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Abstract. Let Γ be a countable Abelian group and f ∈ Z[Γ], where Z[Γ] denotes the
integral group ring of Γ. Consider the Pontryagin dual Xf of the cyclic Z[Γ]-module
Z[Γ]/Z[Γ]f and suppose that f is weakly expansive (e.g., f is invertible in `1(Γ), or,
when Γ is not virtually Z or Z2, f is well-balanced) and that Xf is connected. We prove
that if τ : Xf → Xf is a Γ-equivariant continuous map, then τ is surjective if and only
if the restriction of τ to each Γ-homoclinicity class is injective. We also show that this
equivalence remains valid in the case when Γ = Zd and f ∈ Z[Γ] = Z[u1, u

−1
1 , . . . , ud, u

−1
d ]

is an irreducible atoral polynomial whose zero-set Z(f) satisfies some suitable finiteness
conditions (e.g., when d ≥ 2 such that Z(f) is finite). These two results are analogues
of the classical Garden of Eden theorem of Moore and Myhill for cellular automata with
finite alphabet over Γ.
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1. Introduction

Consider a dynamical system (X,α), consisting of a compact metrizable space X, called
the phase space, equipped with a continuous action α of a countable group Γ. Let d be
a metric on X that is compatible with the topology. Two points x, y ∈ X are said to be
homoclinic if limγ→∞ d(γx, γy) = 0, i.e., for every ε > 0, there exists a finite set F ⊂ Γ
such that d(γx, γy) < ε for all γ ∈ Γ \ F . Homoclinicity is an equivalence relation on X.
By compactness of X, this relation does not depend on the choice of the compatible metric
d. A map with source set X is called pre-injective (with respect to α) if its restriction to
each homoclinicity class is injective.

An endomorphism of the dynamical system (X,α) is a continuous map τ : X → X that
is Γ-equivariant (i.e., τ(γx) = γτ(x) for all γ ∈ Γ and x ∈ X).

The original Garden of Eden theorem is a statement in symbolic dynamics that char-
acterizes surjective endomorphisms of shift systems with finite alphabet. To be more
specific, let us fix a compact metrizable space A, called the alphabet. Given a countable
group Γ, the shift over the group Γ with alphabet A is the dynamical system (AΓ, σ), where
AΓ = {x : Γ → A} is equipped with the product topological group structure and σ is the
action defined by γx(γ′) := x(γ−1γ′) for all x ∈ AΓ and γ, γ′ ∈ Γ. The Garden of Eden
theorem states that, under the hypotheses that the group Γ is amenable and the alphabet
A is finite, an endomorphism of (AΓ, σ) is surjective if and only if it is pre-injective. It
was first proved for Γ = Zd by Moore and Myhill in the early 1960s. Actually, the impli-
cation surjective =⇒ pre-injective was first proved by Moore in [27] while the converse
implication was established shortly after by Myhill in [29]. The Garden of Eden theorem
was subsequently extended to finitely generated groups of subexponential growth by Mach̀ı
and Mignosi [25] and finally to all countable amenable groups by Mach̀ı, Scarabotti, and
the first author in [8].

Let us say that the dynamical system (X,α) has the Moore property if every surjective
endomorphism of (X,α) is pre-injective and that it has the Myhill property if every pre-
injective endomorphism of (X,α) is surjective. We say that the dynamical system (X,α)
has the Moore-Myhill property, or that it satisfies the Garden of Eden theorem, if it has
both the Moore and the Myhill properties.
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The goal of the present paper is to establish a version of the Garden of Eden theorem
for principal algebraic dynamical systems associated with weakly expansive polynomials
over countable Abelian groups and with connected phase space. By an algebraic dynamical
system, we mean a dynamical system of the form (X,α), where X is a compact metrizable
Abelian group and α is an action of a countable group Γ on X by continuous group
automorphisms. Note that, in this case, the set ∆(X,α) = {x ∈ X : x is homoclinic
to 0X} ⊂ X, where 0X is the identity element of X, is a subgroup of X, called the
homoclinic group and two points x, y ∈ X are homoclinic if and only if x − y ∈ ∆(X,α),
that is, they belong to the same coset of ∆(X,α) in X. By Pontryagin duality, algebraic
dynamical systems with acting group Γ are in one-to-one correspondence with countable
left Z[Γ]-modules. Here Z[Γ] denotes the integral group ring of Γ. This correspondence has
been intensively studied in the last decades and revealed fascinating connections between
commutative algebra, number theory, harmonic analysis, ergodic theory, and dynamical
systems (see in particular the monograph [31] and the survey [20]).

Let f ∈ Z[Γ] and consider the cyclic left Z[Γ]-module Mf := Z[Γ]/Z[Γ]f obtained by
quotienting the ring Z[Γ] by the principal left ideal generated by f . The algebraic dynamical
system associated by Pontryagin duality with Mf is denoted by (Xf , αf ) and is called the
principal algebraic dynamical system associated with f .

We denote by C0(Γ) the real vector space of all functions g : Γ→ R vanishing at infinity
(i.e., for every ε > 0 there exists a finite subset Ω ⊂ Γ such that |gγ| < ε for all γ ∈ Γ \Ω).
Moreover, for f ∈ Z[Γ] and g ∈ C0(Γ) we denote by fg ∈ C0(Γ) their convolution product
(see Subsection 2.3).

Definition 1.1. A polynomial f ∈ Z[Γ] is said to be weakly expansive provided:

(we-1) ∀g ∈ C0(Γ), fg = 0 ⇒ g = 0;
(we-2) ∃ω ∈ C0(Γ) such that fω = 1Γ.

Our first result is the following.

Theorem 1.2 (Garden of Eden theorem for algebraic actions associated with weakly
expansive polynomials). Let Γ be a countable Abelian group and f ∈ Z[Γ]. Suppose that f
is weakly expansive and that Xf is connected. Then the dynamical system (Xf , αf ) has the
Moore-Myhill property.

There are two main ingredients in our proof of Theorem 1.2. The first one, Corollary
4.5, is a rigidity result (a generalization of [1, Corollary 1]) for algebraic dynamical systems
associated with weakly expansive polynomials and with connected phase space. We use
it to prove that, under the above conditions, every endomorphism of (Xf , αf ) is affine
with linear part of the form x 7→ rx for some r ∈ Z[Γ]. The second one, Theorem
3.9, a generalization of [19, Lemma 4.5]), asserts that, if f is weakly expansive, then the
homoclinic group ∆(Xf , αf ), equipped with the induced action of Γ, is dense in Xf and
isomorphic, as a Z[Γ]-module, to Z[Γ]/Z[Γ]f ∗, where f ∗ ∈ Z[Γ] is defined by (f ∗)γ := fγ−1

for all γ ∈ Γ.
Recall that a dynamical system (X,α) is called expansive if there exists a constant ε0 > 0

such that, for every pair of distinct points x, y ∈ X, there exists an element γ ∈ Γ such
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that d(γx, γy) > ε0. Such a constant ε0 is called an expansivity constant for (X,α, d). The
fact that (X,α) is expansive or not does not depend on the choice of the metric d. For
instance, the shift system (AΓ, σ) is expansive for every countable group Γ whenever the
alphabet A is finite.

Let f ∈ Z[Γ] and suppose that the associated principal algebraic dynamical system
(Xf , αf ) is expansive. In Corollary 3.12 we show that f is weakly expansive, and from
Theorem 1.2 we thus deduce the following:

Corollary 1.3. Let Γ be a countable Abelian group and f ∈ Z[Γ]. Suppose that the
principal algebraic dynamical system (Xf , αf ) associated with f is expansive and that Xf

is connected. Then the dynamical system (Xf , αf ) has the Moore-Myhill property. �

This result was obtained by the first two named authors in [7] and, shortly after, as
a particular case of a much more general Garden of Eden theorem for expansive actions
(where Γ is amenable and no connectedness of the phase space is assumed) proved by the
third author in [18].

Recall that a polynomial f ∈ R[Γ] is said to be well-balanced (cf. [4, Definition 1.2]) if:

(wb-1)
∑

γ∈Γ fγ = 0,

(wb-2) fγ ≤ 0 for all γ ∈ Γ \ {1Γ},
(wb-3) fγ = fγ−1 for all γ ∈ Γ (i.e., f is self-adjoint),
(wb-4) and supp(f) := {γ ∈ Γ : fγ 6= 0}, the support of f , generates Γ.

If f ∈ Z[Γ] is well-balanced, the associated dynamical system (Xf ,Γ) is called a har-

monic model. As an example, for Γ = Zd, the polynomial f = 2d −
∑d

i=1(ui + u−1
i ) ∈

Z[u1, u
−1
1 , . . . , ud, u

−1
d ] = Z[Zd] is well-balanced. The corresponding dynamical system is

called the Laplace harmonic model and shares interesting measure theoretic and entropic
properties with other different models in mathematical physics, probability theory, and dy-
namical systems such as the Abelian sandpile model, spanning trees,and the dimer models
[32, 4].

Since a well-balanced polynomial f ∈ Z[Γ], with Γ infinite countable not virtually Z or
Z2, is weakly expansive (cf. Proposition 3.14), from Theorem 1.2 we deduce:

Corollary 1.4 (Garden of Eden theorem for harmonic models). Let Γ be an infinite count-
able Abelian group which is not virtually Z or Z2 (e.g. Γ = Zd, with d ≥ 3). Suppose that
f ∈ Z[Γ] is well-balanced and that Xf is connected. Then the dynamical system (Xf , αf )
has the Moore-Myhill property. �

Let (X,α) be an algebraic dynamical system and 1 ≤ p ≤ ∞. In [10] (see also Subsection
3.1), the p-homoclinic group ∆p(X,α) ⊂ X of (X,α) was introduced. We say that a map
τ : X → X is p-pre-injective if the restriction of τ to each coset of the p-homoclinic group
∆p(X,α) is injective. Note that ∆∞(X,α) = ∆(X,α) so that∞-pre-injectivity is the same
thing as pre-injectivity.

After identifying Z[Zd] with Z[u1, u
−1
1 , . . . , ud, u

−1
d ], the integral ring of Laurent polyno-

mials in d commuting indeterminates, every polynomial f ∈ Z[Zd] yields a function Sd → C
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given by (s1, . . . , sd) 7→ f(s1, . . . , sd), where S := {z ∈ C : |z| = 1}. We denote by

Z(f) := {(s1, . . . , sd) ∈ Sd : f(s1, . . . , sd) = 0}
its zero-set. Recall that an irreducible polynomial f ∈ Z[Γ] is atoral [22, Definition 2.1] if
there is some g ∈ Z[Γ] such that g 6∈ Z[Γ]f and Z(f) ⊂ Z(g).

We are now in position to state the following:

Theorem 1.5 (A Garden of Eden theorem for irreducible atoral polynomials). Let f ∈
Z[Zd] be an irreducible atoral polynomial such that Z(f) is contained in the image of the
intersection of [0, 1]d and a finite union of hyperplanes in Rd under the composition of the
quotient map Rd → Td := Rd/Zd and the standard homeomorphism Td → Sd (e.g., when
d ≥ 2 such that Z(f) is finite). Let τ : Xf → Xf be a Γ-equivariant continuous map. Then
the following conditions are equivalent:

(a) τ is surjective,
(b) τ is pre-injective,
(c) τ is p-pre-injective for all 1 ≤ p ≤ ∞,
(d) τ is p-pre-injective for some 1 ≤ p ≤ ∞,
(e) τ is 1-pre-injective.

In particular, (Xf , αf ) satisfies the Moore-Myhill property.

Our last result is the following:

Corollary 1.6 (Garden of Eden theorem for Laplace harmonic models). The Laplace
harmonic model (i.e. the principal algebraic dynamical system (Xf , αf ) associated with

the polynomial f = 2d −
∑d

i=1(ui + u−1
i ) ∈ Z[u1, u

−1
1 , . . . , ud, u

−1
d ] = Z[Zd]) satisfies the

Moore-Myhill property if and only if d ≥ 2.

Our motivation for the present work originated from a sentence of Gromov [13, p. 195]
suggesting that the Garden of Eden theorem could be extended to dynamical systems with
a suitable hyperbolic flavor other than shifts and subshifts. A first step in that direction
was made in [6], where the two first named authors proved that all Anosov diffeomorphisms
on tori generate Z-actions with the Moore-Myhill property, and another one in [5], where
sufficient conditions for expansive actions of countable amenable groups to have the Myhill
property were presented. Finally, in [18] the third named author proved the very general
Garden of Eden theorem for expansive actions of amenable groups we alluded to above.

The paper is organized as follows. Section 2 introduces notation and collects background
material on algebraic dynamical systems.

In Section 3 we study several weak forms of expansivity, namely p-expansivity and p-
homoclinicity (from [10]), and the new notions of homoclinical expansive action and of
principal algebraic action associated with a weakly expansive polynomial. In Subsection
3.4 we then show that polynomials yielding principal algebraic expansive actions are weakly
expansive and, in Subsection 3.5, we prove that well-balanced polynomials, with not vir-
tually Z or Z2 infinite countable group, are weakly expansive as well.

In Section 4, we discuss topological rigidity of algebraic dynamical systems associated
with weakly expansive polynomials. The proof of Theorem 1.2 is then given in Section 5.
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In the following section we discuss the notion of atorality for irreducible polynomials in
Z[Zd], we present a few examples, and give the proofs of Theorem 1.5 and of Corollary 1.6.
In the last section, we collect some final remarks. In particular, we exhibit some exam-
ples showing that Theorem 1.2 becomes false if weak expansivity of f ∈ Z[Γ] is replaced
by the weaker hypothesis that the homoclinic group ∆(Xf , αf ) is dense in Xf , or that
the dynamical system (Xf , αf ) is mixing. We also introduce and discuss the notions of
p-pre-injectivity, p-Moore, and p-Myhill properties for algebraic actions, and prove some
variations on the Garden of Eden theorem in this framework.

Acknowledgments. We express our gratitude to the referees for their careful reading of
the paper and for providing useful and interesting comments that helped us improving our
presentation. Hanfeng Li was partially supported by NSF and NSFC grants.

2. Background material and preliminaries

2.1. Notation. We denote by N := {0, 1, 2 . . .} the set of all natural numbers, by S :=
{z ∈ C : |z| = 1} the multiplicative group of all complex numbers of modulus one, and
by T := R/Z the additive group of real numbers mod Z. For any integer d ≥ 1 we
denote by Θ: Td → Sd the isomorphism of topological groups given by Θ(t1, . . . , td) =
(exp(2πt1i), . . . , exp(2πtdi)).

2.2. Group actions. Let Γ be a countable group. We use multiplicative notation for the
group operation in Γ and denote by 1Γ its identity element.

An action of Γ on a set X is a map α : Γ × X → X such that α(1Γ, x) = x and
α(γ1, α(γ2, x)) = α(γ1γ2, x) for all γ1, γ2 ∈ Γ and x ∈ X. In the sequel, to simplify, we
shall write γx instead of α(γ, x), if there is no risk of confusion.

If α is an action of Γ on a set X, we denote by Fix(X,α) the set of points of X that are
fixed by α, i.e., the set of points x ∈ X such that γx = x for all γ ∈ Γ.

If Γ acts on two sets X and Y , a map τ : X → Y is said to be Γ-equivariant if one has
τ(γx) = γτ(x) for all γ ∈ Γ and x ∈ X.

2.3. Convolution. Let Γ be a countable group. We denote by `∞(Γ) the vector space
consisting of all formal series

f =
∑
γ∈Γ

fγγ,

with coefficients fγ ∈ R for all γ ∈ Γ and

‖f‖∞ := sup
γ∈Γ
|fγ| <∞.

For 1 ≤ p <∞ we denote by `p(Γ) the vector subspace of `∞(Γ) consisting of all f ∈ `∞(Γ)
such that

‖f‖p :=

(∑
γ∈Γ

|fγ|p
) 1

p

<∞.
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Note that `1(Γ) ⊂ `p(Γ) ⊂ `q(Γ) ⊂ `∞(Γ) for all 1 < p < q < ∞. When f ∈ `∞(Γ) and
g ∈ `1(Γ) (resp. f ∈ `1(Γ) and g ∈ `∞(Γ)) we define the convolution product fg ∈ `∞(Γ)
by setting

(2.1) (fg)γ :=
∑

γ1,γ2∈Γ:
γ1γ2=γ

fγ1gγ2 =
∑
δ∈Γ

fγδ−1gδ

for all γ ∈ Γ. Note that ‖fg‖∞ ≤ ‖f‖∞ · ‖g‖1 (resp. ‖fg‖∞ ≤ ‖f‖1 · ‖g‖∞). We have the
associativity rule

(2.2) (fg)h = f(gh) for all f ∈ `∞(Γ), g, h ∈ `1(Γ) (resp. f, g ∈ `1(Γ), h ∈ `∞(Γ)).

We denote by R[Γ] = {f ∈ `∞(Γ) : fγ = 0 for all but finitely many γ ∈ Γ} and
by Z[Γ] = {f ∈ R[Γ] : fγ ∈ Z for all γ ∈ Γ} the real and, respectively, the integral
group ring of Γ. Observe that the convolution product extends the group operation on
Γ ⊂ Z[Γ] ⊂ R[Γ].

Note also that, as a Z-module, Z[Γ] is free with base Γ.
If we take Γ = Zd, then Z[Γ] is the Laurent polynomial ring Rd := Z[u±1

1 , . . . , u±1
d ] on d

commuting indeterminates u1, . . . , ud.
Recall that C0(Γ) denotes the vector space consisting of all functions f : Γ→ R vanishing

at infinity: we express this condition by writing limγ→∞ f(γ) = 0. We then have the
inclusions

(2.3) Γ ⊂ Z[Γ] ⊂ R[Γ] ⊂ `1(Γ) ⊂ `p(Γ) ⊂ C0(Γ) ⊂ `∞(Γ),

for all 1 ≤ p <∞. Moreover, there is a natural involution f 7→ f ∗ on `∞(Γ) defined by

(2.4) (f ∗)γ := fγ−1

for all f ∈ `∞(Γ) and γ ∈ Γ. Observe that every set in (2.3) is ∗-invariant and that

(2.5) (fg)∗ = g∗f ∗ for all f ∈ `∞(Γ) and g ∈ `1(Γ) (resp. f ∈ `1(Γ) and g ∈ `∞(Γ)).

The normed space (`1(Γ), ‖ · ‖1) is a unital Banach *-algebra for the convolution product
and the involution. The unity element of `1(Γ) is 1Γ. From the associative rule in Γ and
linearity one easily shows that if f, h ∈ R[Γ] and g ∈ `∞(Γ) then

(2.6) (fg)h = f(gh).

Let now k, n ∈ N and denote by Matn,k(Z[Γ]) := {(aij)1≤i≤n
1≤j≤k

: aij ∈ Z[Γ]} the space

of all n-by-k matrices with coefficients in the group ring Z[Γ]. We identify Z[Γ]k (resp.
Z[Γ]n) and Mat1,k(Z[Γ]) (resp. Mat1,n(Z[Γ])) so that if g = (g1, g2, . . . , gn) ∈ Z[Γ]n and
A = (aij)1≤i≤n

1≤j≤k
∈ Matn,k(Z[Γ]), the element gA ∈ Z[Γ]k is defined by (gA)j :=

∑n
i=1 g

iaij ∈

Z[Γ], that is,

(2.7) (gA)jγ =
n∑
i=1

∑
η∈Γ

giγηa
ij
η−1
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for all j = 1, 2, . . . , k and γ ∈ Γ. Given A = (aij)1≤i≤n
1≤j≤k

∈ Matn,k(Z[Γ]), we define

(2.8) A∗ =
(
(aji)∗

)
1≤i≤k
1≤j≤n

∈ Matk,n(Z[Γ]).

Note that when k = n = 1 and A = f ∈ Z[Γ], then (2.8) reduces to (2.4). Also, we set

‖A‖∞ = sup
1≤i≤n
1≤j≤k

sup
γ∈Γ
|aijγ |

and

‖A‖1 =
∑

1≤i≤n
1≤j≤k

‖aij‖1 =
∑

1≤i≤n
1≤j≤k

∑
γ∈Γ

|aijγ |.

2.4. Algebraic dynamical systems. An algebraic dynamical system is a pair (X,α),
whereX is a compact metrizable Abelian topological group and α is an action of a countable
group Γ on X by continuous group automorphisms.

As an example, if A is a compact metrizable Abelian topological group (e.g. A = T) and
Γ a countable group, then the system (AΓ, σ), where AΓ = {x : Γ → A} is equipped with
the product topology, and σ is the shift action, defined by

(σ(γ, x))(γ′) := x(γ−1γ′) for all γ, γ′ ∈ Γ and x ∈ AΓ,

is an algebraic dynamical system.
Let (X,α) be an algebraic dynamical system with acting group Γ. As X is compact and

metrizable, its Pontryagin dual X̂ is a discrete countable Abelian group.

There is a dual left Z[Γ]-module structure on X̂ induced by the action of Γ on X.
Conversely, if M is a countable left Z[Γ]-module and we equip M with its discrete topology,

then its Pontryagin dual M̂ is a compact metrizable Abelian group and there is, by duality,

an action αM of Γ on M̂ by continuous group automorphisms, so that (M̂, αM) is an
algebraic dynamical system. In this way, algebraic dynamical systems with acting group Γ
are in one-to-one correspondence with countable left Z[Γ]-modules (see [31], [20] for more
details).

2.5. Finitely presented algebraic dynamical systems. Let Γ be a countable group.
One says that an algebraic dynamical system (X,α) with acting group Γ is finitely gener-

ated (resp. finitely presented) if its Pontryagin dual X̂ is finitely generated (resp. finitely
presented) as a left Z[Γ]-module.

Let now k, n ∈ N and A ∈ Matn,k(Z[Γ]). Then Z[Γ]nA is a finitely generated Z[Γ]-
submodule of Z[Γ]k and the quotient MA := Z[Γ]k/Z[Γ]nA is a finitely presented left
Z[Γ]-module. Note that every finitely presented left Z[Γ]-module is isomorphic to some
MA for k, n ∈ N and A ∈ Matn,k(Z[Γ]) suitably chosen.

To simplify notation, let us write XA instead of M̂A and αA instead of αMA
. The

algebraic dynamical system (XA, αA) is called the finitely presented algebraic dynamical
system associated with A.



GARDEN OF EDEN THEOREM FOR HARMONIC MODELS 9

If k = n = 1 and A = f ∈ Z[Γ], then Mf = Z[Γ]/Z[Γ]f , where Z[Γ]f is the principal
left ideal of Z[Γ] generated by f , and the algebraic dynamical system (Xf , αf ) is called the
principal algebraic dynamical system associated with f .

One can regard (XA, αA) as a group subshift of ((Tk)Γ, σ), i.e., as a closed subgroup of
(Tk)Γ that is invariant under the shift action σ of Γ on (Tk)Γ, in the following way. The
Pontryagin dual of (Tk)Γ is Z[Γ]k with pairing 〈·, ·〉 : Z[Γ]k × (Tk)Γ → T given by

〈g, x〉 =
k∑
j=1

∑
η∈Γ

gjηxj(η)

for all g = (g1, g2, . . . , gk) ∈ Z[Γ]k and x = (x1, x2, . . . , xk) ∈ (TΓ)k = (Tk)Γ. Then,

(2.9) XA = {x ∈ (Tk)Γ : xA∗ = 0(Tn)Γ},

and the action αA of Γ on XA ⊂ (Tk)Γ is the restriction to XA of the shift action σ.
In particular, if A = f ∈ Z[Γ], then (2.9) becomes

(2.10) Xf = {x ∈ TΓ : xf ∗ = 0TΓ}.
Consider the surjective map π : `∞(Γ)k → (Tk)Γ defined by π(g)(γ)i = giγ mod 1 for all

g = (g1, g2, . . . , gk) ∈ `∞(Γ)k, γ ∈ Γ, and i = 1, 2, . . . , k. We then denote by `∞(Γ,Z)k the
set consisting of all g ∈ `∞(Γ)k such that giγ ∈ Z for all γ ∈ Γ and i = 1, 2, . . . , k. From

(2.9) one easily deduces that if x ∈ (Tk)Γ and g ∈ `∞(Γ)k satisfies that π(g) = x, then
x ∈ XA if and only if gA∗ ∈ `∞(Γ,Z)n.

2.6. The homoclinic group. Let (X,α) be an algebraic dynamical system with acting
group Γ. The set of points in X that are homoclinic to 0X with respect to α is a Z[Γ]-
submodule ∆(X,α) ⊂ X, which is called the homoclinic group of (X,α) (cf. [19], [20]).
Note that x ∈ ∆(X,α) if and only if limγ→∞ γx = 0X . We can choose a compatible metric
d on X that is translation-invariant so that

d(γx, γy) = d(γx− γy, 0X) = d(γ(x− y), 0X)

for all x, y ∈ X and γ ∈ Γ. We deduce that x and y are homoclinic if and only if
x−y ∈ ∆(X,α). Moreover, a straightforward argument shows that for k ∈ N and x ∈ (Tk)Γ

the following conditions are equivalent:

(a) x ∈ ∆((Tk)Γ, σ);
(b) limγ→∞ x(γ) = 0Tk ;
(c) there exists g ∈ C0(Γ)k such that x = π(g).

2.7. Connectedness of the phase space. A non-zero element f ∈ Z[Γ] is called prim-
itive if there is no integer n ≥ 2 that divides all coefficients of f . Every nonzero element
f ∈ Z[Γ] can be uniquely written in the form f = mf0 with m a positive integer and f0

primitive. The integer m is called the content of f . For principal algebraic dynamical
systems with elementary amenable acting group we have the following criterion for con-
nectedness of the phase space. Recall (cf. for instance [9]) that the class of elementary
amenable groups is the smallest class of groups containing all finite groups and all Abelian
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groups that is closed under the operations of taking subgroups, quotiens, extensions, and
direct limits.

Proposition 2.1. Let Γ be a countable torsion-free elementary amenable group (e.g. Γ =
Zd). Let f ∈ Z[Γ] with f 6= 0. Then the following conditions are equivalent:

(a) Xf is connected;
(b) f is primitive.

Proof. (a) ⇒ (b): Suppose that f is not primitive. Then f = mg for some integer m ≥ 2
and g ∈ Z[Γ]. By [15, Theorem 1.4] the ring Q[Γ] is a domain. If g = hf for some h ∈ Z[Γ],
then 1

m
f = hf in Q[Γ], and hence h = 1

m
1Γ, which is a contradiction. Thus g + Z[Γ]f is a

nonzero element of Z[Γ]/Z[Γ]f , while m(g + Z[Γ]f) = 0. Therefore g + Z[Γ]f is a nonzero
torsion element of Mf , and hence Xf is not connected.

(b) ⇒ (a): Suppose that f is primitive and that Xf is not connected. Then Mf has
torsion, so that there exists a ∈Mf with finite order n ≥ 2. Replacing a by some integral
multiple of a, we may assume that n is a prime number p. Write a = g + Z[Γ]f for some
g ∈ Z[Γ]. Then pg = hf for some h ∈ Z[Γ]. Denote by ψ the natural ring morphism
Z[Γ] → (Z/pZ)[Γ] obtained by reducing coefficients modulo p. Then ψ(h)ψ(f) = 0. By
[15, Theorem 1.4], the ring (Z/pZ)[Γ] is a domain. Since f is primitive, ψ(f) 6= 0. Thus
ψ(h) = 0, i.e. h = pw for some w ∈ Z[Γ]. Then pg = hf = pwf , and hence g = wf ∈ Z[Γ].
This means that a = 0, which is a contradiction. �

3. Weak forms of expansivity for algebraic actions

In this section we present and study weak forms of expansivity for algebraic actions.
This applies in particular to the harmonic models introduced in [32] (see also [4]).

3.1. p-expansive algebraic actions and p-homoclinic groups. In this section we re-
view the notions of p-expansive algebraic actions and of p-homoclinic groups introduced
by Chung and the third named author in [10, Sections 4 and 5].

Let Γ be a countable group acting by automorphisms of a compact metrizable Abelian
group X. Let also 1 ≤ p ≤ ∞.

For x ∈ X and χ ∈ X̂, define the function Ψ′x,χ on Γ by setting

(3.1) Ψ′x,χ(γ) = e2πi〈γx,χ〉 − 1,

for all γ ∈ Γ.
One then says that the algebraic dynamical system (X,α) is p-expansive provided there

exists a finite subset W ⊂ X̂ and ε > 0 such that 0X is the only point x ∈ X satisfying

(3.2)
∑
χ∈W

‖Ψ′x,χ‖p < ε.

The following collects the main properties of p-expansivity.

Theorem 3.1 ([10, Proposition 4.3 and Theorem 4.11]). Let (X,Γ, α) be an algebraic
dynamical system. Let 1 ≤ p ≤ ∞. Then the following hold:
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(1) If α is p-expansive, then it is q-expansive for all 1 ≤ q ≤ p.

(2) If α is p-expansive, then X̂ is a finitely generated left Z[Γ]-module.

(3) If α is p-expansive, then for any finite subset W ⊂ X̂ generating X̂ as a left Z[Γ]-
module, there exists ε > 0 such that 0X is the only point x ∈ X satisfying (3.2).

(4) α is ∞-expansive if and only if it is expansive.
(5) Let k, n ∈ N and A ∈ Matn,k(Z[Γ]). Then αA is p-expansive if an only if the R[Γ]-

morphism `p(Γ)k → `p(Γ)n sending g to gA∗ is injective. Moreover, if in addition, Γ
is amenable, then the following conditions are equivalent:
(a) the topological entropy of (XA, αA) is finite;
(b) αA is 1-expansive;
(c) αA is 2-expansive;
(d) the Z[Γ]-morphism Z[Γ]k → Z[Γ]n sending g to gA∗ is injective;
(e) the R[Γ]-morphism R[Γ]k → R[Γ]n sending g to gA∗ is injective.

We now recall the definitions of a p-homoclinic point and of the p-homoclinic group (cf.
[10, Section 5]). Let Γ be a countable group acting by automorphisms of the compact
metrizable Abelian group X and let 1 ≤ p < ∞. One says that a point x ∈ X is p-

homoclinic provided that Ψ′x,χ ∈ `p(Γ) for all χ ∈ X̂. Let then ∆p(X,α) denote the set of
all p-homoclinic points of X. This is called the p-homoclinic group (cf. Theorem 3.2.(2))
of the algebraic dynamical system (X,α). Also one sets ∆∞(X,α) := ∆(X,α). Note that
for p = 1, the set ∆1(X,α) was studied in [32] and [21]. Here below we collect some basic
properties of the p-homoclinic groups.

Theorem 3.2 ([10, Proposition 5.2, Lemma 5.3, and Lemma 5.4]). Let Γ be a countable
group acting by automorphisms of the compact metrizable Abelian group X and let 1 ≤ p ≤
∞. Then the following hold:

(1) One has ∆p(X,α) ⊂ ∆q(X,α) for all p ≤ q ≤ ∞.
(2) ∆p(X,α) is a Γ-invariant subgroup of X.
(3) If α is p-expansive, then ∆p(X,α) is countable.
(4) If Z[Γ] is left Noetherian and α is p-expansive, then ∆p(X,α) is a finitely generated

left Z[Γ]-module.
(5) Assume that p < ∞ and let k, n ∈ N and A ∈ Matn,k(Z[Γ]). If αA is p-expansive,

then ∆p(XA, αA) is isomorphic to a Z[Γ]-submodule of Z[Γ]n/Z[Γ]kA∗. If, in addition,
the R[Γ]-morphism `p(Γ)k → `p(Γ)n sending g to gA∗ is invertible, then ∆p(XA, αA) is
isomorphic to Z[Γ]n/Z[Γ]kA∗.

3.2. Homoclinically expansive actions. In this section we introduce and study a new
form of weak expansivity for dynamical systems.

Definition 3.3. Let (X,α) be a dynamical system with acting group Γ. One says that
the action is homoclinically expansive if there exists a constant ε0 > 0 such that, for each
pair of distinct homoclinic points x, y ∈ X, there exists an element γ ∈ Γ such that
d(γx, γy) > ε0, where d is any compatible metric on X. Such a constant ε0 is then called
a homoclinic-expansivity constant for (X,α, d).
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Note that the fact that (X,α) is homoclinically expansive is in fact independent of

the choice of the metric d by compactness of X. A pseudometric d̃ on X is said to be
dynamically-generating if for all distinct x, y ∈ X there is γ ∈ Γ such that d̃(γx, γy) > 0
(cf. [14, Definition 9.35]). Now, given a dynamically-generating continuous pseudometric

d̃ on X, we can define a compatible metric d on X by setting

d(x, y) =
∞∑
n=0

1

2n
d̃(γnx, γny),

where γ0 = 1Γ, γ1, . . . is an enumeration of the elements of Γ. Then

sup
γ∈Γ

d̃(γx, γy) ≤ sup
γ∈Γ

d(γx, γy) ≤ 2 sup
γ∈Γ

d̃(γx, γy)

for all x, y ∈ X. Thus in Definition 3.3 we may take d to be any dynamically-generating
continuous pseudometric on X.

In the following, we study homoclinic expansivity for algebraic actions. Let (X,α) be
an algebraic dynamical system with acting group Γ.

For any t ∈ R, we set |t + Z| := minm∈Z |t + m|. More generally, for k ∈ N and
t = (t1, t2, . . . , tk) ∈ Rk we set

(3.3) |t+ Zk| := max
1≤j≤k

|tj + Z|.

Given x ∈ X and χ ∈ X̂, define a function Ψx,χ on Γ by setting

(3.4) Ψx,χ(γ) = |〈γx, χ〉|,

for all γ ∈ Γ.
As a comparison between (3.1) and (3.4), note that there is some constant C > 0 such

that

C|t| ≤ |e2πit − 1| ≤ C−1|t|
for all t ∈ [−1/2, 1/2]. It follows that, for all 1 ≤ p ≤ ∞,

C‖Ψx,χ‖p ≤ ‖Ψ′x,χ‖p ≤ C−1‖Ψx,χ‖p.

It is easy to see that for any x ∈ X, one has that x ∈ ∆(X,α) if and only if Ψx,χ ∈ C0(Γ)

for all χ ∈ X̂.

Proposition 3.4. Let (X,α) be an algebraic dynamical system with acting group Γ. Then
the following conditions are equivalent:

(a) the action α is homoclinically expansive;

(b) there exist a finite subset W of X̂ and ε > 0 such that 0X is the only point x in ∆(X,α)
satisfying

(3.5)
∑
χ∈W

‖Ψx,χ‖∞ < ε.
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Proof. Take a function h ∈ `1(X̂) such that h(χ) > 0 for every χ ∈ X̂. Consider the
compatible metric ρ on X defined by

ρ(x, y) =
∑
χ∈X̂

h(χ)|〈x, χ〉 − 〈y, χ〉| =
∑
χ∈X̂

h(χ)|〈x− y, χ〉|.

Assume that (b) holds with W and ε and let us set ε0 := εminχ∈W h(χ)/|W |. Let (x, y)
be a homoclinic pair of X with supγ∈Γ ρ(γx, γy) < ε0. Note that

sup
γ∈Γ

ρ(γx, γy) = sup
γ∈Γ

∑
χ∈X̂

h(χ)|〈γx− γy, χ〉|

= sup
γ∈Γ

∑
χ∈X̂

h(χ)Ψx−y,χ(γ)

≥ sup
γ∈Γ

(min
χ∈W

h(χ))
∑
χ∈W

Ψx−y,χ(γ)

≥ minχ∈W h(χ)

|W |
∑
χ∈W

‖Ψx−y,χ‖∞.

Thus
∑

χ∈W ‖Ψx−y,χ‖∞ < ε, and hence x = y. This shows that ε0 is a homoclinic-

expansivity constant for (X,α), and (b)⇒(a) follows.
Now assume that (a) holds and let ε0 > 0 be a homoclinic-expansivity constant for

(X,α). Take a finite subset W of X̂ such that
∑

χ∈X̂\W h(χ) < ε0/2 and set ε :=

ε0/(2 maxχ∈W h(χ)). Let x ∈ ∆(X,α) with
∑

χ∈W ‖Ψx,χ‖∞ < ε. Then

sup
γ∈Γ

ρ(γx, γ0X) = sup
γ∈Γ

∑
χ∈X̂

h(χ)Ψx,χ(γ)

≤ ε0/2 + sup
γ∈Γ

∑
χ∈W

h(χ)Ψx,χ(γ)

≤ ε0/2 + (max
χ∈W

h(χ))
∑
χ∈W

‖Ψx,χ‖∞

< ε0,

and hence x = 0X . This shows that (a)⇒(b). �

Proposition 3.5. Let (X,Γ, α) be an algebraic dynamical system. Suppose that α is homo-

clinically expansive and X̂ is finitely generated (as a left Z[Γ]-module). Then the following
hold:

(1) α is p-expansive for all 1 ≤ p <∞;

(2) for any finite subset W of X̂ generating X̂ as a left Z[Γ]-module, there exists ε > 0
such that 0X is the only point x in ∆(X,α) satisfying

∑
χ∈W ‖Ψx,χ‖∞ < ε.
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Proof. Note that for any x ∈ X, χ, χ′ ∈ X̂, and u, v ∈ Z[Γ] we have

‖Ψx,uχ+vχ′‖q ≤ ‖u‖1‖Ψx,χ‖q + ‖v‖1‖Ψx,χ′‖q(3.6)

for all 1 ≤ q ≤ ∞.
(1). Since α is homoclinically expansive, by virtue of Proposition 3.4 we can find a finite

subset W of X̂ and ε > 0 satisfying (3.5). Enlarging W if necessary, we may assume that

W generates X̂ as a left Z[Γ]-module. Let 1 ≤ p < ∞. If x ∈ X and
∑

χ∈W ‖Ψx,χ‖p < ε,

then from (3.6) we know that x ∈ ∆p(X,α) ⊂ ∆(X,α), and using
∑

χ∈W ‖Ψx,χ‖∞ ≤∑
χ∈W ‖Ψx,χ‖p < ε, we conclude that x = 0X . Therefore α is p-expansive.

(2) follows from Proposition 3.4 and (3.6). �

For finitely presented (e.g. principal) algebraic actions we have the following characteri-
zation of homoclinic expansivity (compare with Theorem 3.1.(5)).

Theorem 3.6. Let Γ be a countable group. Let k, n ∈ N and A ∈ Matn,k(Z[Γ]). Then the
following conditions are equivalent:

(a) (XA, αA) is homoclinically expansive;
(b) the linear map C0(Γ)k → C0(Γ)n sending g to gA∗ is injective.

Proof. For x ∈ XA consider the function Φx ∈ `∞(Γ) defined by Φx(γ) := |xγ| for all γ ∈ Γ,
where | · | is as in (3.3).

Assume that (b) fails. Then gA∗ = 0 for some nonzero g ∈ C0(Γ)k. As a consequence, for

all λ ∈ R one also has λgA∗ = 0 and hence π(λg) ∈ ∆(XA, αA). Let W ⊂ X̂A denote the
image of the canonical basis of Z[Γ]k under the quotient map Z[Γ]k → Z[Γ]k/Z[Γ]nA. Note

that W then generates X̂A as a left Z[Γ]-module. When λ → 0, one has ‖Φπ(λg)‖∞ → 0,
and hence

∑
χ∈W ‖Ψπ(λg),χ‖∞ → 0. Since g 6= 0, when |λ| is sufficiently small and nonzero,

π(λg) 6= 0XA
. From Proposition 3.5.(2), we deduce that (XA, αA) is not homoclinically

expansive. This shows (a)⇒(b).
Now assume that (b) holds so that, in particular, A 6= 0. Let d be a translation-

invariant compatible metric on XA. Then there is some ε0 > 0 such that for any x ∈ XA

with d(x, 0XA
) ≤ ε0, one has |x1Γ

| < 1/(2‖A‖1). Let x, y ∈ XA be two homoclinic points
with maxγ∈Γ d(γx, γy) ≤ ε0. Then x − y ∈ ∆(XA, αA), and for any γ ∈ Γ we have
d(γ(x − y), 0XA

) ≤ ε0, and hence |(x − y)γ−1| = |(γ(x − y))1Γ
| < 1/(2‖A‖1). Let g be the

unique element of `∞(Γ)k satisfying ‖g‖∞ ≤ 1/(2‖A‖1) and π(g) = x− y. Since x− y is in
∆(XA, αA), we have g ∈ C0(Γ)k. It follows that ‖gA∗‖∞ ≤ ‖g‖∞‖A‖1 ≤ 1/2 and therefore
gA∗ ∈ `∞(Γ,Z). Thus, gA∗ = 0. By (b) we have g = 0, and hence x = y. This shows that
ε0 is a homoclinic expansivity constant for (XA, αA), and (b)⇒(a) follows as well. �

Note that when n = k = 1 and A = f ∈ Z[Γ], condition (b) in Theorem 3.6 (and
therefore homoclinic expansivity of αf ) is equivalent to (we-1) in Definition 1.1.

Proposition 3.7. Let Γ be a countable group. Let k, n ∈ N and A ∈ Matn,k(Z[Γ]) and
suppose that (XA, αA) is homoclinically expansive. Then ∆(XA, αA) is isomorphic to a left
Z[Γ]-submodule of Z[Γ]n/Z[Γ]kA∗.
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Proof. For each x ∈ ∆(XA, αA), take x̃ ∈ C0(Γ)k with π(x̃) = x. Then, x̃A∗ ∈ `∞(Γ,Z)n ∩
C0(Γ)n = Z[Γ]n. If we choose another x̃′ ∈ C0(Γ)k with π(x̃′) = x, then x̃− x̃′ ∈ `∞(Γ,Z)k∩
C0(Γ)k = Z[Γ]k, and hence x̃A∗ − x̃′A∗ ∈ Z[Γ]kA∗. Thus the map ϕ : ∆(XA, αA) →
Z[Γ]n/Z[Γ]kA∗ sending x to x̃A∗+Z[Γ]kA∗ is well defined. Clearly, ϕ is a left Z[Γ]-module
morphism. Let x ∈ ker(ϕ). Then x̃A∗ = gA∗, for some g ∈ Z[Γ]k. By virtue of Theorem
3.6, we have x̃ = g and hence x = 0XA

. Thus ϕ is injective. �

Examples 3.8. Here below we describe some examples of principal algebraic actions and
discuss their homoclinic expansivity.

(1) Suppose that γ ∈ Γ has infinite order and denote by Γ′ ∼= Z the subgroup of Γ it
generates. It follows from [23, Theorem 5.1] that for any nonzero f ∈ C[Γ′] and any
nonzero g ∈ C0(Γ′), one has fg 6= 0. Using the right-coset decomposition of Γ, it follows
that for any nonzero f ∈ Z[Γ′] and any nonzero g ∈ C0(Γ), one has fg 6= 0. This shows
that the associated principal algebraic action αf is homoclinically expansive. Note that
if f := 1Γ− γ ∈ Z[Γ′], then f is not invertible in `1(Γ) and hence, by [11, Theorem 3.2]
(cf. Theorem 3.11 below), αf is not expansive. (cf. [10, Example 4.6].)

(2) Let Γ = Zd and let f ∈ R[Γ]. Let us denote by P : Rd → Sd the composition of the
quotient map Rd → Td and the homeomorphism Θ: Td → Sd. It follows from [24,
Theorem 2.2] that its zero-set Z(f) is contained in the P -image of the intersection of
[0, 1]d and a finite union of hyperplanes in Rd if and only if fg 6= 0 for all nonzero
g ∈ C0(Γ). From Theorem 3.6 we thus deduce that the principal algebraic action
associated with f ∈ Z[Γ] is homoclinically expansive if and only if Z(f) is contained
in the image of the intersection of [0, 1]d and a finite union of hyperplanes in Rd under
P . This is the case, for instance, if Z(f) is finite. (cf. [10, Example 4.9].)

(3) Suppose that Γ contains two elements γ, γ′ ∈ Γ that generate a non-Abelian free
subsemigroup. Consider the polynomial f := ±3 ·1Γ−(1Γ +γ−γ2)γ′ ∈ Z[Γ]. It follows
from an argument similar to that in [19, Example 7.2] that the associated principal
algebraic action is homoclinically expansive (though not expansive by [17, Example
A.1] and [11, Theorem 3.2]). (cf. [10, Example 4.10].)

(4) In [10, Example 4.7] it is shown that for Γ = Zd, d ≥ 2, the element h = 2d − 1 −∑d
j=1(uj+u−1

j ) ∈ Z[u1, u
−1
1 , · · · , ud, u−1

d ] = Z[Zd] satisfies that, for any 2d
d−1

< p ≤ +∞,
the corresponding principal algebraic action αh is not p-expansive. It follows from
Proposition 3.5.(1) that αh is not homoclinically expansive either.

Let us remark that, if d = 2, so that h = 3−u1−u−1
1 −u2−u−1

2 ∈ Z[Z2], the zero-set
Z(h) is a 1-dimensional curve. As shown in [19, Example 7.3], any measure supported
on Z(h) with a smooth density yields, via its Fourier coefficients, a homoclinic point.
As a consequence, the homoclinic group ∆(Xh, αh) is uncountable and therefore there
are no nontrivial summable homoclinic points (∆1(Xh, αh) = {0Xh

}). Now, it is the
curvature of Z(f) which makes this possible. This example emphasizes why the con-
dition in Theorem 1.5 on the zero-set, namely, being contained in (the P -image of) a
finite union of hyperplanes, is at least reasonable, since it prevents the curvature of the
zero-set to lead to the above mentioned phenomenon. We thank one of the referees for
pointing this out to us.
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3.3. Principal algebraic actions associated with weakly expansive polynomials.

Theorem 3.9. Let Γ be a countable group and suppose that f ∈ Z[Γ] is weakly expansive.
Then the following hold:

(1) The element ω ∈ C0(Γ) satisfying (we-2) in Definition 1.1 is unique and, moreover,
ωf = 1Γ.

(2) ∆(Xf , αf ) is dense in Xf .
(3) ∆(Xf , αf ) is isomorphic to Z[Γ]/Z[Γ]f ∗ as a left Z[Γ]-module.

Proof. Let ω, ω′ ∈ C0(Γ) satisfying (we-2). Then fω = 1Γ = fω′ yields f(ω − ω′) = 0 and
condition (we-1) in Definition 1.1 infers ω = ω′. This proves uniqueness of ω. Moreover,
from (2.6) and (we-2) we deduce

f(ωf) = (fω)f = 1Γf = f = f1Γ.

Thus, f(ωf − 1Γ) = 0, and, again by (we-1), we get ωf = 1Γ. This shows (1).
In order to prove (2), let now a ∈ Z[Γ]/Z[Γ]f with 〈a, π(γω∗)〉 = 0 for all γ ∈ Γ (where

π : `∞(Γ)→ TΓ is as in Subsection 2.5). Write a = g + Z[Γ]f for some g ∈ Z[Γ]. Then

0 = 〈a, π(γω∗)〉

=
∑
δ∈Γ

(γω∗)δgδ + Z

=
∑
δ∈Γ

(γω∗)δ(g
∗)δ−1 + Z

= (γω∗g∗)1Γ
+ Z

= (ω∗g∗)γ−1 + Z
= (gω)γ + Z

for all γ ∈ Γ. Thus h := gω lies in `∞(Γ,Z). Since ω ∈ C0(Γ) and g ∈ Z[Γ], one has
gω ∈ C0(Γ). Therefore h ∈ `∞(Γ,Z) ∩ C0(Γ) = Z[Γ]. Using (2.6) and (1) it follows that

hf = (gω)f = g(ωf) = g1Γ = g,

and hence g = hf ∈ Z[Γ]f , which means that a = 0. We have {π(γω∗) : γ ∈ Γ} ⊂
∆(Xf , αf ) (cf. the end of Subsection 2.6) and by Pontryagin duality we conclude that
∆(Xf , αf ) is dense in Xf .

We are only left to prove (3). In the proof of Proposition (3.7) (here we take n = k = 1
and A = f) we have defined an injective left Z[Γ]-module morphism ϕ : ∆(Xf , αf ) →
Z[Γ]/Z[Γ]f ∗ sending x to x̃f ∗ + Z[Γ]f ∗. Let us show that ϕ is surjective. Let h ∈ Z[Γ].
Using (we-2) and (2.6) we deduce that

ϕ(hπ(ω∗)) = ϕ(π(hω∗)) = (hω∗)f ∗ + Z[Γ]f ∗ = h(ω∗f ∗) + Z[Γ]f ∗

= h(fω)∗ + Z[Γ]f ∗ = h1Γ + Z[Γ]f ∗ = h+ Z[Γ]f ∗.

This shows that ϕ is surjective. Therefore ϕ is indeed an isomorphism. �
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It follows from the proof of Theorem 3.9.(3) and the notation therein that the cyclic
Z[Γ]-module ∆(Xf , αf ) is generated by the element x∆ := π(ω∗) ∈ ∆(Xf , αf ), called the
fundamental homoclinic point of (Xf , αf ) (cf. [19]).

Let (X,α) be an algebraic dynamical system with an infinite acting group Γ and denote
by µ the Haar probability measure on X. Let r ∈ N with r ≥ 2. One says that (X,α) is
mixing of order r if, for all measurable subsets B1, B2, . . . , Br ⊂ X, one has

(3.7) µ(γ1B1 ∩ γ2B2 ∩ · · · ∩ γrBr) −→ µ(B1)µ(B2) · · ·µ(Br)

as γ−1
i γj → ∞ in Γ for all 1 ≤ i < j ≤ r. If (X,α) is mixing of order r = 2, one simply

says that (X,α) is mixing. Note that every mixing algebraic dynamical system is ergodic.
If (X,α) is mixing of order r for all r ≥ 2, one then says that (X,α) is mixing of all orders.

Observe that if A is a compact metrizable Abelian group and Γ is any infinite countable
group, then the Γ-shift (AΓ, σ) is mixing of all orders since (3.7) is trivially satisfied when
the Bis are cylinders, for all r ≥ 2.

It follows from [4, Proposition 4.6] that an algebraic dynamical system (X,α) admitting
a dense homoclinic group is mixing of all orders. From Theorem 3.9.(2) we then deduce
the following:

Corollary 3.10. Let Γ be an infinite countable group and suppose that f ∈ Z[Γ] is weakly
expansive. Then the associated algebraic dynamical system (Xf , αf ) is mixing of all orders.

3.4. Expansive principal algebraic actions. The following result is due to Deninger
and Schmidt [11, Theorem 3.2] (see also [20, Theorem 5.1]).

Theorem 3.11. Let Γ be a countable group and f ∈ Z[Γ]. Then the following conditions
are equivalent:

(a) the dynamical system (Xf , αf ) is expansive;
(b) f is invertible in `1(Γ).

For other characterizations of expansivity for algebraic dynamical systems we refer to
[30, 31] (for Γ = Zd, d ∈ N), [26] (for Γ Abelian), [12] (for (X,α) finitely presented), [2]
(for X connected and finite-dimensional), and [10, Theorem 3.1].

As observed in [20], if f is lopsided, i.e., there exists an element γ0 ∈ Γ such that |fγ0| >∑
γ 6=γ0
|fγ|, then f is invertible in `1(Γ). On the other hand, there are f ∈ Z[Γ] invertible in

`1(Γ) that are not lopsided. For instance, if we take Γ = Z, then the polynomial u2−u−1 ∈
Z[Γ] = Z[u, u−1] is not lopsided although it is invertible in `1(Γ) (the associated principal
algebraic dynamical system is conjugate to the Z-system generated by Arnold’s cat map
(x1, x2) 7→ (x2, x1 + x2) on the 2-dimensional torus T2, see e.g. [31, Example 2.18.(2)]).

The following result justifies our terminology for weakly expansive polynomials.

Corollary 3.12. Let Γ be a countable group and f ∈ Z[Γ]. Suppose that the dynamical
system (Xf , αf ) is expansive. Then f is weakly expansive.

Proof. Expansivity of (Xf , αf ) implies, by Theorem 3.11, that f is invertible in `1(Γ). Then
ω := f−1 ∈ `1(Γ) ⊂ C0(Γ) yields (we-2) in Definition 1.1.
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Let now g ∈ C0(Γ) and suppose that fg = 0. Then, recalling (2.2), we deduce that

0 = ω0 = ω(fg) = (ωf)g = 1Γg = g,

and (we-1) follows as well. �

3.5. Harmonic models. Let f ∈ Z[Γ] be well-balanced. It follows from (2.10) that
x ∈ TΓ belongs to Xf if and only if x satisfies the harmonicity equation (mod 1)∑

η∈Γ

fηx(γη) = 0,

for all γ ∈ Γ. This explains the terminology. Note that for Γ = Zd, the polynomial
f ∈ Z[Γ] = Z[u1, u

−1
1 , . . . , ud, u

−1
d ] given by

f = 2d−
d∑
i=1

(ui + u−1
i )

is well-balanced and the corresponding harmonicity equation is the discrete analogue of
the Laplace equation (cf. Eq. (4.5) in [32]).

Lemma 3.13. Let Γ be a countable infinite group and f ∈ R[Γ]. Suppose that f is well-
balanced. Then the map g 7→ fg from C0(Γ) to C0(Γ) is injective. In particular, harmonic
models are homoclinically expansive.

Proof. Set

(3.8) µ := 1Γ −
1

f1Γ

f ∈ R[Γ].

Then µ is a probability measure on Γ which is symmetric and its support S := supp(µ)
generates Γ as a semigroup, by (wb-1), (wb-3), and (wb-4), respectively.

In order to show (we-1) we apply the maximum principle. Let g ∈ C0(Γ) and suppose
that fg = 0, equivalently, µg = g. Set M := maxδ∈Γ |gδ| and observe that A := {γ ∈ Γ :
|gγ| = M} is non-empty. Moreover, if γ ∈ A one has, using the triangle inequality and the
properties of µ we alluded to above,

M = |gγ| = |(µg)γ| ≤
∑
δ∈S

µδ−1|gδγ| ≤
∑
δ∈S

Mµδ = M,

forcing |gδγ| = M for all δ ∈ S. This shows that SA ⊂ A. A recursive argument immedi-
ately shows that SnA ⊂ A for all n ∈ N. Since S generates Γ as a semigroup, we get that
A = Γ. In other words, |g| is a constant function. As g ∈ C0(Γ), we conclude that g = 0.

The last statement follows immediately after Theorem 3.6. �

In the arguments preceding Lemma 4.8 in [4] it is shown that if Γ is a countable infinite
group which is not virtually Z or Z2 and f ∈ Z[Γ] is well-balanced, then

(3.9) ω :=
1

f1Γ

∞∑
k=0

µk ∈ C0(Γ),
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where µ is as in (3.8), satisfies that fω = 1Γ, so that (we-2) holds. Combining this with
Lemma 3.13, we deduce:

Proposition 3.14. Let Γ be a countable infinite group Γ that is not virtually Z or Z2.
Then every balanced polynomial f ∈ Z[Γ] is weakly expansive.

Remark 3.15. It is a well known fact in the theory of Markov chains (cf. for instance
[36, Definition 1.14]) that the sum in (3.9) expressing ω is (pointwise) convergent if and
only if the random walk on Γ associated with µ is transient (i.e., given any finite subset
Ω ⊂ Γ, there exists t(Ω) ∈ N such that, with probability one, the position x(t) ∈ Γ of the
random walker on Γ at time t ≥ t(Ω) satisfies that x(t) ∈ Γ \ Ω) and it is a deep result
of Varopoulos (cf. [33, 34] and [36, Theorem 3.24]) that this is the case exactly if Γ is not
virtually Z or Z2.

4. Topological rigidity

4.1. Affine maps. Let X and Y be two topological Abelian groups. A map τ : Y → X
is called affine if there is a continuous group morphism λ : Y → X and an element t ∈ X
such that τ(y) = λ(y) + t for all y ∈ Y . Note that λ and t are then uniquely determined
by τ since they must satisfy t = λ(0Y ) and λ(y) = τ(y)− t for all y ∈ Y . One says that λ
and t are respectively the linear part and the translational part of the affine map τ .

The following two obvious criteria will be useful in the sequel.

Proposition 4.1. Let (X,α) be an algebraic dynamical system and let τ : X → X be an
affine map with linear part λ : X → X. Then the following conditions are equivalent:

(a) τ is pre-injective;
(b) λ is pre-injective;
(c) Ker(λ) ∩∆(X,α) = {0X}.

Proposition 4.2. Let (X,α) be an algebraic dynamical system and let τ : X → X be an
affine map with linear part λ : X → X and translational part t ∈ X. Then the following
conditions are equivalent:

(a) τ is Γ-equivariant;
(b) λ is Γ-equivariant and t ∈ Fix(X,α).

4.2. Topological rigidity. Let (X,α) be an algebraic dynamical system with acting group
Γ. One says that (X,α) is topologically rigid if every endomorphism τ : X → X of (X,α)
is affine.

Before stating our rigidity results, let us introduce some notation. Let L(X) denote

the real vector space of all group homomorphisms X̂ → R equipped with the topology of
pointwise convergence. Note that Γ acts on L(X) by setting [γψ](χ) := ψ(γ−1χ) for all

ψ ∈ L(X) and χ ∈ X̂. Moreover, the map E : L(X)→ X defined by E(ψ)(χ) := ψ(χ) +Z
for all ψ ∈ L(X) and χ ∈ X̂ is a continuous (Γ-equivariant) group homomorphism.

Theorem 4.3. Let (X,α) and (Y, β) be algebraic dynamical systems with acting group Γ.
Suppose that Y is connected and that the homoclinic group ∆(Y, β) is dense in Y . Also
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suppose that (X,α) is homoclinically expansive. Then every Γ-equivariant continuous map
Y → X is affine.

Proof. Let τ : Y → X be a Γ-equivariant continuous map. By Bhattacharya’s extension of
van Kampen theorem [1, Theorem 1], there are a Γ-equivariant affine map λ : Y → X and
a Γ-equivariant continuous map Φ: Y → L(X) such that Φ(0Y ) = 0 and τ = λ + E ◦ Φ.
(Note that in the statement of [1, Theorem 1], X is assumed to be connected as well;
however, in its proof, this condition is never used.) Thus it suffices to show that Φ = 0.

Let y ∈ ∆(Y, β) and χ ∈ X̂. For any γ ∈ Γ we have

[Φ(γy)](χ) = [γΦ(y)](χ) = [Φ(y)](γ−1χ).

When γ →∞, we have Φ(γy)→ Φ(0Y ) = 0, and hence [Φ(y)](γ−1χ)→ 0. For any t ∈ R,
we have

ΨE(tΦ(y)),χ(γ) = |〈γE(tΦ(y)), χ〉| = |〈E(tΦ(y)), γ−1χ〉|
≤ |[tΦ(y)](γ−1χ)| = |t| · |[Φ(y)](γ−1χ)|

for all γ ∈ Γ, and hence ΨE(tΦ(y)),χ ∈ C0(Γ). Therefore E(tΨ(y)) ∈ ∆(X,α). Since α is

homoclinically expansive, by Proposition 3.4 there exist a finite subset W of X̂ and ε > 0
such that 0X is the only point x in ∆(X,α) satisfying∑

χ∈W

‖Ψx,χ‖∞ < ε.

Set C :=
∑

χ∈W supγ∈Γ |[Φ(y)](γ−1χ)| <∞. Then∑
χ∈W

‖ΨE(tΦ(y)),χ‖∞ ≤ |t|C.

Thus for all t ∈ R with |t| < ε/C we have E(tΦ(y)) = 0X , which means that tΦ(y) takes
integer values. It follows that Φ(y) = 0. Since ∆(Y, β) is dense in Y and Φ is continuous,
we conclude that Φ = 0 as desired. �

Corollary 4.4. Let (X,α) be an algebraic dynamical system. Suppose that X is con-
nected, that the homoclinic group ∆(X,α) is dense in X, and that (X,α) is homoclinically
expansive. Then (X,α) is topologically rigid.

Corollary 4.5. Let Γ be a countable group. Suppose that f ∈ Z[Γ] satisfies that (Xf , αf )
is homoclinically expansive and ∆(Xf , αf ) is dense in Xf (e.g., that f is weakly expansive),
and the phase space Xf is connected. Then (Xf , αf ) is topologically rigid.

If, in addition, Γ is Abelian, then for a map τ : Xf → Xf the following conditions are
equivalent:

(a) τ is an endomorphism of the dynamical system (Xf , αf );
(b) there exist r ∈ Z[Γ] and t ∈ Fix(Xf , αf ) such that τ(x) = rx+ t for all x ∈ Xf .

Proof. The first statement follows immediately from Theorem 4.3 after taking X = Y = Xf

(if f is weakly expansive, recall Theorem 3.6 and Theorem 3.9.(2)).
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Suppose now that Γ is Abelian and let τ : Xf → Xf be a map. For each r ∈ Z[Γ], the
self-mapping of Xf given by x 7→ rx is Γ-equivariant since Z[Γ] is commutative. Therefore,
the fact that (b) implies (a) follows from Proposition 4.2.

To prove the converse, suppose that τ is an endomorphism of the dynamical system
(Xf , αf ). It follows from the first statement that τ is affine. Therefore, by using Proposi-
tion 4.2, there exist a continuous Z[Γ]-module morphism λ : Xf → Xf and t ∈ Fix(Xf , αf )

such that τ(x) = λ(x) + t for all x ∈ Xf . As the ring Z[Γ] is commutative and X̂f =

Z[Γ]/Z[Γ]f is a cyclic Z[Γ]-module, there is s ∈ Z[Γ] such that λ̂(χ) = sχ for all χ ∈ X̂f .

Since λ =
̂̂
λ, setting r := s∗ ∈ Z[Γ] it follows that λ(x) = s∗x = rx, and hence τ(x) = rx+t,

for all x ∈ Xf . �

5. Proof of Theorem 1.2

Proof of Theorem 1.2. Let Γ be a countable Abelian group and let f ∈ Z[Γ] be a weakly ex-
pansive polynomial such that Xf is connected. Also let τ be an endomorphism of (Xf , αf ),
i.e., a Γ-equivariant continuous map τ : Xf → Xf . We want to show that τ is surjective if
and only if it is pre-injective.

By Corollary 4.5, there exists r ∈ Z[Γ] such that τ is affine with linear part λ : Xf → Xf

given by λ(x) = rx for all x ∈ Xf . Clearly τ is surjective if and only if λ is. As Xf is
compact, we know that surjectivity of λ is equivalent to injectivity of its Pontryagin dual

λ̂ : X̂f → X̂f (cf. [28, Proposition 30]). Now we observe that λ̂(χ) = r∗χ for all χ ∈ X̂f .

As Γ is Abelian, the natural mapping Φ: X̂f = Z[Γ]/Z[Γ]f → Z[Γ]/Z[Γ]f ∗ defined by

Φ(g + Z[Γ]f) = g∗ + Z[Γ]f ∗

for all g ∈ Z[Γ] is a group isomorphism. Note that

Φ(g1(g2 +Z[Γ]f)) = Φ(g1g2 +Z[Γ]f) = (g1g2)∗+Z[Γ]f ∗ = g∗1g
∗
2 +Z[Γ]f ∗ = g∗1Φ(g2 +Z[Γ]f)

for all g1, g2 ∈ Z[Γ]. As a consequence, denoting by κ : X̂f → ∆(Xf , αf ) the composition
of Φ with the Z[Γ]-module isomorphism Z[Γ]/Z[Γ]f ∗ → ∆(Xf , αf ) in Theorem 3.9.(3), we
have the commuting diagram

X̂f
χ 7→r∗χ−−−−→ X̂f

κ

y yκ
∆(Xf , αf )

x 7→rx−−−→ ∆(Xf , αf ).

We deduce that injectivity of λ̂ is equivalent to injectivity of the group endomorphism
µ of ∆(Xf , αf ) defined by µ(x) := rx for all x ∈ ∆(Xf , αf ). As µ is the restriction of λ to
∆(Xf , αf ), we conclude that surjectivity of τ is equivalent to pre-injectivity of τ , by using
Proposition 4.1. �

From the proof of Theorem 1.2 and Proposition 3.7 we immediately deduce the following:
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Corollary 5.1. Let Γ be a countable Abelian group and let f ∈ Z[Γ]. Suppose that (Xf , αf )
is homoclinically expansive, ∆(Xf , αf ) is dense in Xf , and that Xf is connected. Then
(Xf , αf ) has the Moore property.

6. Atoral polynomials and proof of Theorem 1.5

Lind, Schmidt, and Verbistkiy [22, Theorem 3.2] gave the following geometric-dynamical
characterization of atorality for irreducible polynomials in Z[Zd].

Theorem 6.1. Let Γ = Zd and suppose that f ∈ Z[Γ] is irreducible. Then the following
conditions are equivalent:

(a) ∆1(Xf , αf ) 6= {0Xf
};

(b) ∆1(Xf , αf ) is dense in Xf ;
(c) f is atoral in the sense that there is some g ∈ Z[Γ] such that g 6∈ Z[Γ]f and Z(f) ⊂

Z(g);
(d) dimZ(f) ≤ d− 2.

The meaning of dim(·) in Theorem 6.1.(d) is explained in [22, page 1063]; in particular,
one has dim(∅) := −∞. Also remark that, if d = 1, an irreducible polynomial f ∈ Z[Z] =
Z[u1, u

−1
1 ] is atoral if and only if Z(f) = ∅ and this, in turn, is equivalent to (Xf , αf ) being

expansive (cf. [19, Lemmma 2.1.(1)]).

Examples 6.2. Here below, we present some examples of irreducible atoral polynomials
f ∈ Z[Zd], mainly from [21, Section 3] and [22, Section 4]. We can then apply Theorem
1.5 and deduce that the corresponding algebraic dynamical systems (Xf , αf ) satisfy the
Garden of Eden theorem.

(1) Let d = 1 and f(u) = u2 − u − 1 ∈ Z[u, u−1] = Z[Z]. Then f is irreducible and,
since Z(f) = ∅, atoral. The associated principal algebraic dynamical system (Xf , αf )

is conjugated to the hyperbolic dynamical system (T2, ϕA), where A =

(
0 1
1 1

)
∈

GL(2,Z) is Arnold’s cat and ϕA : T2 → T2 is the associated hyperbolic automorphism
of the two-dimensional torus. Note that (Xf , αf ) is expansive so that we can deduce
the Moore-Myhill property also from Corollary 1.3 (this is a particular case of the
Garden of Eden theorem for Anosov diffeomorphisms on tori [5], we alluded to in the
Introduction).

(2) Let d = 2 and f(u1, u2) = 2 − u1 − u2 ∈ Z[u1, u
−1
1 , u2, u

−1
2 ] = Z[Z2]. Then Z(f) =

{(1, 1)}, and so f is atoral. Thus, by Example 3.8.(2), (Xf , αf ) is homoclinically
expansive. Also, it follows from [21, Section 5] and [22, Example 4.3]) that there is
some ω in C0(Z2) with fω = ωf = 1Γ. As a consequence, f is weakly expansive
(though not well-balanced). Moreover, f is also primitive, so that, by Proposition 2.1,
Xf is connected. Applying Theorem 1.2, we obtain an alternative proof of the fact
that (Xf , αf ) has the Moore-Myhill property.

(3) Let d = 2, and consider the Laplace harmonic model f(u1, u2) = 4−u1−u−1
1 −u2−u−1

2 ∈
Z[u1, u

−1
1 , u2, u

−1
2 ] = Z[Z2]. One has Z(f) = {(1, 1)}. Thus f is atoral and (Xf , αf )
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satisfies the Garden of Eden theorem, by virtue of Theorem 1.5. (Note that we cannot
apply Theorem 1.2.)

(4) Let d = 2, and f(u1, u2) = 1 + u1 + u2 ∈ Z[u1, u
−1
1 , u2, u

−1
2 ] = Z[Z2]. Then Z(f) =

{(ω, ω2), (ω2, ω)}, where ω = exp(2πi/3). The algebraic dynamical system (Xf , αf ) is
called the connected Ledrappier shift.

(5) Let d = 2, and f(u1, u2) = 2 − u2
1 + u2 − u1u2 ∈ Z[u1, u

−1
1 , u2, u

−1
2 ] = Z[Z2]. One has

Z(f) = {(ξ, η), (ξ, η)}, where ξ, η are algebraic numbers.
(6) Let d = 2 and f(u1, u2) = 2−u3

1 +u2−u1u2−u2
1u2 ∈ Z[u1, u

−1
1 , u2, u

−1
2 ] = Z[Z2]. Here

Z(f) = {(1, 1), (i, ζ), (−i, ζ), (ξ, η), (ξ, η)}, where ζ, ξ, η are algebraic numbers.
(7) Let d = 3 and f(u1, u2, u3) = 1+u1 +u2 +u3 ∈ Z[u1, u

−1
1 , u2, u

−1
2 , u3, u

−1
3 ] = Z[Z3]. The

corresponding zero-set Z(f) is the union of three circles, namely, {(−1, s,−s) : s ∈ S},
{(s,−1,−s) : s ∈ S}, and {(s,−s,−1) : s ∈ S}. Hence, f is atoral.

(8) Let d = 3 and f(u1, u2, u3) = 3+3u1−3u3
1 +u4

1−u2−u3 ∈ Z[u1, u
−1
1 , u2, u

−1
2 , u3, u

−1
3 ] =

Z[Z3]. One has has Z(f) = {(η, η, η), (η, η, η)}, where η is an algebraic integer.

Remark 6.3. (i) Let d = 1 and f = 2− u− u−1 ∈ Z[u, u−1] = Z[Z]. Then the associated
dynamical system Xf = {x ∈ TZ : x(n − 1) + x(n + 1) = 2x(n) for all n ∈ Z} is the
one-dimensional Laplace harmonic model. It is easy to see that ∆(Xf , αf ) = {0TZ}. Then
(Xf , αf ) satisfies the Moore property but not the Myhill property (the constant map x 7→
0TZ (which is a pre-injective endomorphism of (Xf , αf )) is clearly not surjective).

(ii) It follows from Examples 6.2.(4) that the connected Ledrappier shift X = {x ∈ TZ2
:

x(m,n) + x(m + 1, n) + x(m,n + 1) = 0 for all m,n ∈ Z} satisfies the Garden of Eden

theorem. On the other hand, the (disconnected) Ledrappier shift X ′ := {x ∈ (Z/2Z)Z
2

:
x(m,n) + x(m + 1, n) + x(m,n + 1) = 0 for all m,n ∈ Z} (which may be regarded as an

algebraic dynamical system with phase space Ẑ[Z2]/I, where I = 2Z[Z2] + fZ[Z2] is the
ideal generated by 2 and f(u1, u2) = 1 + u1 + u2 ∈ Z[u1, u

−1
1 , u2, u

−1
2 ] = Z[Z2]) does not

satisfy the Garden of Eden theorem. Indeed, one has ∆(X ′, α′) = {0(Z/2Z)Z2} so that every

map τ : X ′ → X ′ is pre-injective. This ensures the Moore property for (X ′, α′). However,
the constant map x 7→ 0(Z/2Z)Z2 (which is a pre-injective endomorphism of (X ′, α′)) is

clearly not surjective, showing that (X ′, α′) does not satisfy the Myhill property. This
example shows, in particular, that the Garden of Eden theorem fails to hold for general
(not connected) algebraic dynamical systems. Note that, however, in the classical Garden
of Eden Theorem of Moore and Myhill [27, 29], as well as in its generalizations [25, 8, 13, 18],
the phase space is the full shift AG (A a finite alphabet set and G an amenable group) or
a subshift X ⊂ AG (satisfying suitable irreducibility conditions), and therefore is totally
disconnected. Now, the method used in the present paper (rigidity) is totally different from
the method used in these previous papers (entropy), and we don’t know how to combine
the two methods together.

We are now in position to prove Theorem 1.5.

Proof of Theorem 1.5. We first note that, by Example 3.8.(2), αf is homoclinically ex-
pansive. Moreover, by Theorem 6.1, ∆1(Xf , αf ) and therefore ∆(Xf , αf ) are dense in Xf .
Finally, since f is irreducible it is primitive and hence (cf. Proposition 2.1) Xf is connected.
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Thus we may apply Corollary 4.5 and deduce that (Xf , αf ) is topologically rigid.
(a)⇒(b) is given by Corollary 5.1.
(b)⇒(c) follows from ∆p(Xf , αf ) ⊂ ∆(Xf , αf ) for all 1 ≤ p ≤ ∞ (cf. Theorem 3.2.(1)).
(c)⇒(d) this is trivial. (d)⇒(e) follows from ∆p(X) ⊆ ∆q(X) for all 1 ≤ p ≤ q ≤ +∞ (cf.
[10, Proposition 5.2.(1)]). (e)⇒(a). Let τ : Xf → Xf be a Γ-equivariant 1-pre-injective
continuous map. By topological rigidity, there exist r ∈ Z[Γ] and t ∈ Xf such that the
group endomorphism λ of Xf defined by setting λ(x) := rx for all x ∈ Xf satisfies that

τ(x) = λ(x) + t for all x ∈ Xf . Then the dual map λ̂ : X̂f → X̂f is given by λ̂(χ) = r∗χ

for all χ ∈ X̂f . Set mf = Z[Γ] ∩ (f`1(Γ)), which is an ideal of Z[Γ]. For each g ∈mf , one
has g = fvg for a unique vg ∈ `1(Γ). Then x(g) := π(v∗g) lies in ∆1(Xf , αf ), where π is, as

usual, the projection map `∞(Γ)→ TΓ. The map g + Z[Γ]f 7→ x(g) is clearly a group iso-
morphism from mf/Z[Γ]f onto ∆1(Xf , αf ) (cf. [22, Corollary 3.3]). Take g ∈mf \ Z[Γ]f .

Since f is irreducible, the group homomorphism h + Z[Γ]f 7→ hg + Z[Γ]f from X̂f to

mf/Z[Γ]f is injective. Thus the group homomorphism κ : X̂f → ∆1(Xf , αf ) defined by
κ(h+ Z[Γ]f) := x(hg) is injective. We have the commutative diagram:

X̂f
χ 7→r∗χ−−−−→ X̂f

κ

y yκ
∆1(Xf , αf )

x 7→rx−−−→ ∆1(Xf , αf ).

Since τ is 1-pre-injective, so is λ, that is, λ is injective on ∆1(Xf , αf ). Hence the dual

map λ̂ is injective. By Pontryagin duality, this is equivalent to λ being surjective. It follows
that τ is surjective as well. �

We are now in position to present a proof of the Garden of Eden theorem for Laplace
harmonic models:

Proof of Corollary 1.6. For d = 1 it follows from Remark 6.3.(i) that the Laplace harmonic
model fails to satisfy the Myhill property. On the other hand, it follows from Examples
6.2.(3) (resp. Corollary 1.4) that the Laplace harmonic model satisfies the Moore-Myhill
property for d = 2 (resp. d ≥ 3). �

7. Concluding remarks

7.1. Surjunctivity. A dynamical system (X,α) is called surjunctive if every injective
endomorphism of (X,α) is surjective (and hence a homeomorphism). As injectivity implies
pre-injectivity, we deduce from Theorem 1.2 that if Γ is a countable Abelian group, f ∈ Z[Γ]
is weakly expansive andXf is connected, then the dynamical system (Xf , αf ) is surjunctive.
Actually, in the case Γ = Zd, this last result is a particular case of Theorem 1.5 in [3]

which asserts that if Γ = Zd and M is a finitely generated Z[Γ]-module, then (M̂, αM) is
surjunctive.



GARDEN OF EDEN THEOREM FOR HARMONIC MODELS 25

7.2. Counterexamples for mixing algebraic dynamical systems. Recall (cf. Corol-
lary 3.10) that if Γ is infinite and f ∈ Z[Γ] is weakly expansive, then the associated algebraic
dynamical system (Xf , αf ) is mixing of all orders.

The examples below show that Theorem 1.2 becomes false if the hypothesis that f ∈
Z[Γ] is weakly expansive is replaced by the weaker hypotheses that the homoclinic group
∆(Xf , αf ) is dense and that (Xf , αf ) is mixing.

Example 7.1. Let T = R/Z, Γ = Zd, d ≥ 1, and consider the Γ-shift (TΓ, σ) (this is
(Xf , αf ) for f = 0 ∈ Z[Γ]). Then the endomorphism τ of (TΓ, σ) defined by τ(x)(γ) =
2x(γ) for all x ∈ TΓ and γ ∈ Γ, is clearly surjective. However, τ is not pre-injective since
the configuration y ∈ TΓ, defined by y(γ) = 1/2 mod 1 if γ = 1Γ and 0 otherwise, is a
non-trivial element in the homoclinic group of (TΓ, σ) and satisfies τ(y) = τ(0TΓ) = 0TΓ .
It follows that (TΓ, σ) does not have the Moore property.

Example 7.2. Let Γ = Z and consider the polynomial

f = 1− 2u1 + u2
1 − 2u3

1 + u4
1 ∈ Z[u1, u

−1
1 ] = Z[Γ].

The associated algebraic dynamical system (Xf , αf ) is conjugate to the system (T4, β),
where β is the action of Z on T4 generated by the companion matrix of f . It is mixing
since f is not divisible by a cyclotomic polynomial (cf. [31, Theorem 6.5.(2)]). On the other
hand, f has four distinct roots in C, two on the unit circle, one inside and one outside.
As f is irreducible over Q, it follows that the homoclinic group ∆(Xf , αf ) is reduced to
0 (cf. [19, Example 3.4]). The trivial endomorphism of (Xf , αf ), that maps each x ∈ Xf

to 0, is pre-injective but not surjective. Consequently, (Xf , αf ) does not have the Myhill
property. However, (Xf , αf ) has the Moore property since each homoclinicity class of
(Xf , αf ) is reduced to a single point, so that every map with source set Xf is pre-injective.
Note that (Xf , αf ) = (T4, β) is topologically rigid since every mixing toral automorphism
is topologically rigid by a result of Walters [35].

7.3. p-pre-injectivity and the p-Moore and p-Myhill properties. In Subsection 3.1
we have recalled from [10] the notions and the main properties of p-expansivity and of
p-homoclinic group (denoted ∆p(X,α)) for an algebraic dynamical system (X,α). In the
Introduction we have also defined the notion of a p-pre-injective map τ : X → X.

Note that, if τ is a group endomorphism of X, then (cf. Proposition 4.1):

(7.1) τ is p-pre-injective if and only if ker(τ) ∩∆p(X,α) = {0X}.
We shall then say that the algebraic dynamical system (X,α) has the p-Moore property

if every surjective endomorphism of (X,α) is p-pre-injective and that it has the p-Myhill
property if every p-pre-injective endomorphism of (X,α) is surjective. Note that the ∞-
Moore property (resp.∞-Myhill property) is nothing but the Moore property (resp. Myhill
property).

It follows immediately from Theorem 3.2.(1) that if 1 ≤ p ≤ q ≤ ∞ the every q-
pre-injective map τ : X → X is p-pre-injective, so that every algebraic dynamical system
satisfying the q-Moore property (resp. the p-Myhill property) satisfies the p-Moore property
(resp. the q-Myhill property).
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From the proof of Theorem 1.2 and from Theorem 3.2.(5) we immediately deduce the
following:

Corollary 7.3. Let Γ be a countable Abelian group and let f ∈ Z[Γ]. Let also 1 ≤ p <∞.
Suppose that (Xf , αf ) is p-expansive and topologically rigid. Then (Xf , αf ) has the p-Moore
property.

In the following result we relax the commutativity condition for the acting group Γ.

Theorem 7.4. Let (X,α) be a finitely generated algebraic dynamical system. Suppose that
Γ is amenable and that (X,α) is topologically rigid and has finite entropy. Then (X,α)
has the 1-Moore property.

Proof. Let τ : X → X be a continuous Γ-equivariant surjective map. By topological rigid-
ity, we can find a continuous group endomorphism λ : X → X and t ∈ X such that
τ(x) = λ(x) + t for all x ∈ X. Since τ is surjective (resp. injective) if and only if λ is
surjective (resp. injective), it is not restrictive to suppose that t = 0, that is, τ is a group
endomorphism of X. Then the entropy addition formula (cf. [17, Corollary 6.3], see also
[14, Theorem 13.48]) yields (we denote by h(·) topological entropy)

h(ker(τ)) = h(X)− h(X/ ker(τ)) = h(X)− h(τ(X)) = 0,

since τ is surjective andX has finite entropy. For any finitely generated algebraic dynamical
system (Y, β) with acting group Γ, if ∆1(Y, β) is nontrivial, then h(Y ) > 0 (cf. [10, Theorem

7.3 and Propositions 5.7 and 7.10], see also [14, Theorems 13.23 and 13.35]). Since X̂ is

a finitely generated left Z[Γ]-module and k̂er(τ) is a quotient Z[Γ]-module of X̂, k̂er(τ) is
also a finitely generated left Z[Γ]-module. It follows that

∆1(X,α) ∩ ker(τ) = ∆1(ker(τ), α|ker(τ)) = {0X}.

This, together with (7.1), shows that τ is 1-pre-injective. �
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