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Abstract. For a unital ring R, a Sylvester rank function is a numerical invariant
which can be described in three equivalent ways: on finitely presented left R-
modules, or on rectangular matrices over R, or on maps between finitely generated
projective left R-modules. We extend each Sylvester rank function to all pairs of
left R-modules M1 ⊆ M2, and to all maps between left R-modules satisfying
suitable properties including continuity and additivity.

As an application, we show that for any epimorphism R → S of unital rings,
the pull-back map from the set of Sylvester rank functions of S to that of R is
injective. We also give a new proof of Schofield’s result describing the image of
this map when S is the universal localization of R inverting a set of maps between
finitely generated projective left R-modules.

1. Introduction

For a unital ring R, a Sylvester rank function for R is a numerical invariant
describing the size of finitely presented left R-modules. It can be defined in three
equivalent ways, all taking values in R≥0, on either finitely presented left R-modules,
or rectangular matrices over R, or maps between finitely generated projective left R-
modules (see Section 2 for the definitions). It was introduced first by Malcolmson in
[22] in the first two approaches, and then by Schofield in [28] in the third approach.

Sylvester rank functions arise in many different fields. For a unital C∗-algebra R,
given a tracial state τ for R, one can extend τ to Mn(R) for all n ∈ N by setting
τ(A) =

∑n
j=1 τ(Ajj) for A ∈Mn(R), and then define rkτ (B) = limk→∞ τ(|B|1/k) for

all B ∈ Mn,m(R). The function rkτ is a Sylvester rank function defined on rectan-
gular matrices over R. This rank function is widely studied in Elliott’s classification
program for simple nuclear C∗-algebras, and is fundamental in the definition of strict
comparison property and hence in the formulation of the Toms-Winter conjecture
[5, 6, 8, 32].

For a discrete group Γ, if we take R to be the group von Neumann algebra LΓ,
which consists of bounded linear operators on `2(Γ) commuting with the right regular
representation of Γ, and take τ to be the canonical trace given by τ(a) = 〈aδeΓ , δeΓ〉,
where δeΓ is the unit vector in `2(Γ) taking value 1 at the identity element eΓ and 0
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everywhere else, then we obtain the von Neumann rank function on LΓ. This rank
function and its restriction on the group algebra CΓ play a fundamental role in the
definition of L2-Betti numbers [21].

Systematic study of Sylvester rank functions has also proved useful [1, 9, 10, 12].
Such study is vital in recent work of Jaikin-Zapirain on the Atiyah conjecture and the
Lück approximation conjecture [15]. The classical result of Cohn on epimorphisms
of R into division rings [7] can be stated as that the isomorphism classes of such
homomorphisms are in natural 1-1 correspondence with Z≥0-valued Sylvester rank
functions on R [22]. This was extended by Schofield to that the equivalence classes
of homomorphisms from an algebra R over a field to simple artinian rings, where
two such maps are equivalent if the codomains map into a common simple artinian
ring S such that the two composition maps from R to S coincide, are in natural 1-1
correspondence with Sylvester rank functions on R taking value in 1

n
Z≥0 for some

n ∈ N [28, Theorem 7.12].
Sylvester rank functions have been used in the study of direct finiteness. Ara et

al. observed in [2] that if R has a Sylvester rank function which is faithful in the
sense that every nonzero element of R has positive rank, then R is directly finite
in the sense that every one-sided invertible element of R is two-sided invertible.
They used this observation to show that the group ring DΓ is directly finite for any
division ring D and any free-by-amenable group Γ, which is later extended by Elek
and Szabó to all sofic groups [11].

The set of all Sylvester rank functions on R is naturally a compact convex set in
a locally convex topological vector space.

Despite the importance of Sylvester rank functions and the nice structure of the
set of Sylvester rank functions, in general a Sylvester rank function could have two
draw-backs. The first is that it is only defined for finitely presented left R-modules
or maps between finitely generated projective left R-modules. Frequently, we would
like it to be defined for all left R-modules or maps between all left R-modules with
suitable properties. The second is that as a measurement of the size of a module,
one desirable property for a Sylvester rank function is the additivity, i.e. for any
short exact sequence

0→M1 →M2 →M3 → 0

of left R-modules, we would like to have that dim(M2) = dim(M1) + dim(M3) if
dim(Mj) for j = 1, 2, 3 are all defined. However, though ZΓ for every discrete group
Γ has the restriction of the von Neumann rank, whenever Γ is nonamenable, there
is a short exact sequence of finitely presented left ZΓ-modules such that the above
additivity fails for every Sylvester rank function of ZΓ (see Example 2.5).

The purpose of this article is to handle these two draw-backs. Given any Sylvester
rank function for R, we show how to extend it to an invariant for all pairs (M1,M2)
of left R-modules such that M1 is a submodule of M2 (Definition 3.1 and Theo-
rem 3.3). When M1 = M2 is a finitely presented left R-module, we obtain the
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original Sylvester rank function. This bivariant Sylvester rank function has two
desired properties: continuity and additivity (Definition 3.1 and Theorem 3.4). Fur-
thermore, the extension is unique.

The bivariant Sylvester rank function can also be described equivalently as an
invariant for all maps between left R-modules (Definition 6.1 and Theorem 6.2). The
extended Sylvester rank function on all maps also enjoys continuity and additivity
(Definition 6.1). However, the full power of additivity is best exhibited at the module
level (Theorem 3.4).

As applications, we apply our construction to study the behaviour of Sylvester
rank functions under epimorphisms. Given a unital ring homomorphism π : R→ S,
one has a natural continuous affine map π∗ from the space of Sylvester rank functions
on S to that on R. A natural question is when π∗ is surjective or injective. We show
that if π is an epimorphism, then π∗ is injective (Theorem 8.1). This extends a result
of Jaikin-Zapirain in the case S is von Neumann regular. We also describe the image
of π∗ (Theorem 8.2). A special case of epimorphism is the map of R to the universal
localization ring RΣ, where Σ is a set of maps between finitely generated projective
left R-modules. In this case we give a new proof of the classical result of Schofield
describing the image of π∗ in terms of the rank of elements in Σ (Theorem 8.4).

This article is organized as follows. In Section 2 we recall the definitions of
Sylvester rank functions. In Section 3 we define the bivariant Sylvester module rank
function, and show that each Sylvester module rank function extends uniquely to a
bivariant one. The full additivity of the bivariant Sylvester module rank function is
also established in this section. Section 4 is devoted to discussing when a bivariant
Sylvester module rank function is in fact a length function. The continuity of a
bivariant Sylvester module rank function under direct limits is proved in Section 5.
In Section 6 we define the extended Sylvester map rank function and show that
they are in natural 1-1 correspondence with the bivariant Sylvester module rank
functions. We also derive various properties of the extended Sylvester map rank
functions from those of the bivariant Sylvester module rank functions. Section 7 is
devoted to the study of how an S-R-bimodule can be used to induce an extended
Sylvester map rank function for R from one for S. The applications to epimorphisms
are given in Section 8.

Throughout this article, all modules will be left modules unless specified. All
maps between modules will be module homomorphisms. For any module M, we
denote by idM the identity map of M. For a map α : M1 →M2 between R-modules
and an x ∈M1, we shall write (x)α instead of α(x) for the image of x.
Acknowledgments. This work is partially supported by NSF and NSFC grants. It
started while I attended the program on L2-invariants at ICMAT in Spring 2018. I
am grateful to Andrei Jaikin-Zapirain for inspiring discussions, especially for sug-
gesting that the bivariant Sylvester module rank function might be used to give a
new proof of Schofield’s Theorem 8.4. I would also like to thank the anonymous
referee for very useful comments.
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2. Sylvester Rank Functions

Let R be a unital ring. We recall the definitions and basic facts about Sylvester
rank functions for R.

Definition 2.1. A Sylvester module rank function for R is an R≥0-valued function
dim on the class of all finitely presented R-modules such that

(1) dim(0) = 0, dim(R) = 1.
(2) dim(M1 ⊕M2) = dim(M1) + dim(M2).
(3) For any exact sequence M1 →M2 →M3 → 0, one has

dim(M3) ≤ dim(M2) ≤ dim(M1) + dim(M3).

From (3) it is clear that dim is an isomorphism invariant.

Definition 2.2. A Sylvester matrix rank function for R is an R≥0-valued function
rk on the set of all rectangular matrices over R such that

(1) rk(0) = 0, rk(1) = 1.
(2) rk(AB) ≤ min(rk(A), rk(B)).

(3) rk(

ï
A

B

ò
) = rk(A) + rk(B).

(4) rk(

ï
A C

B

ò
) ≥ rk(A) + rk(B).

The notions of Sylvester module rank functions and Sylvester matrix rank func-
tions were introduced by Malcolmson [22].

Definition 2.3. A Sylvester map rank function for R is an R≥0-valued function rk
on the class of all maps between finitely generated projective R-modules such that

(1) rk(0) = 0, rk(idR) = 1.
(2) rk(αβ) ≤ min(rk(α), rk(β)).

(3) rk(

ï
α

β

ò
) = rk(α) + rk(β).

(4) rk(

ï
α γ

β

ò
) ≥ rk(α) + rk(β).

The notion of Sylvester map rank functions was introduced by Schofield [28, page
97].

Theorem 2.4. There is a natural one-to-one correspondence between Sylvester mod-
ule rank functions, Sylvester map rank functions, and Sylvester matrix rank functions
as follows:

(1) Given a Sylvester module rank function dim, for any map α : P → Q between
finitely generated projective R-modules P and Q, define rk(α) = dim(Q) −
dim(coker(α)). Then rk is a Sylvester map rank function.
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(2) Given a Sylvester map rank function rk, for any A ∈Mn,m(R), consider the
map αA : Rn → Rm sending x to xA, and define rk′(A) = rk(αA). Then rk′

is a Sylvester matrix rank function.
(3) Given a Sylvester matrix rank function rk, for any finitely presented R-

module M take some A ∈ Mn,m(R) such that M ∼= Rm/RnA, and define
dim(M) = m− rk(A). Then dim is a Sylvester module rank function.

The correspondence between Sylvester module rank functions and Sylvester ma-
trix rank functions in Theorem 2.4 is in [22, Theorem 4]. The correspondence
between Sylvester module rank functions and Sylvester map rank functions in The-
orem 2.4 is in [28, page 97].

Example 2.5. Let Γ be a discrete group. The group ring RΓ [25] consists of finitely
supported functions f : Γ→ R which we shall write as f =

∑
s∈Γ fss, where fs ∈ R

is zero except for finitely many s ∈ Γ. The addition and multiplication in RΓ are
given by∑

s∈Γ

fss+
∑
s∈Γ

gss =
∑
s∈Γ

(fs + gs)s,
(∑
s∈Γ

fss
)(∑

t∈Γ

gtt
)

=
∑
s,t∈Γ

fsgt(st).

Now assume that Γ is nonamenable, and that R is an integral domain. Denote by
K the fractional field of R. Then we have the group rings RΓ and KΓ. Bartholdi
showed that for some suitable n ∈ N there is an injective map (KΓ)n+1 → (KΓ)n of
KΓ-modules [3]. Multiplying by a suitable element of R, we get an injective map
α : (RΓ)n+1 → (RΓ)n of RΓ-modules, and thus an exact sequence

0→ (RΓ)n+1 α→ (RΓ)n → coker(α)→ 0

of finitely presented RΓ-modules. For any Sylvester module rank function dim of
RΓ, we have

dim((RΓ)n) = n < dim((RΓ)n+1) + dim(coker(α)).

3. Bivariant Sylvester Module Rank Functions

Let R be a unital ring.

Definition 3.1. A bivariant Sylvester module rank function for R is an R≥0∪{+∞}-
valued function (M1,M2) 7→ dim(M1|M2) on the class of all pairs of R-modules
M1 ⊆M2 satisfying the following conditions:

(1) dim(M1|M2) is an isomorphism invariant.
(2) (Normalization) Setting dim(M) = dim(M|M) for all R-modules M, one has

dim(0) = 0 and dim(R) = 1.
(3) (Direct sum) For any R-modules M3 ⊆M4, one has

dim(M1 ⊕M3|M2 ⊕M4) = dim(M1|M2) + dim(M3|M4).



6 HANFENG LI

(4) (Continuity) dim(M1|M2) = supM′1
dim(M′1|M2) for M′1 ranging over all

finitely generated R-submodules of M1.
(5) (Continuity) When M1 is finitely generated, dim(M1|M2) = infM′2 dim(M1|M′2)

for M′2 ranging over all finitely generatedR-submodules of M2 containing M1.
(6) (Additivity) dim(M2) = dim(M1|M2) + dim(M2/M1).

Example 3.2. The first bivariant Sylvester module rank function was constructed
in [18] for the group ring RΓ of any sofic group Γ, when a normalized length function
L for R (see Definition 4.1 below) is given. We recall the construction here. The
group Γ is sofic [13, 26, 31] if there is a collection of maps Σ = {σj : j ∈ J} over a
directed set J with each σj being a map (not necessarily a group homomorphism)
from Γ to the permutation group of a nonempty finite set Xj such that

(1) for any s, t ∈ Γ, one has limj→∞
1
|Xj | |{x ∈ Xj : σj,sσj,t(x) = σj,st(x)}| = 1,

(2) for any distinct s, t ∈ Γ, one has limj→∞
1
|Xj | |{x ∈ Xj : σj,s(x) 6= σj,t(x)}| =

1,
(3) limj→∞ |Xj| =∞.

Fix Σ and fix an ultrafilter ω on J such that ω is free in the sense that for any j ∈ J ,
the set {i ∈ J : i ≥ j} is in ω. Let M1 ⊆ M2 be RΓ-modules. Denote by F(Γ) the
set of all finite subsets of Γ, and by F (M) the set of finitely generated R-submodules
of any RΓ-module M. For any F ∈ F(Γ), A ∈ F (M1), B ∈ F (M2), and j ∈ J ,

denote by M (B, F, σj) the R-submodule of M
Xj

2 generated by δxb− δσj,s(x)(sb) for

all x ∈ Xj, s ∈ F and b ∈ B, and denote by M (A ,B, F, σj) the image of A Xj

under the quotient map M
Xj

2 →M
Xj

2 /M (B, F, σj). Define [18, Definition 3.1]

dim(M1|M2) := sup
A ∈F (M1)

inf
B∈F (M2)

inf
F∈F(Γ)

lim
j→ω

L(M (A ,B, F, σj))

|Xj|
.

Then dim(·|·) is a bivariant Sylvester module rank function for RΓ [18, Theorem
1.1, Corollary 3.2, Proposition 3.4, Proposition 3.5]. For connections of this bivari-
ant Sylvester module rank function to dynamical invariants mean dimension and
entropy, see [18, 19]. If s ∈ Γ has infinite order, then dim(RΓ(s − 1)|RΓ) = 1
and dim(RΓ/RΓ(s − 1)) = 0 [18, Example 6.3]. In particular, when Γ is the free
group F2 with two generators s and t, RF2 has a free RΓ-submodule with generators
s − 1 and t − 1 [25, Corollary 10.3.7.(iv)], and hence RF2/RF2(s − 1) contains an
RF2-submodule isomorphic to RF2 while dim(RF2/RF2(s− 1)) = 0.

For any bivariant Sylvester module rank function dim(·|·) for R, clearly M 7→
dim(M) for finitely presented R-modules M is a Sylvester module rank function for
R.

The goal of this section is to prove the following two results.

Theorem 3.3. Every Sylvester module rank function for R extends uniquely to a
bivariant Sylvester module rank function for R.
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Theorem 3.4. For any bivariant Sylvester module rank function dim(·|·) for R and
any R-modules M1 ⊆M2 ⊆M3, we have

dim(M2|M3) = dim(M1|M3) + dim(M2/M1|M3/M1).

From [18, Lemma 7.7] we have the following lemma, which gives the uniqueness
part of Theorem 3.3.

Lemma 3.5. Let dim1(·|·) and dim2(·|·) be bivariant Sylvester module rank functions
for R. If dim1(M) = dim2(M) for all finitely presented R-modules M, then dim1 =
dim2.

Let dim(·) be a Sylvester module rank function for R. We shall extend it step by
step to a bivariant Sylvester module rank function for R.

Lemma 3.6. Let M1 and M2 be finitely presented R-modules such that M1 is a
quotient module of M2. Then dim(M2) ≥ dim(M1).

Proof. Let α : M2 →M1 be a surjective map. Then ker(α) is finitely generated [16,
Proposition 4.26]. Thus we have an exact sequence

Rn →M2 →M1 → 0

of finitely presented R-modules for some suitable n ∈ N. Therefore dim(M2) ≥
dim(M1). �

The following lemma is [22, Lemma 2], which is a strengthened version of Schanuel’s
lemma.

Lemma 3.7. Let M1 ⊆ M2 and M3 ⊆ M4 be R-modules such that M2,M4 are
projective and M2/M1

∼= M4/M3. Then there is an isomorphism α : M2 ⊕M4 →
M2 ⊕M4 such that (M1 ⊕M4)α = M2 ⊕M3.

Lemma 3.8. Let M be a finitely generated R-module. Write M as M2/M1 for
some finitely generated projective R-module M2 and some R-submodule M1 of M2.
Then infM′1 dim(M2/M

′
1), where M′1 runs over finitely generated R-submodules of

M1, does not depend on the choice of the representation of M as M2/M1. Thus
dim(M) := infM′1 dim(M2/M

′
1) = limM′1↗M1

dim(M2/M
′
1) (where the set of finitely

generated R-submodules of M1 is ordered by inclusion) is well defined, is equal to
infM′ dim(M′) for M′ ranging over all finitely presented R-modules which admit M

as a quotient module, and extends dim for finitely presented R-modules.

Proof. Note first that if M′1 ⊆M′′1 are finitely generated R-submodules of M1, then
M2/M

′
1 and M2/M

′′
1 are finitely presented R-modules and M2/M

′′
1 is a quotient

module of M2/M
′
1. Thus by Lemma 3.6 we have dim(M2/M

′
1) ≥ dim(M2/M

′′
1).

Suppose that we also have M = M4/M3 for some finitely generated projective R-
module M4. By Lemma 3.7 we have an isomorphism α : M2⊕M4 →M2⊕M4 such
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that (M1 ⊕M4)α = M2 ⊕M3. Let M′1 and M′3 be finitely generated R-submodules
of M1 and M3 respectively. Then

(M′1 ⊕M4) + (M2 ⊕M′3)α−1 = M′′1 ⊕M4

for some finitely generated R-submodule M′′1 of M2. Since M′1 ⊕M4 ⊆M′′1 ⊕M4 ⊆
M1 ⊕M4, we have M′1 ⊆M′′1 ⊆M1. Similarly, we have

(M′1 ⊕M4)α + (M2 ⊕M′3) = M2 ⊕M′′3

for some finitely generated R-submodule M′′3 of M3 containing M′3. Clearly (M′′1 ⊕
M4)α = M2 ⊕M′′3. Therefore α induces an isomorphism M2/M

′′
1 →M4/M

′′
3. From

the first paragraph of the proof we then have dim(M2/M
′
1) ≥ dim(M2/M

′′
1) =

dim(M4/M
′′
3) and dim(M4/M

′
3) ≥ dim(M4/M

′′
3) = dim(M2/M

′′
1). It follows that

infM′1 dim(M2/M
′
1) = infM′3 dim(M4/M

′
3).

Now it is straightforward to prove the rest of the statements of the lemma. �

The following lemma is obvious.

Lemma 3.9. Let M be a finitely generated R-module and let M′ be a quotient module
of M. Then dim(M) ≥ dim(M′).

For any finitely generated R-modules M1 ⊆M2, we define

dim(M1|M2) := dim(M2)− dim(M2/M1) ≥ 0.

Lemma 3.10. Let M1 ⊆M2 ⊆M3 be finitely generated R-modules. Then

dim(M1|M2) ≥ dim(M1|M3).

Proof. Take finitely generated free R-modules N2 ⊆ N3 and a surjective map α :
N3 → M3 with (N2)α = M2. Denote by N1 the preimage of M1 in N3. Note that
N1 = ker(α) + (N1 ∩N2).

Let ε > 0. Take finitely generated R-submodules N′1 and W2 of N1 and ker(α)∩N2

respectively such that

dim(N3/N
′
1)− dim(M3/M1), dim(N2/W2)− dim(M2) < ε.

Since N1 = ker(α) + (N1 ∩ N2), enlarging N′1 if necessary, we may assume that
N′1 = W + N′12 for some finitely generated R-submodules W and N′12 of ker(α) and
N1 ∩N2 respectively such that W2 ⊆W,N′12.

Consider the surjective map β : N3/W⊕N2/N
′
12 → N3/N

′
1 sending (x+W, y+N′12)

to x− y+N′1. Also consider the map γ : N2/W2 → N3/W⊕N2/N
′
12 sending z+W2

to (z + W, z + N′12). Clearly γβ = 0. Since W + N′12 = N′1, it is easy to see that the
sequence

N2/W2
γ→ N3/W⊕N2/N

′
12

β→ N3/N
′
1 → 0

of finitely presented R-modules is exact. Thus

dim(M3) + dim(M2/M1) ≤ dim(N3/W) + dim(N2/N
′
12)
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= dim(N3/W⊕N2/N
′
12)

≤ dim(N2/W2) + dim(N3/N
′
1)

≤ dim(M2) + dim(M3/M1) + 2ε.

It follows that

dim(M3) + dim(M2/M1) ≤ dim(M2) + dim(M3/M1),

and hence dim(M1|M3) ≤ dim(M1|M2). �

Let M2 be an R-module and M1 a finitely generated R-submodule of M2. We
define

dim(M1|M2) := inf
M′2

dim(M1|M′2) = lim
M′2↗M2

dim(M1|M′2)

for M′2 ranging over finitely generated R-submodules of M2 containing M1 ordered
by inclusion. By Lemma 3.10 it coincides with the earlier definition when both
M1 and M2 are finitely generated. The following lemma is a direct consequence of
Lemma 3.9.

Lemma 3.11. Let M1 ⊆M2 ⊆M3 be R-modules such that M1 and M2 are finitely
generated. Then dim(M1|M3) ≤ dim(M2|M3).

Let M1 ⊆M2 be R-modules. We define

dim(M1|M2) := sup
M′1

dim(M′1|M2) = lim
M′1↗M1

dim(M′1|M2)

for M′1 ranging over finitely generated R-submodules of M1 ordered by inclusion.
By Lemma 3.11 this extends the earlier definition when M1 is finitely generated.
We also define

dim(M) := dim(M|M)

for all R-modules M. It coincides with the earlier definition when M is finitely
generated.

Lemma 3.12. Let M1 ⊆M2 and M3 ⊆M4 be R-modules. Then

dim(M1 ⊕M3|M2 ⊕M4) = dim(M1|M2) + dim(M3|M4).

Proof. Let M
]
1 and M

]
2 be finitely generated R-modules. For j = 1, 2, write M

]
j as

M[
j/M

∗
j for some finitely generated free R-module M[

j and some R-submodule M∗j
of M[

j. Then M
]
1 ⊕M

]
2 is isomorphic to (M[

1 ⊕M[
2)/(M∗1 ⊕M∗2). We have

dim(M]
1 ⊕M

]
2) = lim

M′↗(M∗1⊕M∗2)
dim

(
(M[

1 ⊕M[
2)/M′

)
(1)

= lim
M′1↗M∗1,M

′
2↗M∗2

dim
(
(M[

1 ⊕M[
2)/(M′1 ⊕M′2)

)
= lim

M′1↗M∗1,M
′
2↗M∗2

dim
(
(M[

1/M
′
1)⊕ (M[

2/M
′
2)
)
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= lim
M′1↗M∗1,M

′
2↗M∗2

(
dim(M[

1/M
′
1) + dim(M[

2/M
′
2)
)

= dim(M]
1) + dim(M]

2),

where M′ (resp. M′j) ranges over finitely generated R-submodules of M∗1⊕M∗2 (resp.
M∗j) ordered by inclusion, and the 4th equality comes from (2) of Definition 2.1.

Now consider the case M1 ⊆M2 and M3 ⊆M4 are finitely generated R-modules.
We have

dim(M1 ⊕M3|M2 ⊕M4) = dim(M2 ⊕M4)− dim
(
(M2 ⊕M4)/(M1 ⊕M3)

)
= dim(M2 ⊕M4)− dim

(
(M2/M1)⊕ (M4/M3)

)
(1)
= dim(M2) + dim(M4)− dim(M2/M1)− dim(M4/M3)

= dim(M1|M2) + dim(M3|M4).

Next consider the case M1 and M3 are finitely generated. We have

dim(M1 ⊕M3|M2 ⊕M4) = lim
M′↗(M2⊕M4)

dim(M1 ⊕M3|M′)

= lim
M′2↗M2,M′4↗M4

dim(M1 ⊕M3|M′2 ⊕M′4)

= lim
M′2↗M2,M′4↗M4

(
dim(M1|M′2) + dim(M3|M′4)

)
= dim(M1|M2) + dim(M3|M4),

where M′ (resp. M′j) ranges over finitely generated R-submodules of M2⊕M4 (resp.
Mj) containing M1 ⊕M3 (resp. Mj−1) ordered by inclusion.

Finally consider arbitrary R-modules M1 ⊆M2 and M3 ⊆M4. We have

dim(M1 ⊕M3|M2 ⊕M4) = lim
M′↗(M1⊕M3)

dim(M′|M2 ⊕M4)

= lim
M′1↗M1,M′3↗M3

dim(M′1 ⊕M′3|M2 ⊕M4)

= lim
M′1↗M1,M′3↗M3

(
dim(M′1|M2) + dim(M′3|M4)

)
= dim(M1|M2) + dim(M3|M4),

where M′ (resp. M′j) ranges over finitely generated R-submodules of M1⊕M3 (resp.
Mj) ordered by inclusion. �

So far clearly dim(·|·) satisfies all the conditions in Definition 3.1 except that the
additivity has not been verified yet. In Lemma 3.22 below we shall actually show
that dim(·|·) satisfies the strong additivity in Theorem 3.4, which then proves both
Theorems 3.3 and 3.4.

Lemma 3.13. For any R-modules M1 ⊆M2 ⊆M3, if M1 is finitely generated, then

dim(M2|M3) = dim(M1|M3) + dim(M2/M1|M3/M1).



BIVARIANT AND EXTENDED SYLVESTER RANK FUNCTIONS 11

Proof. If M1,M2,M3 are all finitely generated, then

dim(M2|M3) = dim(M3)− dim(M3/M2)

= dim(M3)− dim(M3/M1) + dim(M3/M1)− dim(M3/M2)

= dim(M1|M3) + dim(M2/M1|M3/M1).

Next when M1 and M2 are finitely generated, we have

dim(M2|M3) = lim
M′3↗M3

dim(M2|M′3)

= lim
M′3↗M3

dim(M1|M′3) + lim
M′3↗M3

dim(M2/M1|M′3/M1)

= dim(M1|M3) + dim(M2/M1|M3/M1),

where M′3 ranges over finitely generated R-submodules of M3 containing M2 ordered
by inclusion.

Now consider the case M1 is finitely generated. We have

dim(M2|M3) = sup
M′2

dim(M′2|M3)

= dim(M1|M3) + sup
M′2

dim(M′2/M1|M3/M1)

= dim(M1|M3) + dim(M2/M1|M3/M1),

where M′2 ranges over finitely generated R-submodules of M2 containing M1. �

Lemma 3.14. For any R-modules M1 ⊆M2, if M2 is finitely generated, then

dim(M2) = dim(M1|M2) + dim(M2/M1).

Proof. Take a surjective map α : Rm → M2 for some m ∈ N. Denote by M∗1 the
preimage of M1 in Rm. Let ε > 0. Take a finitely generated R-submodule M′3 of
M∗1 with

dim(Rm/M′3) ≤ dim(M2/M1) + ε.(2)

Also take a finitely generated R-submodule M′1 of M1 containing (M′3)α such that

dim(M1|M2) ≤ dim(M′1|M2) + ε.(3)

By Lemma 3.13 we have

dim(M2) = dim(M′1|M2) + dim(M2/M
′
1),(4)

and

dim(M1|M2) = dim(M′1|M2) + dim(M1/M
′
1|M2/M

′
1).(5)

Then

dim(M2)
(4)
= dim(M′1|M2) + dim(M2/M

′
1)

≥ dim(M′1|M2) + dim(M2/M1)
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(3)

≥ dim(M1|M2)− ε+ dim(M2/M1),

where in the first inequality we apply Lemma 3.9. We also have

dim(M1|M2) + dim(M2/M1)
(2)

≥ dim(M1|M2) + dim(Rm/M′3)− ε
≥ dim(M1|M2) + dim(M2/M

′
1)− ε

(5)
= dim(M′1|M2) + dim(M1/M

′
1|M2/M

′
1)

+ dim(M2/M
′
1)− ε

(4)
= dim(M2) + dim(M1/M

′
1|M2/M

′
1)− ε

≥ dim(M2)− ε,
where in the second inequality we apply Lemma 3.9 again. Letting ε→ 0 we obtain
the desired equality. �

Lemma 3.15. For any R-modules M1 ⊆M2 ⊆M3, if M3 is finitely generated, then

dim(M2|M3) = dim(M1|M3) + dim(M2/M1|M3/M1).

Proof. By Lemma 3.14 we have

dim(M1|M3) + dim(M2/M1|M3/M1)

= dim(M3)− dim(M3/M1) + dim(M3/M1)− dim(M3/M2)

= dim(M3)− dim(M3/M2)

= dim(M2|M3).

�

Lemma 3.16. Let M1 ⊆ M2 ⊆ M3 ⊆ M4 be R-modules such that M2 is finitely
generated. Then

dim(M1|M3)− dim(M1|M4) ≤ dim(M2|M3)− dim(M2|M4).(6)

Proof. Since M2 is finitely generated, for j = 3, 4 by Lemma 3.11 we have

0 ≤ dim(M1|Mj) ≤ dim(M2|Mj) ≤ dim(M2) < +∞.
Thus all the four dimensions appearing in (6) are finite.

Consider first the case M1 and M2 are both finitely generated. By Lemma 3.13
we have

dim(M2|M3)− dim(M1|M3) = dim(M2/M1|M3/M1)

≥ dim(M2/M1|M4/M1)

= dim(M2|M4)− dim(M1|M4),

and hence

dim(M1|M3)− dim(M1|M4) ≤ dim(M2|M3)− dim(M2|M4).
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Taking limits over finitely generated R-submodules of M1, we see that the above
inequality also holds when M2 is finitely generated. �

Proposition 3.17. For any R-modules M1 ⊆M2 ⊆M3, if M2 is finitely generated,
then

dim(M1|M3) = inf
M′

dim(M1|M′),

where M′ ranges over finitely generated R-submodules of M3 containing M2.

Proof. Let ε > 0. Take a finitely generated R-submodule M′ of M3 containing M2

such that
dim(M2|M′) ≤ dim(M2|M3) + ε.

By Lemma 3.16 we have

dim(M1|M′)− dim(M1|M3) ≤ dim(M2|M′)− dim(M2|M3) ≤ ε.

�

Lemma 3.18. For any exact sequence

M1
α→M2 →M3 → 0

of finitely generated R-modules, we have dim(M2) ≤ dim(M1) + dim(M3).

Proof. We have

dim(M2) = dim(im(α)|M2) + dim(M3)

≤ dim(im(α)) + dim(M3)

≤ dim(M1) + dim(M3),

where in the last inequality we apply Lemma 3.9. �

Proposition 3.19. For any R-modules M1,M2 ⊆M, we have

dim(M1 + M2|M) + dim(M1 ∩M2|M) ≤ dim(M1|M) + dim(M2|M).(7)

Proof. Note that

dim(M1+M2|M)+dim(M1∩M2|M) = sup
M

]
1,M

]
2

(
dim(M]

1+M
]
2|M)+dim(M]

1∩M
]
2|M)

)
and

dim(M1|M) + dim(M2|M) = sup
M

]
1,M

]
2

(
dim(M]

1|M) + dim(M]
2|M)

)
for M]

1 and M
]
2 ranging over finitely generated R-submodules of M1 and M2 respec-

tively. Thus it suffices to prove (7) when M1 and M2 are finitely generated. Then
by Proposition 3.17 we may also assume that M is finitely generated.

By Lemma 3.14 we have

dim(M1 + M2|M) + dim(M1 ∩M2|M)

= dim(M)− dim(M/(M1 + M2)) + dim(M)− dim(M/(M1 ∩M2)),
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and

dim(M1|M) + dim(M2|M) = dim(M)− dim(M/M1) + dim(M)− dim(M/M2).

Thus it suffices to show

dim(M/M1) + dim(M/M2) ≤ dim(M/(M1 + M2)) + dim(M/(M1 ∩M2)).

Note that we have the exact sequence

0→M/(M1 ∩M2)
α−→M/M1 ⊕M/M2

β−→M/(M1 + M2)→ 0,

where (z+M1∩M2)α = (z+M1, z+M2) and (x+M1, y+M2)β = x−y+M1 +M2.
Then the proposition follows from Lemmas 3.12 and 3.18. �

Proposition 3.20. For any R-modules M1 ⊆M2 and M, if α is a map M2 →M,
then

dim((M1)α|(M2)α) ≤ dim(M1|M2).

Proof. Clearly it suffices to consider the case M1 and M2 are both finitely gen-
erated. Then dim(ker(α)|M2) ≤ dim(M2) < +∞. Applying Proposition 3.19 to
ker(α),M1 ⊆M2 and using Lemma 3.15, we have

dim(M1|M2) + dim(ker(α)|M2) ≥ dim(M1 + ker(α)|M2)

= dim(ker(α)|M2) + dim((M1)α|(M2)α),

and hence dim(M1|M2) ≥ dim((M1)α|(M2)α). �

Lemma 3.21. For any R-modules M1 ⊆M2 ⊆M3, we have

dim(M2|M3) ≤ dim(M1|M3) + dim(M2/M1|M3/M1).(8)

Proof. Denote by α the quotient map M3 →M3/M1.
Let M′2 be a finitely generated R-submodule of M2 and let M′3 be a finitely

generated R-submodule of M3 containing M′2. Put M∗ = M′3 ∩M1 = M′3 ∩ ker(α).
Let ε > 0. By Proposition 3.17 we can find a finitely generated R-submodule M′4

of M3 containing M′3 such that

dim(M∗|M′4) ≤ dim(M∗|M3) + ε.(9)

We have

dim(M′2|M3) ≤ dim(M′2|M′4)

≤ dim(M′2 + M∗|M′4)

= dim(M∗|M′4) + dim((M′2 + M∗)/M∗|M′4/M∗)
≤ dim(M∗|M′4) + dim((M′2 + M∗)/M∗|M′3/M∗)
= dim(M∗|M′4) + dim((M′2)α|(M′3)α)

(9)

≤ dim(M∗|M3) + ε+ dim((M′2)α|(M′3)α)
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≤ dim(M1|M3) + ε+ dim((M′2)α|(M′3)α),

where in the first equality we apply Lemma 3.15. Letting ε→ 0, we get

dim(M′2|M3) ≤ dim(M1|M3) + dim((M′2)α|(M′3)α).

Taking infimum over M′3, we obtain

dim(M′2|M3) ≤ dim(M1|M3) + dim((M′2)α|M3/M1).

Taking supremum over M′2, we get (8). �

Lemma 3.22. For any R-modules M1 ⊆M2 ⊆M3, we have

dim(M2|M3) = dim(M1|M3) + dim(M2/M1|M3/M1).

Proof. By Lemma 3.21 it suffices to show

dim(M2|M3) ≥ dim(M1|M3) + dim(M2/M1|M3/M1).(10)

Let M′1 be a finitely generated R-submodule of M1. By Proposition 3.20 we have

dim(M2/M
′
1|M3/M

′
1) ≥ dim(M2/M1|M3/M1).

From Lemma 3.13 we get

dim(M2|M3) = dim(M′1|M3) + dim(M2/M
′
1|M3/M

′
1)

≥ dim(M′1|M3) + dim(M2/M1|M3/M1).

Taking supremum over M′1, we obtain (10). �

This finishes the proof of Theorems 3.3 and 3.4. In particular, we conclude that
Propositions 3.17, 3.19 and 3.20 hold for any bivariant Sylvester module rank func-
tion. In the following proposition we list a few basic properties of bivariant Sylvester
module rank functions which are easy consequences of Definition 3.1 and will be used
frequently.

Proposition 3.23. Let dim(·|·) be a bivariant Sylvester module rank function for
R. The following hold:

(1) dim(M1|M2) is increasing in M1, i.e. for any R-modules M1 ⊆ M′1 ⊆ M2,
one has dim(M1|M2) ≤ dim(M′1|M2).

(2) dim(M1|M2) is decreasing in M2, i.e. for any R-modules M1 ⊆ M2 ⊆ M′2,
one has dim(M1|M2) ≥ dim(M1|M′2).

(3) If M1 is generated by n elements for some n ∈ N, then dim(M1|M2) ≤ n.

We record the following result which will be used in the proof of Theorem 8.2.

Proposition 3.24. Let dim(·|·) be a bivariant Sylvester module rank function for
R. Let M1 ⊆M2 ⊆M3 ⊆M4 be R-modules with dim(M2|M3) < +∞. Then

dim(M1|M3)− dim(M1|M4) ≤ dim(M2|M3)− dim(M2|M4).(11)

In particular, if dim(M2|M3) = dim(M2|M4) < +∞, then dim(M1|M3) = dim(M1|M4).
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Proof. From Theorem 3.4 we have

dim(M2|M3)− dim(M1|M3) = dim(M2/M1|M3/M1)

≥ dim(M2/M1|M4/M1)

= dim(M2|M4)− dim(M1|M4),

and hence (11) holds. If dim(M2|M3) = dim(M2|M4) < +∞, then we get dim(M1|M3) ≤
dim(M1|M4), and hence dim(M1|M3) = dim(M1|M4). �

4. Length Functions

Let R be a unital ring. In this section we study the relation between length
functions and Sylvester rank functions.

The following is the definition of length function introduced by Northcott and
Reufel in [24]. In fact they consider the general case where L(R) could take any
value in R≥0∪{+∞}. For relation with the Sylvester rank functions, we require the
normalization L(R) = 1 here.

Definition 4.1. A normalized length function for R is an R≥0∪{+∞}-valued func-
tion M 7→ L(M) on the class of all R-modules satisfying the following properties:

(1) (Normalization) L(0) = 0 and L(R) = 1.
(2) (Continuity) L(M) = supM′ L(M′) for M′ ranging over all finitely generated

R-submodules of M.
(3) (Additivity) For any short exact sequence 0 → M1 → M2 → M3 → 0 of

R-modules, one has L(M2) = L(M1) + L(M3).

It follows from the additivity and normalization conditions that each normalized
length function is an isomorphism invariant. Clearly the restriction of each nor-
malized length function to the class of finitely presented R-modules is a Sylvester
module rank function. Furthermore, if L is a normalized length function for R, then
dim(M1|M2) := L(M1) for R-modules M1 ⊆ M2 is a bivariant Sylvester module
rank function for R.

Proposition 4.2. Let dim(·|·) be a bivariant Sylvester module rank function for R.
The following are equivalent.

(1) dim(·) is a normalized length function.
(2) For any R-modules M1 ⊆M2 one has dim(M1|M2) = dim(M1).
(3) For any exact sequence

0→M1 →M2 →M3 → 0

of R-modules such that M2 and M3 are finitely presented (then M1 must be
finitely generated by [16, Proposition 4.26]), one has dim(M2) = dim(M1) +
dim(M3).
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Proof. (2)⇒(1)⇒(3) is trivial.
(3)⇒(2): Assume that (3) holds. Let M1 ⊆M2 be finitely generated R-modules.

Take a surjective map α : Rm → M2 for some m ∈ N. Take a finitely generated
R-submodule M∗1 of Rm with (M∗1)α = M1. Let M∗ be a finitely generated R-
submodule of ker(α). Then we have the exact sequence

0→ (M∗ + M∗1)/M∗ → Rm/M∗ → Rm/(M∗ + M∗1)→ 0,

and both Rm/M∗ and Rm/(M∗ + M∗1) are finitely presented. Thus

dim(Rm/M∗) = dim((M∗ + M∗1)/M∗) + dim(Rm/(M∗ + M∗1))

by (3). Note that M1 is a quotient module of (M∗ + M∗1)/M∗. Thus dim((M∗ +
M∗1)/M∗) ≥ dim(M1), and hence

dim(Rm/M∗)− dim(Rm/(M∗ + M∗1)) ≥ dim(M1).

Then we have

dim(M1) ≥ dim(M1|M2)

= dim(M2)− dim(M2/M1)

= lim
M∗↗ker(α)

dim(Rm/M∗)− lim
M∗↗ker(α)

dim(Rm/(M∗ + M∗1))

≥ dim(M1),

where in the third line M∗ ranges over finitely generated R-submodules of ker(α)
ordered by inclusion. It follows that

dim(M1) = dim(M1|M2).

Taking infimum over finitely generated R-submodules of M2 containing M1, we see
that the above equality holds whenever M1 is finitely generated. For any R-modules
M1 ⊆M2, we get

dim(M1) = dim(M1|M1) = sup
M′1

dim(M′1|M1) = sup
M′1

dim(M′1|M2) = dim(M1|M2),

where M′1 ranges over finitely generated R-submodules of M1. �

From Theorem 3.3, Lemma 3.8 and Proposition 4.2 we obtain the following recent
result of Virili.

Corollary 4.3 ([30]). Let dim be a Sylvester module rank function for R. Then
dim extends to a normalized length function for R if and only if for any surjective
map α : M1 → M2 of finitely presented R-modules one has dim(M1) − dim(M2) =
infM dim(M) for M ranging over finitely presented R-modules admitting ker(α) as a
quotient module. Furthermore, in such case the extension is unique.
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If R is von Neumann regular, i.e. for any x ∈ R there is some y ∈ R with xyx = x,
then every finitely presented R-module is projective [12] [17, Exercise 6.19], and
hence every bivariant Sylvester module rank function for R is a normalized length
function.

5. Direct Limits

In this section we prove Proposition 5.2, which gives the continuity of bivariant
Sylvester rank functions with respect to direct limits.

Let R be a unital ring and let dim(·|·) be a bivariant Sylvester module rank
function for R.

Proposition 5.1. Let M1 ⊆ M2 be R-modules such that M1 is finitely generated.
For each R-submodule M of M2 denote by γM the quotient map M2 →M2/M. Then
for any R-submodule M of M2, we have

dim((M1)γM|M2/M) = inf
M′

dim((M1)γM′|M2/M
′)

for M′ ranging over finitely generated R-submodules of M.

Proof. For each R-submodule M′ of M, since γM factors through γM′ , by Proposi-
tion 3.20 we have

dim((M1)γM|M2/M) ≤ dim((M1)γM′|M2/M
′).

Let ε > 0. Take a finitely generated R-submodule M† of M2/M containing
(M1)γM such that

dim((M1)γM|M†) ≤ dim((M1)γM|M2/M) + ε.

Take a finitely generated R-submodule M]
2 of M2 containing M1 such that (M]

2)γM =

M†. Since dim(M]
2 ∩M|M]

2) ≤ dim(M]
2) < +∞, we can find a finitely generated

R-submodule M′ of M]
2 ∩M such that

dim(M]
2 ∩M|M]

2) ≤ dim(M′|M]
2) + ε.

Then by Theorem 3.4 we have

dim((M]
2 ∩M)γM′|(M]

2)γM′) = dim(M]
2 ∩M|M]

2)− dim(M′|M]
2) ≤ ε.

Now we have

dim((M1)γM′|M2/M
′)

≤ dim((M1)γM′|(M]
2)γM′)

≤ dim((M1 + (M]
2 ∩M))γM′|(M]

2)γM′)

= dim((M]
2 ∩M)γM′ |(M]

2)γM′) + dim((M1)γ
M

]
2∩M
|(M]

2)γ
M

]
2∩M

)

= dim((M]
2 ∩M)γM′ |(M]

2)γM′) + dim((M1)γM|(M]
2)γM)

≤ dim((M1)γM|M2/M) + 2ε,
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where in the first equality we apply Theorem 3.4 again. �

By a direct system of R-modules we mean a family {Mj}j∈J of R-modules indexed
by a directed set J and a map βjk : Mj → Mk for all j ≤ k such that βjj = idMj

for all j and βijβjk = βik for all i ≤ j ≤ k. For any direct system (Mj, βjk) of
R-modules over a directed set J , one has the direct limit lim−→Mk [27, Proposition

B-7.7]. For an R-module M, we say that maps αj : M → Mj for each j ∈ J and
α∞ : M→ lim−→Mk are compatible if αjβjk = αk for all j ≤ k and αjβj = α∞ for all

j ∈ J , where βj is the canonical map Mj → lim−→Mk.

Proposition 5.2. Let (Mj, βjk) be a direct system of R-modules over a directed set
J with direct limit M∞. Let M be an R-module with compatible maps αj : M→Mj

and α∞ : M→M∞. Suppose that dim(im(αi)|Mi) < +∞ for some i ∈ J . Then

dim(im(α∞)|M∞) = lim
j→∞

dim(im(αj)|Mj) = inf
j∈J

dim(im(αj)|Mj).

Proof. From Proposition 3.20 we know that dim(im(αj)|Mj) decreases. Thus

dim(im(α∞)|M∞) ≤ lim
j→∞

dim(im(αj)|Mj) = inf
j∈J

dim(im(αj)|Mj).

Let ε > 0. Take a finitely generated R-submodule M] of M with

dim(im(αi)|Mi) ≤ dim((M])αi|Mi) + ε.(12)

Denote by βj the map Mj →M∞, and for each submodule M† of Mj denote by γM†
the quotient map Mj →Mj/M

†. Take j ∈ J with j ≥ i such that

dim((M])α∞|im(βj)) ≤ dim((M])α∞|M∞) + ε.

Note that

dim(((M])αj)γker(βj)|Mj/ ker(βj)) = dim((M])α∞|im(βj)) ≤ dim((M])α∞|M∞) + ε.

By Proposition 5.1 we can find a finitely generated R-submodule M† of ker(βj) with

dim(((M])αj)γM†|Mj/M
†) ≤ dim(((M])αj)γker(βj)|Mj/ ker(βj)) + ε

≤ dim((M])α∞|M∞) + 2ε.

Take k ≥ j such that (M†)βjk = 0. Then βjk factors through γM† . Thus by
Proposition 3.20 we have

dim(((M])αj)βjk|im(βjk)) ≤ dim(((M])αj)γM†|Mj/M
†) ≤ dim((M])α∞|M∞) + 2ε,

and hence

dim((M])αk|Mk) ≤ dim((M])αk|im(βjk))

= dim(((M])αj)βjk|im(βjk))

≤ dim((M])α∞|M∞) + 2ε.
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Since βikγ(M])αk
factors through γ(M])αi

, by Proposition 3.20 and Theorem 3.4 we
have

dim((im(αi))βikγ(M])αk
|(Mi)βikγ(M])αk

) ≤ dim((im(αi))γ(M])(αi)|(Mi)γ(M])(αi))

= dim(im(αi)|Mi)− dim((M])αi|Mi)

(12)

≤ ε.

Now by Theorem 3.4 we have

dim(im(αk)|Mk) = dim((M])αk|Mk) + dim((im(αk))γ(M])αk
|(Mk)γ(M])αk

)

≤ dim((M])αk|Mk) + dim((im(αi))βikγ(M])αk
|(Mi)βikγ(M])αk

)

≤ dim((M])α∞|M∞) + 3ε

≤ dim(im(α∞)|M∞) + 3ε.

This means

inf
k∈J

dim(im(αk)|Mk) ≤ dim(im(α∞)|M∞) + 3ε.

Letting ε→ 0, we finish the proof. �

Note that for any R-modules M1 ⊆M2, the family {M1+M†} for M† ranging over
finitely generated R-submodules of M2 form a direct system naturally with direct
limit M2. The following consequence of Proposition 5.2 strengthens the continuity
condition (5) of Definition 3.1.

Corollary 5.3. Let M1 ⊆M2 be R-modules. Suppose that dim(M1|M1+M†) < +∞
for some finitely generated R-submodule M† of M2. Then

dim(M1|M2) = lim
M′2↗M2

dim(M1|M1 + M′2) = inf
M′2

dim(M1|M1 + M′2)

for M′2 ranging over finitely generated R-submodules of M2 ordered by inclusion.

Remark 5.4. The condition dim(im(αi)|Mi) < +∞ for some i ∈ J in Proposi-
tion 5.2 cannot be dropped. For example, take M =

⊕
n∈NR, J = N, Mj =

⊕
n≥j R

with the maps M → Mj and Mj → Mk for j ≤ k being natural projections.
Then M∞ = {0}, and hence dim(im(α∞)|M∞) = 0. But dim(im(αj)|Mj) =
dim(Mj|Mj) =∞ for all j ∈ N.

Also, the condition dim(M1|M1 + M†) < +∞ for some finitely generated R-
submodule M† of M2 in Corollary 5.3 cannot be dropped. Suppose that M∗1 ⊆ M∗2
are finitely generated R-modules with dim(M∗1) > 0 and dim(M∗1|M∗2) = 0 (see
Example 3.2 for such an example). Set M1 =

⊕
n∈N M

∗
1 and M2 =

⊕
n∈N M

∗
2. Then

dim(
m⊕
n=1

M∗1|M2) ≤ dim(
m⊕
n=1

M∗1|
m⊕
n=1

M∗2) =
m∑
n=1

dim(M∗1|M∗2) = 0
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for every m ∈ N. Since every finitely generated R-submodule of M1 is contained
in
⊕m

n=1 M
∗
1 for some m ∈ N, this shows that dim(M1|M2) = 0. For any finitely

generated R-submodule M′2 of M2, we have M′2 ⊆
⊕m

n=1 M
∗
2 for some m ∈ N. Thus

dim(M1|M1 + M′2) ≥ dim(M1|M1 +
m⊕
n=1

M∗2)

= dim(
⊕
n>m

M∗1) + dim(
m⊕
n=1

M∗1|
m⊕
n=1

M∗2)

= +∞.

6. Extended Sylvester Map Rank Functions

Let R be a unital ring. In this section we introduce extended Sylvester map
rank functions and show that they are in natural one-to-one correspondence with
bivariant Sylvester module rank functions.

Definition 6.1. An extended Sylvester map rank function for R is an R≥0∪{+∞}-
valued function rk on the class of all maps between R-modules satisfying the follow-
ing conditions:

(1) rk(0) = 0, rk(idR) = 1.
(2) rk(αβ) ≤ min(rk(α), rk(β)).

(3) rk(

ï
α

β

ò
) = rk(α) + rk(β).

(4) (Continuity) Let (Mj, βjk) be a direct system of R-modules over a directed
set J with direct limit M∞. Let M be an R-module with compatible maps
αj : Mj → M and α∞ : M∞ → M, i.e. βjkαk = αj for all j ≤ k and
βjα∞ = αj for all j ∈ J , where βj is the canonical map Mj →M∞. Then

rk(α∞) = lim
j→∞

rk(αj).

(5) (Continuity) Let (Mj, βjk) be a direct system of R-modules over a directed
set J with direct limit M∞. Let M be a finitely generated R-module with
compatible maps αj : M→Mj and α∞ : M→M∞. Then

rk(α∞) = lim
j→∞

rk(αj).

(6) (Additivity) For any map α : M1 →M2 between R-modules, one has

rk(idM2) = rk(α) + rk(idcoker(α)).

Theorem 6.2. There is a natural 1-1 correspondence between bivariant Sylvester
module rank functions for R and extended Sylvester map rank functions for R as
follows.
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(1) Let rk be an extended Sylvester map rank function for R. For any R-modules
M1 ⊆ M2, define dim(M1|M2) := rk(γM1⊆M2), where γM1⊆M2 denotes the
embedding map M1 ↪→ M2. Then dim(·|·) is a bivariant Sylvester module
rank function for R.

(2) Let dim(·|·) be a bivariant Sylvester module rank function for R. For any
map α : M1 → M2 of R-modules, define rk(α) := dim(im(α)|M2). Then rk
is an extended Sylvester map rank function for R.

Proof. (1) is trivial. To prove (2), let dim(·|·) be a bivariant Sylvester module rank
function for R and define rk as in (2). Conditions (2) and (5) of Definition 6.1 follow
easily from Propositions 3.20 and 5.2 respectively. Thus rk is an extended Sylvester
map rank function for R.

If we start with a bivariant Sylvester module rank function dim(·|·) for R, obtain
an extended Sylvester map rank function rk by (2), and then obtain a bivariant
Sylvester module rank function dim′(·|·) by (1) using rk, then clearly dim = dim′.

Now we start with an extended Sylvester map rank function rk, obtain a bi-
variant Sylvester module rank function dim(·|·) by (1), and then obtain an ex-
tended Sylvester map rank function rk′ by (2) using dim(·|·). We need to show that
rk(α) = rk′(α) for any map α : M1 →M2. Using condition (4) in Definition 6.1 we
may assume that M1 is finitely generated. Then using condition (5) in Definition 6.1
we may assume that M2 is also finitely generated. Note that from conditions (1),
(3) and (6) of Definition 6.1 we know that rk(idM), rk′(idM) < +∞ for all finitely
generated R-modules M. Then using condition (6) in Definition 6.1 we may assume
that M1 = M2 is finitely generated and α = idM2 . But rk(idM) = rk′(idM) for any
R-module M follows from the definition of rk′. �

From Theorem 6.2 and Lemma 3.5 we get immediately

Corollary 6.3. Let rk1 and rk2 be extended Sylvester map rank functions for R. If
rk1(idM) = rk2(idM) for all finitely presented R-modules M, then rk1 = rk2.

From Theorems 2.4, 3.3 and 6.2 we may identify Sylvester module rank functions,
Sylvester map rank functions, Sylvester matrix rank functions, bivariant Sylvester
module rank functions, and extended Sylvester map rank functions. We denote by
P(R) the set of all Sylvester rank functions for R. Via treating elements of P(R) as
Sylvester matrix rank functions equipped with the pointwise convergence topology,
P(R) becomes a compact Hausdorff convex subset of a locally convex topological
vector space.

For any maps α : M1 → M2 and β : M2 → M3 between R-modules, we denote
the induced map coker(α) → coker(αβ) by β/α. From Theorems 3.4 and 6.2 we
obtain

Corollary 6.4. Let rk be an extended Sylvester map rank function for R. For any
maps α : M1 →M2 and β : M2 →M3 between R-modules, we have

rk(β) = rk(αβ) + rk(β/α).
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Remark 6.5. In [20] Bingbing Liang pointed out that the bivariant Sylvester mod-
ule rank function for RΓ in Example 3.2 can be used to define a rank for maps
between RΓ-modules as in Theorem 6.2 and that this rank satisfies Corollary 6.4,
though no other properties for this rank were given.

The following consequence of Proposition 5.2 strengthens condition (5) in Defini-
tion 6.1.

Corollary 6.6. Let rk be an extended Sylvester map rank function for R. Let
(Mj, βjk) be a direct system of R-modules over a directed set J with direct limit M∞.
Let M be an R-module with compatible maps αj : M → Mj and α∞ : M → M∞.
Suppose that rk(αi) < +∞ for some i ∈ J . Then

rk(α∞) = lim
j→∞

rk(αj) = inf
j∈J

rk(αj).

The reader might have noticed that condition (4) in Definition 2.3 does not appear
in Definition 6.1. The next result shows that it is a consequence of the conditions
in Definition 6.1.

Corollary 6.7. Let rk be an extended Sylvester map rank function for R. For any
maps α : M1 →M3, β : M2 →M4 and γ : M1 →M4 between R-modules, we have

rk(

ï
α γ

β

ò
) ≥ rk(α) + rk(β).

Proof. Set θ =

ï
α γ

β

ò
: M1 ⊕ M2 → M3 ⊕ M4. Denote by ι the embedding

M2 → M1 ⊕ M2. Note that θ/ι : M1 → M3 ⊕ (M4/im(β)). Denote by p the
projection M3 ⊕ M4 → M4, and by q the projection M3 ⊕ (M4/im(β)) → M3.
Then ιθp = β and (θ/ι)q = α. From the condition (2) of Definition 6.1 we have
rk(ιθ) ≥ rk(ιθp) = rk(β) and rk(θ/ι) ≥ rk((θ/ι)q) = rk(α). Then from Corollary 6.4
we obtain

rk(θ) = rk(ιθ) + rk(θ/ι) ≥ rk(β) + rk(α).

�

7. Induced Rank Functions

In this section we discuss how one extended Sylvester map rank function for
one ring induces an extended Sylvester map rank function for another ring via a
bimodule.

Let S be a unital ring with an extended Sylvester map rank function rkS. Let R
be a unital ring and let SNR be an S-R-bimodule with 0 < rkS(idN) < +∞. For
any map α : M1 →M2 between R-modules, we define

f ∗N(rkS)(α) := rkS(idN ⊗R α)/rkS(idN).(13)
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Since the tensor functor N ⊗R · preserves direct limits [27, Theorem B-7.15], using
Corollary 6.6 it is easy to conclude that f ∗N(rkS) is an extended Sylvester map rank
function for R.

Let Q be a unital ring and RWQ an R-Q-bimodule. When 0 < f ∗N(rkS)(idW) =
rkS(idN⊗RW)/rkS(idN) < +∞, we can also define the extended Sylvester map rank
functions f ∗W(f ∗N(rkS)) and f ∗N⊗RW(rkS) for Q. Clearly we have

f ∗W(f ∗N(rkS)) = f ∗N⊗RW(rkS).

Next we consider a few special cases of this construction.
Let π be a unital ring homomorphism from R to S. Then we may apply the

above construction to SSR and every rkS ∈ P(S). Denoting f ∗
SSR

(rkS) by π∗(rkS),
we obtain a map π∗ : P(S)→ P(R). Explicitly, we have

π∗(rkS)(α) := rkS(idS ⊗R α)(14)

for any map α : M1 →M2 between R-modules. If we treat rkS as a Sylvester matrix
rank function for S, then clearly

π∗(rkS)(A) = rkS(π(A))(15)

for all rectangular matrices A over R. Thus π∗ is continuous and affine.
Conversely, suppose that rkR is an extended Sylvester map rank function for R,

and that π is a unital ring homomorphism from R to S such that 0 < rkR(idS) <
+∞. (A nontrivial example of this situation is given in Theorem 8.2 below.) Then
we can apply the above construction to RSS. In this case

f ∗
RSS

(rkR)(β) = rkR(β)/rkR(idS)(16)

for all maps β : N1 → N2 between S-modules.

Remark 7.1. When R and S are Morita equivalent unital rings, given Morita equiv-
alence bimodules RWS and SVR [16, Section 18], there is a natural homeomorphism
between P(R) and P(S) preserving the extremal points as follows. Note that since

SV is finitely generated projective and SV
n = SS ⊕ SV

′ for some n ∈ N and SV
′,

we have 0 < rkS(idV) < +∞ for any extended Sylvester map function rkS for S.
Thus the map f ∗V : P(S) → P(R) is defined and continuous. Similarly the map
f ∗W : P(R) → P(S) is defined and continuous. Then f ∗Wf

∗
V = f ∗V⊗RW = f ∗S is the

identity map on P(S). Similarly, f ∗Vf
∗
W is the identity map on P(R). Thus f ∗V and f ∗W

are homeomorphisms and are inverse to each other. Let rk ∈ P(S) be non-extremal.
Then rk = λ1rk1 + λ2rk2 for some distinct rk1, rk2 ∈ P(S) and λ1, λ2 > 0 with
λ1 + λ2 = 1. Note that

f ∗V(rk) =
λ1rk1(idV)

λ1rk1(idV) + λ2rk2(idV)
f ∗V(rk1) +

λ2rk2(idV)

λ1rk1(idV) + λ2rk2(idV)
f ∗V(rk2).

Thus f ∗V(rk) is not extremal.



BIVARIANT AND EXTENDED SYLVESTER RANK FUNCTIONS 25

8. Epimorphisms

In this section we study the map on Sylvester rank functions induced by epimor-
phisms.

Let R and S be unital rings. A unital ring homomorphism π : R → S is called
an epimorphism if for any unital ring Q and any unital ring homomorphisms α, β :
S → Q, if π ◦ α = π ◦ β, then α = β. For example, if S is a division ring and im(π)
generates S as a division ring, then π is an epimorphism. We refer the reader to [29,
Section XI.1] for basic facts about epimorphisms.

Theorem 8.1. Let π : R → S be an epimorphism between unital rings. Let rkS
be an extended Sylvester map rank function for S. Denote by rkR the extended
Sylvester map rank function for R defined via (14). For any map α : N1 → N2

between S-modules, we have

rkS(α) = rkR(α).(17)

In particular, the map π∗ : P(S)→ P(R) defined by (14) and (15) is injective.

Proof. Since π is an epimorphism, for any S-module N, the map S ⊗R N → N

sending a⊗ x to ax is an isomorphism of S-modules [29, Proposition XI.1.2]. Thus
for any map α : N1 → N2 between S-modules, we have

rkS(α) = rkS(idS ⊗R α) = rkR(α).

�

The injectivity part of Theorem 8.1 answers a question of Jaikin-Zapirain [14,
Question 5.10] affirmatively and was proved by him [15, Proposition 5.11] under the
further assumption that S is von Neumann regular, which is vital for his proof of
the uniqueness of ∗-regular R-algebras associated with a faithful ∗-regular Sylvester
matrix rank function for R [15, Theorem 6.3]. Note that S may not even be finitely
generated as an R-module. Thus the formula (17) does not make sense if we stick
to Sylvester map rank functions.

The following result describes the image of π∗ for epimorphisms π.

Theorem 8.2. Let π : R → S be an epimorphism between unital rings. For any
extended Sylvester map rank function rkR for R, the following are equivalent:

(1) rkR ∈ π∗(P(S)).
(2) rkR(idS ⊗R α) = rkR(α) for any map α : M1 →M2 between R-modules.
(3) rkR(idS ⊗R idM) = rkR(idM) for any finitely presented R-module M.
(4) rkR(π) = rkR(idS) = 1.

Proof. (1)⇒(2): Assume that rkR = π∗(rkS) for some extended Sylvester map rank
function rkS for S. For any map α : M1 →M2 between R-modules, we have

rkR(α)
(14)
= rkS(idS ⊗R α)

(17)
= rkR(idS ⊗R α).
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(2)⇒(3) is trivial.
(3)⇒(1): From (3) we have rkR(idS) = rkR(idS ⊗R idR) = rkR(idR) = 1. Thus we

have the extended Sylvester map rank function rkS := f ∗
RSS

(rkR) for S defined via
(16). Then rkS(α) = rkR(α) for all maps α between S-modules. We are left to show
that π∗(rkS) = rkR. Set rk′R = π∗(rkS). Then (3) means rk′R(idM) = rkR(idM) for all
finitely presented R-modules M. From Corollary 6.3 we conclude that rk′R = rkR.

(2)⇒(4): From (2) we have rkR(idS) = rkR(idS ⊗R idR) = rkR(idR) = 1. Since
π is an epimorphism, the natural S-bimodule map S ⊗R S → S sending a ⊗ b
to ab is an isomorphism [29, Proposition XI.1.2]. Thus by (2) we have rkR(π) =
rkR(idS ⊗R π) = rkR(idS) = 1.

(4)⇒(3): For any m ∈ N we have rkR(idSm) = mrkR(idS) = m. Let M be a
finitely presented R-module. Write M as coker(α) for some n,m ∈ N and some map
α : Rn → Rm. Then S ⊗R M is the cokernel of idS ⊗R α : Sn ∼= (S ⊗R R)n →
(S ⊗R R)m ∼= Sm. Note that

rkR(idM) = rkR(idRm)− rkR(α) = m− rkR(α),

and

rkR(idS ⊗R idM) = rkR(idSm)− rkR(idS ⊗R α) = m− rkR(idS ⊗R α).

Thus it suffices to show rkR(α) = rkR(idS⊗Rα). We have the commutative diagram

Rn

πn

��

α
// Rm

πm

��

Sn
idS⊗Rα

// Sm

Note that rkR(idcoker(π)) = rkR(idS) − rkR(π) = 0, and hence rkR(idcoker(πn)) =
nrkR(idcoker(π)) = 0. Thus rkR((idS ⊗S α)/πn) = 0. By Corollary 6.4 we get

rkR(idS ⊗R α) = rkR(πn ◦ (idS ⊗R α)) + rkR((idS ⊗R α)/πn) = rkR(πn ◦ (idS ⊗R α)).

Denote by dimR(·|·) the bivariant Sylvester module rank function for R correspond-
ing to rkR. Then dimR(im(πm)|Sm) = rkR(πm) = mrkR(π) = m. We also have
dimR(im(πm)|Sm) ≤ dimR(im(πm)) ≤ dimR(Rm) = m. Thus dimR(im(πm)) =
dimR(im(πm)|Sm) = m. Then

dimR(ker(πm)|Rm) = dimR(Rm)− dimR(im(πm)) = m−m = 0.

It follows that

rkR(α ◦ πm) = dimR(im(α ◦ πm)|Sm)

= dimR(im(α ◦ πm)|im(πm))

= dimR(im(α) + ker(πm)|Rm)− dimR(ker(πm)|Rm)

≥ dimR(im(α)|Rm) = rkR(α),
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where the second equality is from Proposition 3.24 and the third equality is from
Theorem 3.4. As rkR(α ◦ πm) ≤ rkR(α), we obtain

rkR(α) = rkR(α ◦ πm) = rkR(πn ◦ (idS ⊗R α)) = rkR(idS ⊗R α).

�

Let Σ be a set of maps between finitely generated projective R-modules. Denote
by RΣ the universal unital ring S with a unital ring homomorphism π : R → S
such that idS ⊗R α is invertible as a map between S-modules for every α ∈ Σ.
This construction includes the universal localization of R inverting a set of square
matrices over R as a special case, but is much more general. For example, given
any unital ring homomorphisms R → S and R → Q, if we denote by S ∪

R
Q the

coproduct (also called the free product) of S and Q amalgamated over R, then

M2(S ∪
R
Q) is isomorphic to (R′)Σ for R′ =

ï
S 0

Q⊗R S Q

ò
and Σ consisting of the

map

ï
0 0
0 Q

ò
→
ï

S 0
Q⊗R S 0

ò
sending x to x

ï
0 0

1⊗ 1 0

ò
for all x ∈

ï
0 0
0 Q

ò
[28,

Theorem 4.10].
The universal localization RΣ was defined via generators and relations in [4], from

which it is clear that π : R → RΣ is an epimorphism. Malcolmson gave a more
explicit description of RΣ in the case Σ consists of endomorphisms of finitely gen-
erated free R-modules [23]. In fact his arguments work for general case with minor
modification. Denote by Σ′ the set of maps between finitely generated projective
R-modules of the form 

α1 · · · · · · · · ·
α2 · · · · · ·

· · · · · ·
αn

 ,
where each αj is either in Σ, or idM for some finitely generated projective R-module
M appearing as either the domain or codomain of some element in Σ, or idR. For
any map α between R-modules, denote by Dom(α) and Cod(α) the domain and
codomain of α respectively. Denote by Ξ the set of all triples (f, α, x) such that
α ∈ Σ′, f is a map R→ Cod(α), and x is a map Dom(α)→ R. Note that idRΣ

⊗Rα
is invertible as a map between RΣ-modules for every α ∈ Σ′.

Theorem 8.3 ([23]). Every element of RΣ = EndRΣ
(RΣ ⊗R R) is of the form

(idRΣ
⊗R f)(idRΣ

⊗R α)−1(idRΣ
⊗R x) for some (f, α, x) ∈ Ξ. Furthermore, for any

(g, β, y) ∈ Ξ, (idRΣ
⊗Rf)(idRΣ

⊗Rα)−1(idRΣ
⊗Rx) = (idRΣ

⊗Rg)(idRΣ
⊗Rβ)−1(idRΣ

⊗R
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y) if and only if one has
α 0 0 0 x
0 β 0 0 −y
0 0 γ 0 0
0 0 0 θ w
f g h 0 0

 =

ï
ζ
u

ò [
η v

]

for some γ, θ, ζ, η ∈ Σ′ and some maps h : R → Cod(γ), w : Dom(θ) → R, u : R →
Cod(ζ), v : Dom(η)→ R.

The following result is [28, Theorem 7.4]. Here we use Theorem 8.2 to give a new
proof.

Theorem 8.4. Let rk ∈ P(R) such that rk(α) = rk(idDom(α)) = rk(idCod(α)) for
every α ∈ Σ. Then RΣ is nonzero and rk ∈ π∗(P(RΣ)).

Fix rk ∈ P(R) such that

rk(α) = rk(idDom(α)) = rk(idCod(α))(18)

for all α ∈ Σ. Then clearly (18) holds for all α ∈ Σ′.

Lemma 8.5. For any map

ï
α γ
0 β

ò
between R-modules, if α ∈ Σ′ or β ∈ Σ′, then

rk(

ï
α γ
0 β

ò
) = rk(α) + rk(β).

Proof. By Corollary 6.7 we have rk(

ï
α γ
0 β

ò
) ≥ rk(α) + rk(β). When α ∈ Σ′, fromï

α γ
0 β

ò
=

ï
idDom(α) 0

0 β

ò ï
α γ
0 idCod(β)

ò
we get

rk(

ï
α γ
0 β

ò
) ≤ rk(

ï
idDom(α) 0

0 β

ò
) = rk(idDom(α)) + rk(β) = rk(α) + rk(β).

When β ∈ Σ′, from

ï
α γ
0 β

ò
=

ï
idDom(α) γ

0 β

ò ï
α 0
0 idCod(β)

ò
we get

rk(

ï
α γ
0 β

ò
) ≤ rk(

ï
α 0
0 idCod(β)

ò
) = rk(α) + rk(idCod(β)) = rk(α) + rk(β).

Therefore rk(

ï
α γ
0 β

ò
) = rk(α) + rk(β). �

Lemma 8.6. Let (f, α, x) ∈ Ξ with (idRΣ
⊗R f)(idRΣ

⊗Rα)−1(idRΣ
⊗R x) = 0. Then

rk(

ï
α x
f 0

ò
) = rk(α).



BIVARIANT AND EXTENDED SYLVESTER RANK FUNCTIONS 29

Proof. Since α is a composition of

ï
α x
f 0

ò
and some other maps, we have rk(

ï
α x
f 0

ò
) ≥

rk(α). By Theorem 8.3 we have
α 0 0 0 x
0 idR 0 0 0
0 0 γ 0 0
0 0 0 θ w
f 0 h 0 0

 =

ï
ζ
u

ò [
η v

]

for some γ, θ, ζ, η ∈ Σ′ and some maps h : R → Cod(γ), w : Dom(θ) → R, u : R →
Cod(ζ), v : Dom(η)→ R. From Lemma 8.5 we have

rk(LHS) = rk(

ï
α x
f 0

ò
) + rk(idR) + rk(γ) + rk(θ).

Note that

rk(RHS) ≤ rk(

ï
ζ
u

ò
) ≤ rk(idCod(ζ)) = rk(idDom(ζ))

= rk(idDom(α)) + rk(idR) + rk(idDom(γ)) + rk(idDom(θ))

= rk(α) + rk(idR) + rk(γ) + rk(θ).

Since rk(LHS) = rk(RHS), we get rk(

ï
α x
f 0

ò
) ≤ rk(α). This finishes the proof. �

We are ready to prove Theorem 8.4.

Proof of Theorem 8.4. Note that (idR, idR, idR) ∈ Ξ. Since rk(

ï
idR idR
idR 0

ò
) = 2 >

rk(idR), from Lemma 8.6 we have 1RΣ
6= 0. Thus RΣ is nonzero.

By Theorem 8.2 we just need to show rk(π) = rk(idRΣ
) = 1. Since rk(π) ≤

rk(idRΣ
), it suffices to show rk(π) ≥ 1 and rk(idRΣ

) ≤ 1. Denote by dim(·|·) the
bivariant Sylvester module rank function for R corresponding to rk.

Let M be a finitely generated R-submodule of RΣ. Say, M is generated by (idRΣ
⊗R

fj)(idRΣ
⊗R αj)−1(idRΣ

⊗R xj) with (fj, αj, xj) ∈ Ξ for j = 1, . . . , n. Set

θ =


α1

α2

. . .
αn

 ∈ Σ′, β =

ï
θ

idR

ò
∈ Σ′,

and

z =


x1

x2
...
xn

 : Dom(θ)→ R, y =

ï
z

idR

ò
: Dom(β)→ R.
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Note that we may identity M′ with HomR(R,M′) for any R-module M′. Consider the
R-module map γ : Cod(β)→ RΣ sending g to (idRΣ

⊗R g)(idRΣ
⊗R β)−1(idRΣ

⊗R y).
Then im(γ) is a finitely generated R-submodule of RΣ containing M + im(π).

We claim that dim(ker(γ)|Cod(β)) = rk(θ). Let M] be a finitely generated R-
submodule of ker(γ). Say, M] is generated by gj ∈ ker(γ) for j = 1, . . . ,m. For each
1 ≤ j ≤ m, by Lemma 8.6 we have

dim(im(

ï
β y
gj 0

ò
)|Cod(β)⊕R) = rk(

ï
β y
gj 0

ò
) = rk(β).

For any 1 ≤ k < m, note that

dim((
k∑
j=1

im(

ï
β y
gj 0

ò
)) ∩ im(

ï
β y
gk+1 0

ò
)|Cod(β)⊕R) ≥ dim(im(

[
β y

]
)|Cod(β)⊕R)

= rk(
[
β y

]
) ≥ rk(β).

Then from Proposition 3.19 we get

dim(
k+1∑
j=1

im(

ï
β y
gj 0

ò
)|Cod(β)⊕R) ≤ dim(

k∑
j=1

im(

ï
β y
gj 0

ò
)|Cod(β)⊕R).

It follows that

dim(
m∑
j=1

im(

ï
β y
gj 0

ò
)|Cod(β)⊕R) ≤ rk(β).

Denote by ζ the quotient map Cod(β) ⊕ R → (Cod(β) ⊕ R)/M], and by η the
projection Cod(β)⊕R→ R. Then η factors through ζ. Consider (1, 1) ∈ R⊕R ⊆

Cod(θ)⊕ R⊕ R = Cod(β)⊕ R. Note that
∑m

j=1 im(

ï
β y
gj 0

ò
) ⊇M] + R(1, 1). Now

we get

rk(θ) + 1 = rk(β)

≥ dim(
m∑
j=1

im(

ï
β y
gj 0

ò
)|Cod(β)⊕R)

≥ dim(M] +R(1, 1)|Cod(β)⊕R)

= dim(M]|Cod(β)⊕R) + dim((R(1, 1))ζ|im(ζ))

≥ dim(M]|Cod(β)⊕R) + dim((R(1, 1))η|im(η))

= dim(M]|Cod(β)) + dim(R|R)

= dim(M]|Cod(β)) + 1,

where in the second equality we apply Theorem 3.4 and in the last inequality we
apply Proposition 3.20. Therefore dim(M]|Cod(β)) ≤ rk(θ). Taking supremum over
M] we get dim(ker(γ)|Cod(β)) ≤ rk(θ). Consider the map

[
θ −z

]
: Dom(θ) →
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Cod(θ) ⊕ R = Cod(β). Clearly
[
θ −z

]
γ = 0, and hence im(

[
θ −z

]
) ⊆ ker(γ).

Thus

dim(ker(γ)|Cod(β)) ≥ dim(im(
[
θ −z

]
)|Cod(β)) = rk(

[
θ −z

]
) ≥ rk(θ).

This proves our claim.
Now we have

dim(ker(γ) +R|Cod(β)) ≥ dim(im(
[
θ −z

]
) +R|Cod(β))

= dim(im(

ï
θ −z

idR

ò
)|Cod(β))

= rk(

ï
θ −z

idR

ò
) = rk(θ) + 1.

By Theorem 3.4 we have

dim(im(π)|M + im(π)) ≥ dim(im(π)|im(γ))

= dim(ker(γ) +R|Cod(β))− dim(ker(γ)|Cod(β))

≥ (rk(θ) + 1)− rk(θ) = 1.

Taking infimum over M, we obtain rk(π) = dim(im(π)|RΣ) ≥ 1.
We also have

dim(M|RΣ) ≤ dim(im(γ)|RΣ) ≤ dim(im(γ))

= dim(Cod(β))− dim(ker(γ)|Cod(β))

= rk(β)− rk(θ) = 1.

Taking supremum over M, we obtain rk(idRΣ
) = dim(RΣ) ≤ 1 as desired. �
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