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Abstract. We study the independence density for finite families of finite tuples
of sets for continuous actions of discrete groups on compact metrizable spaces.
We use it to show that actions with positive naive entropy are Li-Yorke chaotic
and untame. In particular, distal actions have zero naive entropy. This answers a
question of Lewis Bowen.

1. Introduction

Let a countably infinite group Γ act on a compact metrizable space X contin-
uously. Motivated by the consideration in [7] for the naive entropy of measure-
preserving actions, Burton introduced the naive topological entropy of Γ y X in [8].
This is also studied in [11]. For a finite open cover U of X, denote by N(U) the
minimal cardinality of subcovers of U. For any nonempty finite subset F of Γ, set
UF =

∨
s∈F s

−1U. The naive entropy of U is defined as

hnv(Γ,U) := inf
F

1

|F |
logN(UF ),

where F ranges over nonempty finite subsets of Γ. The naive entropy of Γ y X is
defined as

hnv(Γ y X) := sup
U

hnv(Γ,U)

for U ranging over finite open covers of X.
It is known that the naive entropy hnv(Γ y X) coincides with the classical

topological entropy when Γ is amenable [11, Theorem 6.8]. When Γ is sofic, if
hnv(Γ y X) = 0, then the sofic topological entropy of Γ y X with respect to any
sofic approximation sequence of Γ is either −∞ or 0 [8, Theorem 1.1] [34, Propo-
sitions 4.6 and 4.16]. When Γ is nonamenable, hnv(Γ y X) is either 0 or ∞ [8,
Section 2.2]. Thus for nonamenable Γ, the naive entropy just describes the action
Γ y X as having positive entropy or zero entropy.

Initiated by the work of Blanchard [3, 4], the local entropy theory developed
quickly [5, 6, 10, 12, 23, 25–29, 32–35]. A combinatorial approach was given to this
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theory in [32]. It turns out that the combinatorial approach enables us to give a
unified treatment for several dynamical properties. In general, one considers tuples
of subsets of X which have large independence sets in Γ (see Definition 2.1 below),
and then localizes to tuples of points in X for which the tuple of subsets associated
to any product neighborhood has large independence sets. Different largeness then
corresponds to different dynamical properties. For instance, positive density corre-
sponds to positive entropy for actions of amenable group [27, 32, 35], infinite sets
corresponds to untameness [32, 35], and arbitrary large finite sets corresponds to
nonnullness [32]. The correspondence between positive density and positive entropy
also holds for actions of sofic groups [34, 35], though the density is defined using the
sofic approximation sequence instead.

A natural question is whether positive naive entropy can be studied using com-
binatorial independence. Indeed a notion of density was introduced for tuples of
subsets for actions of any group in [34, Definition 3.1], and the corresponding type
of tuples of points in X was also introduced in [34, Definition 3.2]. However, in
general it is impossible to localize positive density from tuples of subsets to a tuple
of points (see Proposition 5.2). The novelty in this paper is that we shall stay at the
level of tuples of subsets and consider finite families of tuples of subsets instead of
a single tuple (see Definition 2.2). It turns out that this characterizes positive naive
entropy (Theorem 2.5), and we can use it to obtain some interesting properties of
actions with positive naive entropy.

The action Γ y X is said to be Li-Yorke chaotic [6, 39] if there is an uncountable
set Y ⊆ X such that for any distinct x, y ∈ Y , one has

lim sup
Γ3s→∞

ρ(sx, sy) > 0 and lim inf
Γ3s→∞

ρ(sx, sy) = 0,

where ρ is any given compatible metric on X. Using measure-dynamical techniques
Blanchard et al. showed first that positive entropy implies Li-Yorke chaos for con-
tinuous maps [6]. This was extended to actions of amenable groups [32, Corollary
3.19] and sofic groups [34, Corollary 8.4] using combinatorial independence. Here
using independence density for finite families of tuples of subsets we extend this
implication to actions of all groups.

Theorem 1.1. For any countably infinite group Γ, any continuous action of Γ on
a compact metrizable space with positive naive entropy is Li-Yorke chaotic.

For sofic groups, in fact Theorem 1.1 is stronger than [34, Corollary 8.4] since there
are actions with zero sofic entropy but positive naive entropy (see the discussion at
the end of Section 5).

For any Γ-invariant Borel probability measure µ on X, Bowen introduced the
naive entropy [7, Definition 7] [8, Definition 2.2] of the measure-preserving action
Γ y (X,µ) by

hnv
µ (Γ y X) := sup

P

inf
F

1

|F |
Hµ(PF ),
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where P ranges over finite Borel partitions of X and F ranges over nonempty finite
subsets of Γ. Here for a finite Borel partition Q of X, Hµ(Q) denotes the Shannon
entropy −

∑
q∈Q µ(q) log µ(q). It is easy to check that when Γ is amenable, hnv

µ (Γ y
X) coincides with the classical Kolmogorov-Sinai entropy [11, Theorem 4.2] [35,
page 198]. When Γ is nonamenable, hnv

µ (Γ y X) is either 0 or +∞ [7, Theorem
2.13]. Burton showed that one always has hnv

µ (Γ y X) ≤ hnv(Γ y X) [8, Theorem
1.3].

The action Γ y X is called distal [2] if for any distinct x, y ∈ X one has
infs∈Γ ρ(sx, sy) > 0, where ρ is any given compatible metric on X. Parry showed
first that distal actions of Z have zero entropy [41]. Since distal actions cannot be
Li-Yorke chaotic, it was observed in [34, Corollary 8.5] that distal actions of sofic
groups have sofic entropy either −∞ or 0. Via reduction to actions of Z, Burton [8,
Example 2.2] showed that if Γ contains an element with infinite order, then any dis-
tal action of Γ has zero naive entropy. From Theorem 1.1 and the above paragraph
we conclude that this holds for all groups, which answers a question of Bowen [7,
Question 8].

Corollary 1.2. For any countably infinite group Γ, any distal continuous action
of Γ on a compact metrizable space X has zero naive topological entropy. If µ is a
Γ-invariant Borel probability measure on X, then the action Γ y (X,µ) also has
zero naive entropy.

The notion of tame actions was introduced by Köhler [36] motivated by Rosen-
thal’s characterization of Banach spaces containing `1 [44], and is well studied
[1, 9, 13–22, 24, 30, 32, 35, 38, 43]. Denote by C(X) the space of all continuous
R-valued functions on X equipped with the supremum norm. The action Γ y X
is said to be untame if there are some f ∈ C(X) and some infinite subset H of Γ
such that the map δs 7→ sf for s ∈ H extends to a linear Banach space isomorphism
from `1(H) to the closed linear span of sf for s ∈ H in C(X). Tameness can also
be characterised in terms of the Ellis semigroup of Γ y X. Using combinatorial
independence it was shown that positive entropy actions are untame for amenable
groups [32] and sofic groups [34]. Here we extend it to all groups in the context of
naive entropy.

Theorem 1.3. For any countably infinite group Γ, tame continuous actions on
compact metrizable spaces have zero naive entropy.

This paper is organized as follows. We introduce the independence density for
finite families of subsets in Section 2, and show that positive independence density
characterizes positive naive entropy. Theorems 1.1 and 1.3 are proved in Sections 3
and 4 respectively. In Section 5 we exhibit an action with positive naive entropy
but no non-diagonal orbit IE-pairs. This example shows that in general one cannot
localize positive density from tuples of subsets to a tuple of points.
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Throughout this article, Γ will be a countably infinite discrete group with identity
element eΓ, and we fix a continuous action of Γ on a compact metrizable space X.
For any set H we denote by F(H) the set of nonempty finite subsets of H. For each
n ∈ N we write [n] for {1, . . . , n}.
Acknowledgments. H. L. is partially supported by NSF and NSFC grants. We are
grateful to Lewis Bowen for comments.

2. Independence Density for Families of Tuples

In this section we introduce the independence density for finite families of subsets
and prove Theorem 2.5.

For each k ∈ N, denote by Ak the space of all k-tuples of subsets of X. Set
A =

⋃
k∈N Ak, and A≥m =

⋃
k≥m Ak.

Recall the notion of independence sets introduced in [32, Definition 2.1] (see also
[35, Definition 8.7]).

Definition 2.1. For any A = (A1, . . . , Ak) ∈ A , we say J ⊆ Γ is an independence
set for A if for any nonempty finite set F ⊆ J and any map ω : F → [k] one has⋂
s∈F s

−1Aω(s) 6= ∅.

Definition 2.2. For any finite A ⊆ A , we define the independence density of A

to be the largest q ≥ 0 such that for every F ∈ F(Γ) there are some J ⊆ F with
|J | ≥ q|F | and some A ∈ A so that J is an independence set for A.

When A consists of a single tuple, Definition 2.2 reduces to [34, Definition 3.1].
We say that A = (A1, . . . , Ak) ∈ Ak is pairwise disjoint (closed resp.) if the sets

A1, · · · , Ak are pairwise disjoint (closed resp.). We say that A ⊆ A is pairwise
disjoint (closed resp.) if each A ∈ A is pairwise disjoint (closed resp.).

For covers U and V of X, we denote by U∨ V the cover of X consisting of U ∩ V
for U ∈ U and V ∈ V. We say that U is finer than V if every item of U is contained
in some item of V. The following lemma is well known, see for example the proofs
of [4, Proposition 1] or [35, Lemma 12.11].

Lemma 2.3. For any finite open cover U of X, there are n ∈ N and two-element
open covers U1, . . . ,Un of X such that

∨n
j=1 Uj is finer than U.

Let k ≥ 2 and let Z be a nonempty finite set. Let W be the cover of {0, 1, . . . , k}Z =∏
z∈Z{0, 1, . . . , k} consisting of subsets of the form

∏
z∈Z({0, 1, . . . , k}\{iz}), where

iz ∈ [k] for each z ∈ Z. For a set S ⊆ {0, 1, . . . , k}Z we write NS for the minimal
number of sets in W needed to cover S. The following is the major combinatorial
fact we need [32, Lemma 3.3] [35, Lemma 12.13].

Lemma 2.4. Let k ≥ 2 and b > 0. There exists c > 0 depending only on k and
b such that for any finite set Z and S ⊆ {0, 1, . . . , k}Z with NS ≥ kb|Z| there is a
J ⊆ Z with |J | ≥ c|Z| and S|J ⊇ [k]J .
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The following theorem characterizes positive naive entropy in terms of finite pair-
wise disjoint closed families with positive independence density.

Theorem 2.5. The following are equivalent:

(1) hnv(Γ y X) > 0,
(2) there is a finite pairwise disjoint closed A ⊆ A2 with positive independence

density,
(3) there is a finite pairwise disjoint closed A ⊆ A≥2 with positive independence

density.

Proof. (1)⇒(2). Suppose that hnv(Γ y X) > 0. Then hnv(Γ,U) > 0 for some finite
open cover U of X. By Lemma 2.3 we can find two-element open covers U1, . . . ,Un

of X such that
∨n
j=1 Uj is finer than U. We may assume that none of Uj contains X.

For each 1 ≤ j ≤ n, write Uj as {Uj,1, Uj,2} and set Aj = (X \ Uj,1, X \ Uj,2) ∈ A2.
Then A = {A1, . . . ,An} ⊆ A2 is finite pairwise disjoint and closed. We claim that
A has positive independence density. Set b := hnv(Γ,U)/(n log 2) > 0. Then we have
the constant c > 0 in Lemma 2.4 depending only on k = 2 and b. Let F ∈ F(Γ).
Then

hnv(Γ,U)|F | ≤ logN(UF ) ≤ logN(
n∨
j=1

UF
j ) ≤

n∑
j=1

logN(UF
j ).

Thus there is some 1 ≤ j ≤ n with hnv(Γ,U)
n
|F | ≤ logN(UF

j ). Consider the map

ϕ : X → {0, 1, 2}F defined by

(ϕ(x))(s) =

ß
i, if sx ∈ X \ Uj,i for some i ∈ [2],
0, otherwise.

Then Nϕ(X) = N(UF
j ) ≥ 2b|F |. Therefore there is some J ⊆ F with |J | ≥ c|F | and

ϕ(X)|J ⊇ [2]J . Then J is an independence set for Aj. Thus A has independence
density at least c.

(2)⇒(3) is trivial.
(3)⇒(1). Let A = {A1, . . . ,An} ⊆ A≥2 be finite pairwise disjoint closed with

independence density q > 0. For each 1 ≤ j ≤ n, write Aj as (Aj,1, . . . , Aj,kj) and

set Vj = X \
⋃kj
i=1 Aj,i and Uj = {Aj,1∪Vj, . . . , Aj,kj ∪Vj}. Then U1, . . . ,Un are finite

open covers of X. Set U =
∨n
j=1 Uj. We claim that hnv(Γ,U) > 0. Let F ∈ F(Γ).

Then there are some J ⊆ F with |J | ≥ q|F | and some 1 ≤ j ≤ n such that J is an
independence set for Aj. We have

N(UF ) ≥ N(UF
j ) ≥ N(UJ

j ) ≥ k
|J |
j ,

and hence
1

|F |
logN(UF ) ≥ |J |

|F |
log kj ≥ q log kj ≥ q log 2.

Therefore hnv(Γ,U) ≥ q log 2 > 0. �
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Let A ⊆ A . We say that A′ ⊆ A is a simple splitting of A if there are some
A ∈ A with A = (A1, . . . , Ak) and some 1 ≤ j ≤ k and Aj = Aj,1 ∪ Aj,2 such that

A′ = (A\{A})∪{(A1, . . . , Aj−1, Aj,1, Aj+1, . . . , Ak), (A1, . . . , Aj−1, Aj,2, Aj+1, . . . , Ak)}.

We say that A′ ⊆ A is a splitting of A if there are A = A1,A2, . . . ,Am = A′ such
that Aj+1 is a simple splitting of Aj for all 1 ≤ j ≤ m − 1. Clearly splittings of
pairwise disjoint families are still pairwise disjoint.

We need the following lemma [32, Lemma 3.7] [35, Lemma 12.16], which is a
consequence of Karpovsky and Milman’s generalization of the Sauer-Perles-Shelah
lemma [31, 45, 47].

Lemma 2.6. Let k ≥ 1. Then there is some c > 0 depending only on k such that
for any A ∈ Ak, any simple splitting {A1,A2} of {A}, and any finite independence
set J for A, there is an I ⊆ J such that |I| ≥ c|J | and I is an independence set for
at least one of A1 and A2.

From Lemma 2.6 we see that for any finite A ⊆ A with positive independence
density, every simple splitting of A has positive independence density. Via induction
we get

Proposition 2.7. Let A ⊆ A be finite with positive independence density. Then
every splitting of A has positive independence density.

3. Positive Independence Density and Li-Yorke Chaos

In this section we prove Theorem 3.4, which shows that positive independence
density implies Li-Yorke chaos.

Notation 3.1. Let E ∈ F(Γ). For A = (A1, . . . , Ak) ∈ Ak, we write AE for the
tuple in Ak|E| consisting of

⋂
s∈E s

−1Aω(s) for all ω ∈ [k]E in any order.

For K,E ∈ F(Γ), we say that E is K-separated if the sets Kt for t ∈ E are
pairwise disjoint. The following lemma is an analogue of [34, Lemma 8.2].

Lemma 3.2. Let A ⊆ A be finite with positive independence density. Let K ∈ F(Γ).
Then there is some finite A′ ⊆ A with positive independence density such that each
element of A′ is of the form AE for some A ∈ A and some K-separated E ∈ F(Γ\K)
with |E| = 2.

Proof. Denote by q the independence density of A. Take a K-separated E ∈ F(Γ\K)
with q|E| ≥ 2.

Let F ∈ F(Γ). Take a maximal E-separated subset F ′ of F . Then E−1EF ′ ⊇ F ,
and hence

|F ′| ≥ |F |/|E|2.
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Note that |EF ′| = |E| · |F ′|. By assumption we can find a J ⊆ EF ′ with |J | ≥
q|EF ′| and some A ∈ A such that J is an independence set for A. For each t ∈ E,
set Jt = t−1(J ∩ tF ′) ⊆ F ′. Since J ∩ tF ′ for t ∈ E is a partition of J , we have∑

t∈E

|Jt| =
∑
t∈E

|J ∩ tF ′| = |J | ≥ q|EF ′| = q|E| · |F ′| ≥ 2|F ′|.

Denote by η the maximum of |Js ∩ Jt|/|F ′| for s, t ranging over distinct elements of
E. Then for each t ∈ E there is some Wt ⊆ Jt with |Wt| ≤ η|F ′| · |E| such that the
sets Jt \Wt for t ∈ E are pairwise disjoint. Thus

2|F ′| ≤
∑
t∈E

|Jt| =
∑
t∈E

|Wt|+
∣∣ ⋃
t∈E

(Jt \Wt)
∣∣ ≤ η|F ′| · |E|2 + |F ′|,

and hence η ≥ 1/|E|2. Then we can find distinct s, t ∈ E with

|Js ∩ Jt| = η|F ′| ≥ |F ′|/|E|2 ≥ |F |/|E|4.
Note that t(Js ∩ Jt) ∪ s(Js ∩ Jt) ⊆ J , and t(Js ∩ Jt) ∩ s(Js ∩ Jt) ⊆ tF ′ ∩ sF ′ = ∅.
Thus Js ∩ Jt is an independence set for A{s,t}. Therefore the set A′ consisting of
A{s,t} for A ∈ A and distinct s, t ∈ E has independence density at least 1/|E|4. �

From Lemma 3.2 via induction on n we have

Lemma 3.3. Let A ⊆ A be finite with positive independence density. Let K ∈ F(Γ)
and n ∈ N. Then there is some finite A′ ⊆ A with positive independence density
such that each element of A′ is of the form AE for some A ∈ A and some K-
separated E ∈ F(Γ \K) with |E| = 2n.

Fix a compatible metric ρ on X. For A = (A1, . . . , Ak) ∈ Ak, we set

diam(A, ρ) = max
1≤j≤k

diam(Aj, ρ).

For finite A ⊆ A , we set

diam(A, ρ) = max
A∈A

diam(A, ρ).

For any ε > 0, clearly every finite closed A ⊆ A has a closed splitting with diameter
at most ε.

For A ∈ Ak, we set |A| = k. For s ∈ Γ and A = (A1, . . . , Ak) ∈ Ak, we set
sA = (sA1, . . . , sAk) ∈ Ak. The following is an analogue of [32, Theorem 3.18] and
[34, Theorem 8.1].

Theorem 3.4. Let A ⊆ A≥2 be finite pairwise disjoint closed with positive inde-
pendence density. Then there are some A ∈ A and a Cantor set Z contained in the
union of the entries of A such that for any finite set Y ⊆ Z and any map f : Y → Z
one has

lim inf
Γ3s→∞

max
y∈Y

ρ(sy, f(y)) = 0.
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Proof. Take an increasing sequence {eΓ} ⊆ K1 ⊆ K2 ⊆ · · · of finite subsets of Γ
with union Γ. We shall construct, via induction on m, finite Am ⊆ A with the
following properties:

(1) A1 ⊆ A,
(2) for every m ≥ 2, there are maps πm : Am → Am−1 and ζm : Am → Γ such

that for every A ∈ Am one has |A| = 2|πm(A)| and each entry of πm(A)
contains exactly two entries of ζm(A)A,

(3) whenm ≥ 2, for every A ∈ Am defining ξm(A) ∈ Γ by sj = ζjπj+1πj+2 · · · πm(A)
for all 2 ≤ j ≤ m and ξm(A) = s2 · · · sm, we have diam(ξm(A)A, ρ) ≤ 2−m,

(4) when m ≥ 2, for every A ∈ Am, writing πm(A) = (B1, . . . , B`) and A =
(A1, . . . , A2`), for any map γ : [2`]→ [`], there is some

u ∈ Γ \ ξm−1(Am−1)−1Km−1ξm−1(Am−1)ζm(A)

such that uAj ⊆ Bγ(j) for all j ∈ [2`], where ξ1(A1) = {eΓ},
(5) for every m, Am is pairwise disjoint and closed,
(6) for every m, Am has positive independence density.

Suppose that we have constructed such Am over all m. Removing the elements
of Am with some empty entry, we may assume that the entries of the elements
of each Am are all nonempty. Since each Am is nonempty and finite, the inverse
limit space lim←−m→∞Am for the maps πm is nonempty. Thus we can find Am ∈ Am

for each m ∈ N such that πm+1(Am+1) = Am for all m. For any m ≥ 2, set
A′m = ξm(Am)Am. Then for each m ≥ 2, A′m ∈ A|A1|2m−1 and each entry of A′m
contains exactly two entries of A′m+1 by (2), and diam(A′m, ρ) ≤ 2−m by (3). Denote
by Zm the union of the entries of A′m, and set Z =

⋂
m≥2 Zm. Then Z is a Cantor

set. Since ξ2(A2) = ζ2(A2), by (2) the entries of A′2 = ξ2(A2)A2 = ζ2(A2)A2 are
contained in the entries of π2(A2) = A1. Thus Z ⊆ Z2 is contained in the union of
the entries of A1.

Let Y ⊆ Z be finite, and let f be a map Y → Z. Let K ∈ F(Γ) and ε >
0. Take m ≥ 2 such that distinct elements of Y lie in distinct entries of A′m+1,
K ⊆ Km, and 2−m < ε. Write A′m = (B1, . . . , B`) and A′m+1 = (A1, . . . , A2`).
Then there is some map γ : [2`] → [`] such that for any y ∈ Y , if y ∈ Aj then
f(y) ∈ Bγ(j). Set tm = ξm(Am) and tm+1 = ξm+1(Am+1) = tmζm+1(Am+1). Then
Am = (t−1

m B1, . . . , t
−1
m B`) and Am+1 = (t−1

m+1A1, . . . , t
−1
m+1A2`). By (4) there is some

u ∈ Γ \ ξm(Am)−1Kmξm(Am)ζm+1(Am+1) such that ut−1
m+1Aj ⊆ t−1

m Bγ(j) for all j ∈
[2`]. For every y ∈ Y , say y ∈ Aj for some j ∈ [2`], one has tmut

−1
m+1y, f(y) ∈ Bγ(j)

and hence

ρ(tmut
−1
m+1y, f(y)) ≤ diam(A′m, ρ) ≤ 2−m < ε.

Since tmut
−1
m+1 6∈ Km, we have tmut

−1
m+1 6∈ K. Therefore

lim inf
Γ3s→∞

max
y∈Y

ρ(sy, f(y)) = 0.
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We now construct the Am. We set A1 = A. By assumption (5) and (6) are satisfied
for m = 1. Assume that we have constructed Am with the above properties. Take
n ∈ N such that 2n ≥ 2 + |A|2|A| for all A ∈ Am. By Lemma 3.3 we can find a finite
A′m ⊆ A with positive independence density such that each element of A′m is of
the form AE for some A ∈ Am and some ξm(Am)−1Kmξm(Am)-separated E ∈ F(Γ)
with |E| = 2n. Let A′ ∈ A′m and write it as AE as above. Write A as (A1, . . . , A`).
Fix distinct s0, s1 ∈ E, and take an injection ϕ : [`][2`] → E \ {s0, s1}. For all
1 ≤ i ≤ ` and 1 ≤ j ≤ 2, take ωi,j : E → [`] such that ωi,j(s0) = i, ω(s1) = j and
ωi,j(ϕ(γ)) = γ(i+ (j − 1)`) for all γ : [2`]→ [`], and set

Ai,j =
⋂
s∈E

s−1Aωi,j(s).

Then A′′ := (A1,1, . . . , A`,1, A1,2, . . . , A`,2) ∈ A2` is pairwise disjoint and closed, and
every independence set for A′ = AE is an independence set for A′′. The family
Am+1 := {A′′ : A′ ∈ A′m} clearly satisfies the conditions (5) and (6). Setting
πm+1(A′′) = A and ζm+1(A′′) = s0, the property (2) is verified. For any map
γ : [2`]→ [`], we have ϕ(γ)Ai,j ⊆ Aγ(i+(j−1)`) for all 1 ≤ i ≤ ` and 1 ≤ j ≤ 2. Since
E is ξm(Am)−1Kmξm(Am)-separated and s0 6= ϕ(γ), we have

ϕ(γ) 6∈ ξm(Am)−1Kmξm(Am)s0 = ξm(Am)−1Kmξm(Am)ζm+1(A′′).

Thus the property (4) also holds. Replacing each A′′ by a suitable closed splitting
of {A′′}, we also make (3) hold. This finishes the induction step. �

Now Theorem 1.1 follows from Theorems 2.5 and 3.4.

4. Positive Independence Density and Tameness

It was shown in [34, Theorem 7.1] that if A ∈ A has positive independence
density then A has an infinite independence set. With a minor modification, the
proof also works for finite families in A :

Theorem 4.1. Let A ⊆ A be finite with positive independence density. Then at
least one element of A has an infinite independence set.

The action Γ y X is untame exactly when there is a pairwise disjoint closed
A ∈ A≥2 with an infinite independence set [35, Proposition 8.14]. Then Theorem 1.3
follows from Theorems 2.5 and 4.1.

5. An Action with Positive Naive Entropy but no non-diagonal
Orbit IE-pairs

For k ∈ N, recall that (x1, . . . , xk) ∈ Xk is called an orbit IE-tuple (or orbit IE-pair
when k = 2) if for any product neighborhood U1 × · · · × Uk of (x1, . . . , xk) in Xk,
the tuple (U1, . . . , Uk) has positive independence density [34, Definition 3.2]. When
Γ is amenable, this is the same as IE-tuples defined in [32, Definition 3.1].
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When Γ is amenable, Γ y X has positive entropy exactly when X has non-
diagonal IE-pairs [32, Proposition 3.9] [35, Theorem 12.19]. When Γ is sofic and
Σ is a sofic approximation sequence for Γ, Γ y X has positive sofic entropy with
respect to Σ exactly when X has non-diagonal Σ-IE-pairs [34, Proposition 4.16] [35,
Theorem 12.39]. For general Γ, if X has non-diagonal orbit IE-pairs, then from
Theorem 2.5 we know that Γ y X has positive naive entropy. We shall show in
Proposition 5.2 that the converse fails.

Denote by ZΓ the integral group ring of Γ [42, page 3] [35, Section 13.1]. It
consists of all functions f : Γ → Z with finite support. Writing f as

∑
s∈Γ fss, the

addition and multiplication of ZΓ are defined by∑
s

fss+
∑
s

gss =
∑
s

(fs + gs)s, (
∑
s

fss)(
∑
t

gtt) =
∑
t

(
∑
s

fsgs−1t)t.(1)

It also has an involution ∗ defined by

(
∑
s

fss)
∗ =

∑
s

fs−1s.

For any countable left ZΓ-module M, its Pontryagin dual “M consisting of all
group homomorphisms M → R/Z under pointwise multiplication and convergence

is a compact metrizable abelian group, and Γ acts on “M naturally by continuous

automorphisms with (sϕ)(x) = ϕ(s−1x) for all ϕ ∈ “M, s ∈ Γ and x ∈ M. We refer

the reader to [35, 40, 46] for general information on the study of Γ y “M.

When M = ZΓ, we may identify “M with (R/Z)Γ, and the induced Γ-action on
(R/Z)Γ is the left shift action given by (sx)t = xs−1t for all x ∈ (R/Z)Γ and s, t ∈ Γ.

For any submodule M′ of M, the restriction map yields a factor map (i.e. a

continuous surjective Γ-equivariant map) “M → M̂′. For f ∈ ZΓ, we have the ZΓ-

module ZΓ/ZΓf and denote ÿ�ZΓ/ZΓf by Xf . One may identify Xf with the closed
Γ-invariant subgroup of (R/Z)Γ consisting of x ∈ (R/Z)Γ satisfying xf ∗ = 0 [37,
page 311], where the convolution product xf ∗ is defined similar to (1).

Lemma 5.1. Let a ∈ Γ with infinite order. Then Xa−1 has no non-diagonal orbit
IE-pairs.

Proof. Note that Xa−1 = {x ∈ (R/Z)Γ : x(a − 1)∗ = 0} consists of exactly those
x ∈ (R/Z)Γ satisfying xta = xt for all t ∈ Γ. Let x and y be distinct points in Xa−1.
Then xs 6= ys for some s ∈ Γ. Take open neighborhoods Vx and Vy of xs and ys in
R/Z respectively such that Vx∩Vy = ∅. Denote by Ux (Uy resp.) the set of z ∈ Xa−1

with zs ∈ Vx (zs ∈ Vy resp.). Then Ux and Uy are neighborhoods of x and y in Xa−1

respectively. For any distinct k,m ∈ N, if sakz ∈ Ux and samz ∈ Uy for some
z ∈ Xa−1, then zeΓ = za−k = (sakz)s ∈ Vx and zeΓ = za−m = (samz)s ∈ Vy, which is
impossible. Thus for any n ∈ N, if J is an independence set for (Ux, Uy) contained
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in {sak : k = 1, . . . , n}, then |J | ≤ 1. Therefore (Ux, Uy) has independence density
0, whence (x, y) is not an orbit IE-pair of Xa−1. �

Now let F2 be the rank 2 free group with generators a and b.

Proposition 5.2. There is an action of F2 on a compact metrizable abelian group X
by continuous automorphisms such that F2 y X has positive naive entropy while X
has no non-diagonal orbit IE-pairs. Furthermore, there is a finite pairwise disjoint
closed A ⊆ A2 with positive independence density such that no element of A has
positive independence density.

Proof. We shall show that F2 y Xa−1 satisfies the conditions. From Lemma 5.1 we
know that Xa−1 has no non-diagonal orbit IE-pairs.

Note that ZF2 has a free left ZF2-submodule with generators a − 1 and b − 1
[42, Corollary 10.3.7.(iv)], and hence ZF2/ZF2(a − 1) contains a ZF2-submodule

isomorphic to ZF2. Therefore the action F2 y Xa−1 has a factor F2 y ‘ZF2 =
(R/Z)F2 . As naive entropy does not increase under taking factors, we conclude that
F2 y Xa−1 has positive naive entropy.

To prove the last assertion of the proposition, assume conversely that every finite
pairwise disjoint closed A ⊆ A2 with positive independence density has an element
with positive independence density. Take a compatible metric ρ on Xa−1. Since
F2 y Xa−1 has positive naive entropy, by Theorem 2.5 there is some finite pairwise
disjoint closed A1 ⊆ A2 with positive independence density. By the assumption there
is some A1 ∈ A1 with positive independence density. Inductively, assume that we
have found some closed Ak ∈ A2 with positive independence density. Take a finite
closed splitting Ak+1 ⊆ A2 of {Ak} such that diam(Ak+1, ρ) ≤ diam(Xa−1, ρ)/2k.
By Proposition 2.7 we know that Ak+1 has positive independence density. Then
by assumption we can find some Ak+1 ∈ Ak+1 with positive independence density.
In this way we obtain a sequence {Ak}k∈N of closed elements in A2 such that each
Ak has positive independence density and diam(Ak, ρ) → 0 as k → ∞. Writing
Ak = (Ak,1, Ak,2), we may assume that Ak+1,i ⊆ Ak,i for all k ∈ N and i = 1, 2. Then
for each i = 1, 2, the intersection

⋂
k∈NAk,i is a singleton {xi}. As A1,1∩A1,2 = ∅, we

have x1 6= x2. Then (x1, x2) is a non-diagonal orbit IE-pair, which is a contradiction.
This proves the last assertion of the proposition. �

When Γ is amenable, the independence density for each A ∈ A is a limit [35,
page 287] and hence every finite A ⊆ A with positive independence density has an
element with positive independence density. Proposition 5.2 shows that this fails
for F2.

From [34, Propositions 4.6 and 4.16] we know that when Γ is sofic, if Γ y X has
positive sofic entropy with respect to some sofic approximation sequence of Γ, then X
has a non-diagonal orbit IE-pair. Now let F2 y X be an action in Proposition 5.2.
As F2 is sofic, X has no non-diagonal orbit IE-pairs, and F2 y X has a fixed
point, we conclude that F2 y X has sofic entropy zero with respect to every sofic
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approximation sequence of F2. Thus results of [34] do not tell us that F2 y X is
Li-Yorke chaotic or untame. On the other hand, since F2 y X has positive naive
entropy, Theorems 1.1 and 1.3 imply that F2 y X is Li-Yorke chaotic and untame.
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