemma 5.5

the point s2y
′′ starts with t−1um = umv

−1um. Conversely, if k2 = m and s2y
′′ starts

with t−1um, then by Lemmas 5.5 and 5.8 we do have s1x
′′ ∈ Dm × Cm. �
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In the next 9 lemmas we give an upper bound for the size of an independence set
M ⊆ Γ for (X+, X−) when every pair in M (with respect to some linear order of
M) has a fixed type in Lemma 5.10.

For each finite independence set M ⊆ Γ for (X+, X−) and each map ω : M →
{+,−}, fix a point xω = (yω, zω) ∈ ⋂

s∈M s−1Xω(s). For any such ω and any s ∈
ω−1(+), the point sxω lies in Dn×Cn for a unique n ≥ 2. Denote this n by g(ω, s).

Lemma 5.11. Let M ⊆ Γ be a finite independence set for (X+, X−) with cardinality
`. List the elements of M as s′1, . . . , s

′
`. Assume that (s′i, s

′
j) has type (A1) for all

1 ≤ i < j ≤ `. Then ` < nA1 := 21.

Proof. Assume that ` ≥ 21.
We claim that there are some map ω0 : M → {+,−} and a set A ⊆ M with

cardinality 5 such that ω0 = + on A and the map s 7→ g(ω0, s) on A is injective. Let
ω′ be the map M → {+}. Then either there is some subset A of M with cardinality
5 such that the map s 7→ g(ω′, s) on A is injective or there is some subset B of M
with cardinality 6 such that g(ω′, s) = m for some m ≥ 2 and all s ∈ B. In the
first situation we can take ω0 = ω′. Thus assume that B ⊆M has cardinality 6 and
g(ω′, s) = m for all s ∈ B. List the elements of B as θ1, . . . , θ6 such that (θi, θj)
has type (A1) for all 1 ≤ i < j ≤ 6. Take ω′′ : M → {+,−} such that ω′′(θ1) = −
and ω′′(θi) = + for all 2 ≤ i ≤ 6. For any 2 ≤ i ≤ 6, since (θ1, θi) has type (A1)
and ω′′(θ1) = −, we have g(ω′′, θi) 6= m. For any 2 ≤ i < j ≤ 6, since (θi, θj) has
type (A1), we have g(ω′′, θi) < g(ω′′, θj). Then we can take A = {θ2, . . . , θ6} and
ω0 = ω′′. This proves our claim.

List the elements of A as s1, . . . , s5 such that (si, sj) has type (A1) for all 1 ≤
i < j ≤ 5. Set ni = g(ω0, si). Then n1 < n2 < · · · < n5. Now s5yω0 starts with
ξi := s5s

−1
i uni

for i = 2, 3, 4. Write {2, 3, 4} as {i1, i2, i3} such that the length of ξi3
is no less than those of ξi2 and ξi1 .

For k = 1, 2, take ωk : M → {+,−} such that ωk(sik) = − and ωk(s) = + for all
s ∈ A \ {sik}. We claim that g(ωk, s5) < n1. Suppose that g(ωk, s5) ≥ n1 instead.
Since (s1, s5) has type (A1), we have g(ωk, s5) = n5. As (si3 , s5) has type (A1), the
element s5yωk

starts with ξi3 and hence starts with ξik . Since (sik , s5) has type (A1),
we get sikxωk

∈ X+, which is a contradiction to ωk(sik) = −. This proves our claim.
Since (si1 , s5) has type (A1) and g(ω2, s5) < n1 < ni1 , we get g(ω2, si1) = g(ω2, s5).

As (s1, s5) has type (A1) and g(ω1, s5), g(ω2, s5) < n1, we have g(ω1, s5) = g(ω2, s5).
Since (si1 , s5) has type (A1) and g(ω1, s5) = g(ω2, s5) = g(ω2, si1) < ni1 , we get
si1xω1 ∈ X+, which is a contradiction to ω1(si1) = −. �

Lemma 5.12. Let M ⊆ Γ be a finite independence set for (X+, X−) with cardinality
`. List the elements of M as s′1, . . . , s

′
`. Assume that (s′i, s

′
j) has type (A2) for all

1 ≤ i < j ≤ `. Then ` < nA2 := 13.

Proof. Assume that ` ≥ 13.
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We claim that there are some map ω0 : M → {+,−} and a set A ⊆ M with
cardinality 4 such that ω0 = + on A and the map s 7→ g(ω0, s) on A is injective. Let
ω′ be the map M → {+}. Then either there is some subset A of M with cardinality
4 such that the map s 7→ g(ω′, s) on A is injective or there is some subset B of M
with cardinality 5 such that g(ω′, s) = k for some k ≥ 2 and all s ∈ B. In the
first situation we can take ω0 = ω′. Thus assume that B ⊆ M has cardinality 5
and g(ω′, s) = k for all s ∈ B. Take θ5 ∈ B such that (θ, θ5) has type (A2) for
all θ ∈ B \ {θ5}. Note that θ5yω′ starts with ζθ := θ5θ

−1uk for every θ ∈ B \ {θ5}.
Take θ1 ∈ B \ {θ5} such that the length of ζθ1 is no bigger than that of ζθ for all
θ ∈ B \ {θ1, θ5}. Take ω′′ : M → {+,−} such that ω′′(θ1) = − and ω′′(θ) = +
for all θ ∈ B \ {θ1}. For any θ ∈ B \ {θ1, θ5}, since (θ, θ5) has type (A2), either
k < g(ω′′, θ) < g(ω′′, θ5) or k = g(ω′′, θ) = g(ω′′, θ5) and θ5yω′′ starts with ζθ. In the
latter situation θ5yω′′ also starts with ζθ1 , and hence θ1xω′′ ∈ X+, which contradicts
ω′′(θ1) = −. Thus k < g(ω′′, θ) < g(ω′′, θ5) for every θ ∈ B \ {θ1, θ5}. For any
distinct θ, θ′ ∈ B \ {θ1, θ5}, since either (θ, θ′) or (θ′, θ) has type (A2), we have
g(ω′′, θ) 6= g(ω′′, θ′). Then we can take A = B \ {θ1} and ω0 = ω′′. This proves our
claim.

List the elements of A as s1, . . . , s4 such that (si, sj) has type (A2) for all 1 ≤ i <
j ≤ 4. Set ni = g(ω0, si). Then n1 < n2 < n3 < n4.

Take ω1 : M → {+,−} such that ω1(s1) = − and ω1(s) = + for all s ∈ A \ {s1}.
Since (s1, s4) has type (A2), we have g(ω1, s4) ≤ n1. Set m = g(ω1, s4). For i = 2, 3,
since (si, s4) has type (A2) and g(ω1, s4) ≤ n1 < ni, we get that g(ω1, si) = m and
s4yω1 starts with ξi := s4s

−1
i um. Write {2, 3} as {i1, i2} such that the length of ξi2

is no less than that of ξi1 .
Take ω2 : M → {+,−} such that ω2(s1) = ω2(si1) = − and ω2(si2) = ω2(s4) = +.

Since (s1, s4) has type (A2), we have g(ω2, s4) ≤ n1. As (si2 , s4) has type (A2) and
g(ω2, s4) ≤ n1 < ni2 , we have g(ω2, s4) = m and s4yω2 starts with ξi2 . Then s4yω2

also starts with ξi1 . Since (si1 , s4) has type (A2) and g(ω2, s4) = m = g(ω1, si1), we
get that si1xω2 ∈ X+, which contradicts ω2(si1) = −. �

Lemma 5.13. Let M ⊆ Γ be a finite independence set for (X+, X−) with cardinality
`. List the elements of M as s1, . . . , s`. Assume that (si, sj) has type (B1) for all
1 ≤ i < j ≤ `. Then ` < nB1 := 4.

Proof. Assume that ` = 4.
Let ω0 be the map M → {+}. Set ni = g(ω0, si). Then n1 < n2 < n3 < n4.
Define ω1 : M → {+,−} by ω1(s1) = ω1(s2) = − and ω1(s3) = ω1(s4) = +. Since

(s3, s4) has type (B1), we have g(ω1, s4) > n3. Set m = g(ω1, s4). For i = 1, 2,
since (si, s4) has type (B1) and g(ω1, s4) > n3 > ni, we get that s4yω1 starts with
ξi := s4s

−1
i uni

b. Write {1, 2} as {i1, i2} such that the length of ξi2 is no less than
that of ξi1 .

Define ω2 : M → {+,−} by ω2(si2) = − and ω2(s) = + for all s ∈ M \ {si2}.
Since (s3, s4) has type (B1), we have g(ω2, s4) > n3. As (si2 , s4) has type (B1), we
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have g(ω2, s4) = m and s4yω2 starts with ξi2 . Then s4yω2 also starts with ξi1 . Since
(si1 , s4) has type (B1), we get that si1xω2 6∈ X+, which contradicts ω2(si1) = +. �

Lemma 5.14. Let M ⊆ Γ be a finite independence set for (X+, X−) with cardinality
`. List the elements of M as s1, . . . , s`. Assume that (si, sj) has type (B2) for all
1 ≤ i < j ≤ `. Then ` < nB2 := 4.

Proof. Assume that ` = 4.
Let ω0 be the map M → {+}. Set ni = g(ω0, si). Then n1 < n2 < n3 < n4.
Define ω1 : M → {+,−} by ω1(s1) = ω1(s2) = − and ω1(s3) = ω1(s4) = +. Since

(s3, s4) has type (B2), we have g(ω1, s4) > n3. Set m = g(ω1, s4). For i = 1, 2, since
(si, s4) has type (B2) and g(ω1, s4) > n3 > ni, we get that sis

−1
4 = uni

a−m.
Define ω2 : M → {+,−} by ω2(s2) = − and ω2(s) = + for all s ∈M \{s2}. Since

(s3, s4) has type (B2), we have g(ω2, s4) > n3. Set m′ = g(ω2, s4). As (s2, s4) has
type (B2) and g(ω2, s4) > n3 > n2, we have s2s

−1
4 = un2a

−m′ , and hence m = m′.
Then s1s

−1
4 = un1a

−m′ . Since (s1, s4) has type (B2) and s1s
−1
4 = un1a

−m′ , we get
that s1xω2 6∈ X+, which contradicts ω2(s1) = +. �

Lemma 5.15. Let M ⊆ Γ be a finite independence set for (X+, X−) with cardinality
`. List the elements of M as s1, . . . , s`. Assume that (si, sj) has type (B3) for all
1 ≤ i < j ≤ `. Then ` < nB3 := 3.

Proof. Assume that ` = 3.
Let ω0 be the map M → {+}. Set ni = g(ω0, si). Then n1 < n2 < n3.
Define ω1 : M → {+,−} by ω1(s1) = − and ω1(s2) = ω1(s3) = +. Since

(s2, s3) has type (B3), we have g(ω1, s3) = g(ω0, s3). As (s1, s3) has type (B3) and
g(ω1, s3) = g(ω0, s3), we get that s1xω1 ∈ X+, which contradicts ω1(s1) = −. �

Lemma 5.16. Let M ⊆ Γ be a finite independence set for (X+, X−) with cardinality
`. List the elements of M as s1, . . . , s`. Assume that (si, sj) has type (B4) for all
1 ≤ i < j ≤ `. Then ` < nB4 := 3.

Proof. Assume that ` = 3.
Let ω0 be the map M → {+}. Set ni = g(ω0, si). Then n1 < n2 < n3. For

i = 1, 2, since (si, s3) has type (B4), we get that s3yω0 starts with ξi := s3s
−1
i uni

.
Write {1, 2} as {i1, i2} such that the length of ξi2 is no less than that of ξi1 .

Define ω1 : M → {+,−} by ω1(si1) = − and ω1(si2) = ω1(s3) = +. Since (si2 , s3)
has type (B4), we have that g(ω1, s3) = g(ω0, s3) and s3yω1 starts with ξi2 . Then
s3yω1 also starts with ξi1 . Since (si1 , s3) has type (B4), we get that si1xω1 ∈ X+,
which contradicts ω1(si1) = −. �

Lemma 5.17. Let M ⊆ Γ be a finite independence set for (X+, X−) with cardinality
`. List the elements of M as s′1, . . . , s

′
`. Assume that (s′i, s

′
j) has type (C1) for all

1 ≤ i < j ≤ `. Then ` < nC1 := 6.

Proof. Assume that ` = 6.
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Let ω0 be the map M → {+}. Then there is some m ≥ 2 such that g(ω0, s) = m
for all s ∈ M . Denote by A the set of s ∈ M \ {s′6} such that sx ∈ Dm × Cm
whenever x ∈ X and s′6x ∈ Dm×Cm. Set B = M \ ({s′6}∪A). Then either |A| ≥ 3
or |B| ≥ 3.

Consider first the case |A| ≥ 3. Take distinct points s1, s2, s3 ∈ A. Define a map
ω′ : M → {+,−} by ω′(s3) = − and ω′(s) = + for all s ∈ M \ {s3}. Then there is
some n ≥ 2 such that g(ω′, s) = n for all s ∈M \{s3}. Since s3 ∈ A, we have n 6= m.
For i = 1, 2, since (si, s

′
6) has type (C1), we get that s′6yω′ starts with ξi := s′6s

−1
i un.

Write {1, 2} as {i1, i2} such that the length of ξi2 is no less than that of ξi1 . Take
a map ω1 : M → {+,−} such that ω1(s3) = ω1(si1) = − and ω1(si2) = ω(s′6) = +.
As (si2 , s

′
6) has type (C1), we know that g(ω1, si2) = g(ω1, s

′
6) must be either n or

m. As ω1(s3) = −, we have g(ω1, si2) = g(ω1, s
′
6) = n, and hence s′6yω1 starts with

ξi2 . Then s′6yω1 also starts with ξi1 . Since (si1 , s
′
6) has type (C1), it follows that

si1xω1 ∈ X+, which contradicts ω1(si1) = −.
Next consider the case |B| ≥ 3. Take distinct points s1, s2, s3 ∈ B. For any

i = 1, 2, we have that s′6yω0 starts with ξi := s′6s
−1
i um. Write {1, 2} as {i1, i2} such

that the length of ξi2 is no less than that of ξi1 . Consider any map ω′ : M → {+,−}
satisfying that ω′(si1) = − and ω′(si2) = ω′(s′6) = +. Since (si2 , s

′
6) has type (C1),

if g(ω′, si2) = g(ω′, s′6) = m, then s′6yω′ starts with ξi2 and hence starts with ξi1 ,
which implies that si1xω′ ∈ X+, a contradiction. Therefore g(ω′, si2) = g(ω′, s′6)
is different from m, and hence does not depend on the choice of ω′. Take two
maps ω1, ω2 : M → {+,−} satisfying the conditions for ω′ such that ω1(s3) = +
while ω2(s3) = −. Set n = g(ω1, si2) = g(ω1, s

′
6) = g(ω1, s3). Then n 6= m, and

n = g(ω2, si2) = g(ω2, s
′
6). Since (s3, s

′
6) has type (C1) and s3 6∈ A, for any x ∈ X

with s′6x ∈ Dn ×Cn we have s3x ∈ Dn ×Cn. In particular, s3xω2 ∈ Dn ×Cn, which
contradicts ω2(s3) = −. �

Lemma 5.18. Let M ⊆ Γ be a finite independence set for (X+, X−) with cardinality
`. List the elements of M as s1, . . . , s`. Assume that (si, sj) has type (C2) for all
1 ≤ i < j ≤ `. Then ` < nC2 := 4.

Proof. Assume that ` = 4.
Let ω0 be the map M → {+}. Then there is some m ≥ 2 such that g(ω0, s) = m

for all s ∈M .
Define ω1 : M → {+,−} by ω1(s1) = ω(s2) = − and ω1(s3) = ω1(s4) = +. Since

(s3, s4) has type (C2), we have g(ω1, s4) = m. For i = 1, 2, as (si, s4) has type (C2),
we know that s4yω1 starts with ξi := s4s

−1
i umb. Write {1, 2} as {i1, i2} such that the

length of ξi2 is no less than that of ξi1 .
Consider any map ω2 : M → {+,−} satisfying ω2(si2) = − and ω2(si1) = ω2(s4) =

+. Since (si1 , s4) has type (C2), we have that g(ω2, s4) = m and s4yω2 does not start
with ξi1 . Then s4yω2 does not start with ξi2 . As (si2 , s4) has type (C2), we get that
si2xω2 ∈ X+, which contradicts ω2(si2) = −. �
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Lemma 5.19. Let M ⊆ Γ be a finite independence set for (X+, X−) with cardinality
`. List the elements of M as s1, . . . , s`. Assume that (si, sj) has type (C3) for all
1 ≤ i < j ≤ `. Then ` < nC3 := 3.

Proof. Assume that ` = 3.
Let ω0 be the map M → {+}. Then there is some m ≥ 2 such that g(ω0, s) = m

for all s ∈M . For i = 1, 2, since (si, s3) has type (C3), we get that s3yω0 starts with
ξi := s3s

−1
i um. Write {1, 2} as {i1, i2} such that the length of ξi2 is no less than that

of ξi1 .
Define ω1 : M → {+,−} by ω1(si1) = − and ω1(si2) = ω1(s3) = +. Since (si2 , s3)

has type (C3), we have that g(ω1, s3) = m and s3yω1 starts with ξi2 . Then s3yω1

starts with ξi1 . As (si1 , s3) has type (C3), we get that si1xω1 ∈ X+, which contradicts
ω1(si1) = −. �

According to the Ramsey theorem [1, page 183], given any natural numbers k
and c1, . . . , ck there is a natural number n such that for any graph G with n vertices
and exactly one (unoriented) edge between any two distinct vertices, if we color the
edges of G into k colors, then there are some 1 ≤ i ≤ k and a set A of the vertices
of G with cardinality ci such that the edge between any two distinct vertices in A
has the i-th color. The smallest such number n is denoted by Rk(c1, . . . , ck).

Lemma 5.20. Each independence set M ⊆ Γ for (X+, X−) has cardinality strictly
less than

R18(nA1, nA1, nA2, nA2, nB1 , nB1 , nB2, nB2, nB3, nB3, nB4, nB4, nC1, nC1, nC2, nC2, nC3, nC3).

Proof. We may assume that M is finite. Consider the graph G with vertex set M
and one unoriented edge between any two distinct vertices. We shall color the edges
of G with 18 colors as follows. Fix a linear order on M . For any s < s′ in M , we
color the edge between s and s′ with color ∗ (resp. ∗′) if the pair (s, s′) (resp. (s′, s))
has type ∗, where ∗ is one of the 9 types (A1), . . . , (C3) in Lemma 5.10. If certain
edge can be colored in more than one way, take any choice. If |M | is no less than
the above Ramsey number, then for certain type ∗, there is a subset A of M with
cardinality n∗ such that either the pair (s, s′) has type ∗ for all s < s′ in A or the pair
(s′, s) has type ∗ for all s < s′ in A, which is impossible by Lemmas 5.11-5.19. �

By [16, Corollary 12.3] the action Γ y Y is null. From Lemma 4.1 we know that
Γ y Z is null. It is also clear from (2) and (4) of Proposition 2.2 that the class
of null actions is closed under taking products. Thus the product action Γ y X
is null. Then from Proposition 3.1 and Lemma 5.20 we conclude that the action
Γ y Xf is null. This finishes the proof of Theorem 1.2.

To end this section, we discuss one observation pointed out to us by Glasner. A
minimal action Γ y X is called strictly SPI [6, page 127] if there are an ordinal τ , an
action Γ y Xα and a factor map πα : X → Xα for each ordinal α ≤ τ such that πτ
is the identity map of X, X0 is a singleton, πβ factors through πα for all β < α ≤ τ ,
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for each ordinal α < τ the factor map Xα+1 → Xα is either strongly proximal or
isometric, and for each limit ordinal α ≤ τ the map πα is the inverse limit of πβ
for β < α. In such case, one has a canonical choice of these Γ y Xα, called the
canonical SPI tower of Γ y X, defined inductively by taking Γ y X0 to be the action
on a singleton, and for each limit ordinal α taking Γ y Xα to be the inverse limit
of Γ y Xβ for all β < α, taking Γ y Xα+2n+1 to be the largest strongly proximal
factor of X→ Xα+2n (i.e. one has factor maps X→ Xα+2n+1 → Xα+2n, the extension
Xα+2n+1 → Xα+2n is strongly proximal, and for any factor maps X → X′ → Xα+2n

with X′ → Xα+2n strongly proximal the map X→ X′ factors through X→ Xα+2n+1)
for all integers n ≥ 0, and taking Γ y Xα+2n+2 to be the largest isometric factor
of X → Xα+2n+1 (i.e. one has factor maps X → Xα+2n+2 → Xα+2n+1, the extension
Xα+2n+2 → Xα+2n+1 is isometric, and for any factor maps X → X′ → Xα+2n+1

with X′ → Xα+2n+1 isometric the map X → X′ factors through X → Xα+2n+2)
for all integers n ≥ 0. This inductive process stops at some ordinal τ when the
map X → Xτ is a homeomorphism. We are grateful to Glasner for showing us the
following result.

Proposition 5.21. The action Γ y Xf is strictly SPI, and Xf → X → Y → {pt}
is its canonical SPI tower, where Γ y {pt} is the trivial action on a singleton.

Proof. We know that Γ y Y is strongly proximal. Let Γ y Y ∗ be the largest

strongly proximal factor of Γ y Xf . Then we have factor maps Xf → Y ∗
ϑ→ Y .

The proof of Lemma 5.1 shows that the product action Γ y Y ∗×Z is minimal, and
hence it is a factor of Γ y Xf . We now have the following diagram:

Xf

��

πf

��

Y ∗ × Z
ϑ×idZ

��

Y × Z

By construction, the map πf has the property that π−1
f (y, z) is a singleton on the

complement of a countable set. If for some y ∈ Y the set ϑ−1(y) is not a singleton,
then for each z ∈ Z we have that (ϑ× idZ)−1(y, z) = ϑ−1(y)×{z} is not a singleton
as well, which is a contradiction since Z is uncountable. Thus ϑ is injective, and
hence Γ y Y is the largest strongly proximal factor of Γ y Xf .

The extension X = Y × Z → Y is clearly isometric. The extension πf is almost
one-to-one, hence has no nontrivial isometric factor. It follows that Γ y X is the
largest isometric factor of Xf → Y .

Finally, since πf is almost one-to-one, it is strongly proximal. �



NULL ACTIONS AND RIM NON-OPEN EXTENSIONS 23

References

[1] B. Bollobás. Modern Graph Theory. Graduate Texts in Mathematics, 184. Springer-Verlag,
New York, 1998.

[2] J. Bourgain, D. H. Fremlin, and M. Talagrand. Pointwise compact sets of Baire-measurable
functions. Amer. J. Math. 100 (1978), no. 4, 845–886.

[3] S. Glasner. Compressibility properties in topological dynamics. Amer. J. Math. 97 (1975),
148–171.

[4] S. Glasner. Relatively invariant measures. Pacific J. Math. 58 (1975), no.2, 393–410.
[5] S. Glasner. Proximal Flows. Lecture Notes in Mathematics, Vol. 517. Springer-Verlag, Berlin-

New York, 1976.
[6] S. Glasner. Distal and semisimple affine flows. Amer. J. Math. 109 (1987), no. 1, 115–131.
[7] E. Glasner. On tame enveloping semigroups. Colloq. Math. 105 (2006), no. 2, 283–295.
[8] E. Glasner. The structure of tame minimal dynamical systems. Ergod. Th. Dynam. Sys. 27

(2007), no. 6, 1819–1837.
[9] E. Glasner. The structure of tame minimal dynamical systems for general groups. Invent.

Math. 211 (2018), no. 1, 213–244.
[10] E. Glasner and M. Megrelishvili. Hereditarily non-sensitive dynamical systems and linear

representations. Colloq. Math. 104 (2006), no. 2, 223–283.
[11] E. Glasner and M. Megrelishvili. Representations of dynamical systems on Banach spaces not

containing `1. Trans. Amer. Math. Soc. 364 (2012), no. 12, 6395–6424.
[12] E. Glasner, M. Megrelishvili, and V. V. Uspenskij. On metrizable enveloping semigroups.

Israel J. Math. 164 (2008), 317–332.
[13] T. N. T. Goodman. Topological sequence entropy. Proc. London Math. Soc. (3) 29 (1974),

331–350.
[14] W. Huang. Tame systems and scrambled pairs under an Abelian group action. Ergod. Th.

Dynam. Sys. 26 (2006), no. 5, 1549–1567.
[15] W. Huang, S. M. Li, S. Shao, and X. Ye. Null systems and sequence entropy pairs. Ergod.

Th. Dynam. Sys. 23 (2003), no. 5, 1505–1523.
[16] D. Kerr and H. Li. Independence in topological and C∗-dynamics. Math. Ann. 338 (2007),

no. 4, 869–926.
[17] D. Kerr and H. Li. Ergodic Theory: Independence and Dichotomies. Springer Monographs in

Mathematics. Springer, Cham, 2016.
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