SYLVESTER RANK FUNCTIONS FOR AMENABLE NORMAL
EXTENSIONS

BAOJIE JIANG AND HANFENG LI

ABSTRACT. We introduce a notion of amenable normal extension S of a unital ring
R with a finite approximation system J, encompassing the amenable algebras over
a field of Gromov and Elek, the twisted crossed product by an amenable group, and
the tensor product with a field extension. It is shown that every Sylvester matrix
rank function rk of R preserved by S has a canonical extension to a Sylvester
matrix rank function rkg for S. In the case of twisted crossed product by an
amenable group, and the tensor product with a field extension, it is also shown
that rks depends on rk continuously. When an amenable group has a twisted
action on a unital C*-algebra preserving a tracial state, we also show that two
natural Sylvester matrix rank functions on the algebraic twisted crossed product
constructed out of the tracial state coincide.
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1. INTRODUCTION

Sylvester rank functions for a given unital ring R are numerical invariants for ma-
trices or modules over R, describing the rank or dimension of such objects. They can
be described in several equivalent ways, either for rectangular matrices, or finitely
presented left modules, or pairs of left modules M; C Ms, or maps between finitely
generated projective left modules, or maps between left modules [24, 29, 39]. They
are useful for instance in the study of Kaplansky’s direct finiteness conjecture [4]
and L2-Betti numbers [18, 19], and have attracted much attention recently [1, 2, 14].

Crucial questions about Sylvester rank functions are, given unital rings R C S,
when a Sylvester matrix rank function rk for R can be extended to a Sylvester
matrix rank function for S and when such an extension is unique. Of course one
needs some conditions on the ring extension S O R. In the literature these questions
have been discussed in several different situations.

For a field K, Gromov and Elek introduced the notion of amenable K-algebras
[10, 17]. This includes the algebras of subexponential growth studied by Rowen
[38], and is further studied in [3, 5, 7, 13, 15]. In these works people have tried to
define dimension for finitely generated modules over an amenable K-algebra S using
a Fglner sequence of S, but it is not clear whether one obtains a limit along the
Folner sequence or not, as asked by Gromov [17, page 348|.

For a twisted crossed product R % I constructed out of a twisted action of a
discrete amenable group I' on R preserving rk, Ara, O’Meara, and Perera showed
that rk can always be extended to a Sylvester matrix rank function rkg,r for R T’
using an ultrafilter, and used it to prove Kaplansky’s direct finiteness conjecture
for free-by-amenable groups [4]. They didn’t address the question whether rkg.r
depends on the choice of the ultrafilter or not, equivalently, whether one obtains a
limit along a Fglner sequence of I' or not.

When E/K is a field extension and R is a K-algebra, Jaikin-Zapirain showed
that under some conditions rk can be extended a Sylvester matrix rank function of
E ®x R [19]. More precisely, he constructed a natural extension of rk to E @k R
when E/K is algebraic, and when E = K(¢) for some ¢ transcendental over K and
rk is regular in the sense that it is induced from a Sylvester matrix rank function
of a unital von Neumann regular ring R’ and a unital ring homomorphism R — R'.
These natural extensions are fundamental in his work on Atiyah conjecture and
Liick’s approximation conjecture. He asked the question whether there is a general
construction of a natural extension of rk to E ®k R unifying his construction in the
above two cases [18, Question 8.8].
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In this work we give a general framework to unify the above situations. We
introduce a notion of right amenable extension S of R (see Definition 3.1). This
means that we are given a collection J of finitely generated free left R-submodules
of S satisfying suitable conditions. Intuitively, elements of F play the role of right
Folner sets. Then the construction of Ara, O’Meara, and Perera also works in
this general situation. Namely, given a non-principal ultrafilter w on the set F of
nonzero elements in F, defining rkys(A) as limy_,, zlm(({;; for each A € M, ,,(5)
yields a Sylvester matrix rank function for S, where dim(W) is the rank of W as a
free left R-module and rkyw(A) is rk(B) for some matrix B over R associated to W
and A.

In order to guarantee that rks does not depend on the choice of the ultrafilter w,
we introduce a stronger notion of right amenable normal extension S of R preserving
rk (see Definition 5.1). This includes all the above cases except that for the amenable
K-algebras S studied in [10, 17] one needs to assume that S has no zero-divisors.
Our first main result is the following.

Theorem 1.1. Let rk be a Sylvester matrix rank function of a unital ring R, and
let S be a right amenable normal extension of R with a finite approrimate system F
preserving tk. For each A € M, ,,(S), Z?X((Qg converges to infy,_5 % when W € F
becomes more and more right invariant.

A byproduct of our proof for Theorem 1.1 is an affirmative answer to Gromov’s
question in the case the amenable K-algebra S has no zero-divisors (see Corollary 6.5
and Remark 6.6). In the literature there are two well-known ways to guarantee the
convergence along Fglner sequences of amenable groups. The first is the strong
subadditivity, implying an infimum rule, i.e. the limit is the infimum. The second is
the subadditivity implying the existence of the limit via the Ornstein-Weiss lemma.
In order to prove Theorem 1.1, we establish a linear infimum rule in Lemma 6.3.

The space of all Sylvester matrix rank functions for R is naturally a compact
convex space. One can ask whether rks depends on rk continuously or not. We
have not been able to answer this question in full generality. At the technical level,
this requires uniform convergence along some Fglner sequence. For this purpose we
introduce a weak quasitiling property (Definition 7.2), which is a weak analogue of
the quasitiling of Ornstein and Weiss for amenable groups in [32]. Twisted crossed
products R % I' for amenable groups I' and E ®g R for field extension E/K and
K-algebras R have the weak quasitiling property. Our second main result is the
following.

Theorem 1.2. Assume that S is a right amenable normal extension of R with (F,U)
satisfying the weak quasitiling property. The map from the space of Sylvester matrix
rank functions of R preserved by S to the space of Sylvester matrix rank functions
of S sending vk to rkgs s affine and continuous.
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When a unital C*-algebra o7 has a tracial state tr, it is well known that tr induces
a Sylvester matrix rank function rky, for 7. In fact, the von Neumann rank function
on group algebras of a discrete group I' is constructed this way from the canonical
tracial state of the reduced group C*-algebra C7,,(I") and plays a fundamental role in
the study of L2-Betti numbers [19, 28]. For a twisted action (o, u) of a discrete group
I on 7, one has the maximal twisted crossed product C*-algebra &7 x,, I' [6, 33—
35], which contains an algebraic twisted crossed product <7 . If the twisted action
(o, u) preserves tr, then tr extends to a tracial state tr, ,, of @7, , I naturally, which
in turn induces a Sylvester matrix rank function rky,, , for & x4, I'. If furthermore
" is amenable, then we also have our Sylvester matrix rank function (rky, )y on o *I"
constructed out of rky, and the finite approximation system F in Example 3.3. In
this case we obtain two Sylvester matrix rank functions on & x I', namely (rk¢)s
and the restriction of rk., , to & * I'. Our third main result says that these two
rank functions coincide.

Theorem 1.3. Let («,u) be a twisted action of an amenable discrete group I' on a
unital C*-algebra </ preserving a tracial state tr, and let &/ X, I' be the mazimal
twisted crossed product C*-algebra. Let F be the finite approximation system in

Ezample 3.3 for o/ xI'. Then rke, ,(A) = (tky)g(A) for every A € My, (o7 xT).

This article is organized as follows. In Section 2 we set up general notation and
recall some basic concepts. We introduce the notation of right amenable extensions
and discuss some basic properties in Section 3. The construction of Ara, O’Meara,
and Perera is applied in Section 4 to right amenable extensions to yield Sylvester
matrix rank functions for the extensions. We introduce the notion of right amenable
normal extensions in Section 5. Theorems 1.1 and 1.2 are proven in Sections 6
and 7 respectively. In Section 8 we describe the bivariant Sylvester module rank
function corresponding to rkg under the condition of weak quasitiling property. In
Section 9 we discuss in detail the case of E ®k R for field extensions E/K, showing
that rkgy behaves well with respect to compositions of field extensions and that
our construction extends that of Jaikin-Zapirain, thus answering his question [18,
Question 8.8| affirmatively. Theorem 1.3 is proven in Section 10.

Acknowledgments. The second-named author was partially supported by NSF grants
DMS-1600717 and DMS-1900746. Preliminary stages of this work were carried out
during his stay in Spring 2018 at ICMAT. He thanks Pere Ara and Andrei Jaikin-
Zapirain for inspiring discussions. We are grateful to the referee for very helpful
comments, especially for providing a proof of Proposition 9.6.

2. PRELIMINARIES

Throughout this paper, for a unital ring R (a group I resp.) we denote by 15 (er
resp.) the identity element of R (I" resp.). For an abelian group V and n € N, we
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shall write V™ (V™! resp.) for the space of row (column resp.) vectors of length n
with entries in V.

Let R be a unital ring. A nonzero a € R is a zero-divisor if ab = 0 or ba = 0 for
some nonzero b € R. We say R is a domain if it has no zero-divisors. Given a left
R-module M, for sets A C R and V C M, we denote by AV the set of finite sums of
elements of the form av for a € A and v € V.

2.1. Sylvester rank functions. In this subsection we recall the definitions and
facts about Sylvester rank functions. We refer the reader to [19, 24, 29, 39| for
detail. Let R be a unital ring. The following definition was given by Malcolmson
[29].
Definition 2.1. A Sylvester matriz rank function for R is an Rsg-valued function
rk on the set of rectangular matrices over R satisfying the following conditions:

(i) rk(0) = 0 and rk(1g) = 1.

(ii) rk(AB) < min(rk(A), rk(B)).
(i) k( [A B}) — 1k(A) + 1k(B).
(iv) Tk( [A g}) > tk(A) + 1k(B).

In particular, if A € M, ,(R) and C € M,, ,,(R) are invertible, then
rk(ABC) = rk(B)
for every B € M, ,,(R). It follows that for any A € M, ,(R), C € M,;,,(R) and
B € M, (R), one has

rk({é B]):rk([B Eﬂ):rk({B ﬂ)zrk(A)ﬂk(B).

For any A, B € M, »(R), one also has

k(A + B) = 1k([L, L] {A B} B:j)grk([A B}):rk(A)Jrrk(B).

Equipped with the pointwise operations, the space P(R) of all Sylvester matrix
rank functions for R is a compact convex set. The following definition was given in
[24].

Definition 2.2. A bivariant Sylvester module rank function for R is an RsoU{+00}-
valued function (My, My) — dim(M;|My) on the class of all pairs of left R-modules
M, C M, satisfying the following conditions:
(i) dim(M;|My) is an isomorphism invariant.
(ii) Writing dim(M) = dim(M|M), we have dim({0}) = 0 and dim(R) = 1.
(iii) For any left R-modules M; C My and M} C M, one has

dim (M, & MMy & M) = dim(M; | My) + dim (M| M).
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(iv) dim(My|Mz) = supyy dim(M;[Mz) for M) ranging over all finitely generated
R-submodules of M.

(v) When M, is finitely generated, dim(M;|My) = infyg dim (M, |M5) for M,
ranging over all finitely generated R-submodules of My containing M;.

There is a natural one-to-one correspondence between Sylvester matrix rank func-
tions for R and bivariant Sylvester module rank functions for R [24, Theorems 2.4
and 3.3]. Given a bivariant Sylvester module rank function dim(-|-) for R, the cor-
responding Sylvester matrix rank function rk is determined by

rk(A) = dim(R"A|R™)

for all A € M, ,(R).

We summarize the properties about bivariant Sylvester module rank functions
which we shall need [24, Theorem 3.4, Proposition 3.19, Proposition 3.20, Proposi-
tion 5.1].

Theorem 2.3. Let dim(:|-) be a bivariant Sylvester module rank function for R.
The following are true.

(i) For any left R-modules My C My C Mg, one has
dim (M3 |M3) = dim(M;|M3) + dim(My /My | M3 /My).
(i1) For any left R-modules My, My C Ms, one has
dim(My + My |M3) + dim(My N Ma|Ms) < dim(My [M3) + dim(My|Ms).

(11i) For any left R-modules My C My and any R-module homomorphism 7 :
My — M, one has

(iv) For any left R-modules M, M; C My with My finitely generated, denoting
by v the homomorphism My — My /M for every R-submodule M’ of M,
one has

dim (7 (M) [ Mo /M) = %f dim (e (M) | My /M)
for M ranging over all finitely generated R-submodules of M.

2.2. Group rings and twisted crossed products. In this subsection we recall
the definitions of group rings and twisted crossed products. We refer the reader to
[36, 37] for detail.

Let R be a unital ring and I' a discrete group.

The group ring of I' with coefficients in R, denoted by RI', consists of all finitely
supported functions f : I' — R. We shall write f as ) . fos with f, € R for all
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s € I and f, = 0 except for finitely many s € I'. The addition and multiplication
in RI' are given by

S hs Y g = (ot g)s and O L) at) = S fugist.

sel’ sel’ sel’ sel tel s,tel’

Given an action « of I' on R via automorphisms, one can define the crossed product
R x, I'. Tt also consists of finitely supported functions I' — R. The addition and
multiplication in R x, I are given by

Zfss + ngs = Z(fs + 98)87 and (Z fss)(z gtt) = Z fsas(gt)St'

sel’ sel’ sel’ sel’ tel’ s,tel’

The group ring RI is the crossed product R x, I' for the trivial action of I on R.

When I' has an action 8 on a discrete group G via automorphisms, one has the
semidirect product group G' x5 I" defined. As a set, it is G x I'. The multiplication
of G x5 I' is given by (g,s)(h,t) = (gfs(h), st). Then the group ring R(G xzI)
is naturally isomorphic to the crossed product (RG) x4 I', where a,(Y o fo9) =
deG f4Bs(g) for s € I and deG fq9 € RG.

A twisted crossed product' R+ T is a unital I'-graded ring, i.e. R+ = D.er Vs
with ViV, C V, for all s,t € I, such that V., is isomorphic to R as a unital ring and
Vi contains a unit 5 of R*I" for each s € I'. We shall identify V.. with R. It is easily
checked that for any s € I, if some a € V is invertible in R *I', then its inverse lies
in V,-1. It follows that § generates V; as a free left (right resp.) R-module. Then §
is unique up to multiplication by some unit in R from either left or right. Clearly
crossed products are twisted crossed products. Given a normal subgroup G of T, it
is easily checked that the group ring RI' can be written as (RG) * (I'/G).

2.3. Amenable groups and amenable K-algebras. Let I' be a discrete group.
For a nonempty finite set K C ' and € > 0, we say a nonempty finite set F' C I' is
(K, e)-invariant if |FK| < (14 ¢)|F|. The group I' is amenable if for any nonempty
finite set K’ C I" and any ¢ > 0 there is some (K, €)-invariant nonempty finite set
FCT.

Let K be a field. The notion of amenable K-algebras was introduced by Gromov
[17, Section 1.11] and Elek [10]. Let S be a unital K-algebra, i.e. K lies in the
center of S and 1g = 1g. We say that S is right amenable if for every finite subset
V of S and every € > 0 there is some finite-dimensional K-linear subspace W of S
containing 1g such that dimg(W+ WV) < (1 + ¢) dimg (W) (see [3] for a discussion
of the difference between requiring 1g € W or not). When S is a domain, one can
drop the condition that 1¢ € W [3, Corollary 3.10]. Finitely generated K-algebras
of subexponential growth and commutative K-algebras are right amenable [10]. For

IThis is called crossed product in [37]. We shall call it twisted crossed product since the corre-
sponding notion in C*-algebras is called so.
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a discrete group I', the group ring KI' is right amenable if and only if I' is amenable
[5, 10, 13].

2.4. Tracial states and Sylvester matrix rank functions. It is well known that
a tracial state on a unital C*-algebra 7 induces a Sylvester matrix rank function for
/. For example, for any discrete group I', the von Neumann Sylvester matrix rank
function for the reduced group C*-algebras C},(I') is induced from the canonical
tracial state of C? (") [19, 28]. Here we recall the construction. We refer the reader
to [20] for basics on C*-algebras and von Neumann algebras.

A C*-algebra is a x-algebra o7 over C equipped with a complete norm such that
lab|| < |lal| - ||b|| and ||a*a|| = ||a||* for all a,b € /. An element a € & is positive
if a = b*b for some b € o&/. A state for a unital C*-algebra o is a unital linear
functional ¢ : & — C such that it is positive in the sense that it sends positive
elements to positive elements. A state ¢ of o is tracial if p(ab) = ¢(ba) for all
a,b e . A x-representation of o/ on a Hilbert space H is a *-homomorphism from
o/ to the C*-algebra B(H) of all bounded linear operators from H to itself.

Let 7 be a unital C*-algebra and let ¢ be a state of &/. Then one has the GNS
representation 7, associated to ¢ as follows. The set [, := {a € & : p(a*a) = 0} is
a left ideal of .&7. We have an inner product on &7 /I, defined by (a + I,,b+ I,) :=
¢(b*a) for a,b € o/. Denote by L*(, ) the completion of «7/I, under the norm
induced by this inner product. Then & has a *-representation 7, on L*(<Z, )
determined by 7w, (a)(b + I,) = ab+ I, for all a,b € «/. Denote by </ the von
Neumann algebra generated by m,(7), i.e. the closure of 7 () in B(L*(, )
under the weak operator topology. Put &, = 1, + I, € L*(«/, ¢). Denote by ¢” the
state on &/ given by

P"(T) = (T, &) -

Note that ¢” extends ¢ in the sense that p(a) = ¢”"(7,(a)) for all a € &7
Now assume that tr is a tracial state of .«7. It is easily checked that tr” is a tracial
state on 7. We extend tr” to square matrices over 7" by

(A) =) tr"(A)
=1

for all A € M,(<7)). Then t1"(AB) = tr"(BA) for all A € M, (<) and B €
My n (), and tr”(A*A) > 0 for all A € M, ,,,(<7!).
Let A € M, ,(«7). It follows from von Neumann’s double commutant the-

orem that the orthogonal projection Py from L3, tr)™ ! to imm, (A) =

im7ey

T (A) - L2(o, tr)™*1 lies in M, (<7”). Thus we may define

(1) rky(A) == tr"(P——) > 0.

imme (A)) =



SYLVESTER RANK FUNCTIONS FOR AMENABLE NORMAL EXTENSIONS 9

Using the polar decomposition of A we find some T' € M, ,,,(#") such that T*T =
P———=and TT* = P, ay- Thus

im7e (A*) W
(2) rhp(A) = e (A7),

Denote by ker m(A) the set of x € L*(«,tr)™*! satisfying m,(A)r = 0, and by
Pier my(4) the orthogonal projection from L?(.7, tr)™** to ker my,(A). Then Pye r,, (4)
lies in My, (), and Pierr,(4) + Prroiasy = I Thus
(3) rkiy (A) = 1k (A") = tr" (I, — Beerme(4)) = M — " (Prerm(4))-

For convenience of the reader, we give a proof of the following proposition.

Proposition 2.4. Let tr be a tracial state of a unital C*-algebra <. Then vk,
defined via (1) is a Sylvester matriz rank function for o .

Proof. Clearly rki(0) = 0 and rky(1,,) = 1. This verifies the condition (i) in
Definition 2.1.
Let A € My (o) and B € M, (). Then imm,(AB) C imm,(A). Thus
< Prray: and hence rky, (AB) < rky; (A). We also have
rko(AB) & tho (B*A%) < tko(B*) € 1k (B).
This verifies the condition (ii) in Definition 2.1.

For A € M, ,,(«/) and B € My,(</), putting D = [A

Pimmr(AB)

we have Pimmr D)

B}’ -
P

imme (A

y + Pimmr(B), and hence

A
rktr( |: B:| ) = I'ktr(A) + rktr(B).
This verifies the condition (iii) in Definition 2.1.

Let A € Mpym(),B € My, (o), and C € M (/). Put D = [A g
have imm, (A) C imm, (D). Denote by H the orthogonal complement of imy,(A) in
imm, (D), and by Py the orthogonal projection from L?(7,tr)"*)*! to H. Then
Prrpy = Py TP Denote by @ the natural projection map L2 (o, tr) (D1 —
LA (o tr) ) & Lo, tr)* — L2(o,tr)*!. Then Q € M ,(o), and Q(H) is
dense in imm, (C'). The polar decomposition of Q) Py gives us a 1" € M) ,,(7) such
that TT" = Py, and T*T is an orthogonal projection satisfying 7*7T < Ppy.
Then

| we

tr"(Py) > t"(1T°T) = 2" (TT") = tr"(Pry) = thu(C),
and hence

A B
ol [ E]) = 0 Pr) = 60" Pr) + 0 (P 2 ) + 1 C).

This verifies the condition (iv) in Definition 2.1. O
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2.5. Twisted crossed product C*-algebras. In this subsection we recall some
basic facts about twisted crossed product C*-algebras. We refer the reader to [6, 33—
35] for more information.

Let o7 be a unital C*-algebra. An element u € o7 is a unitary if u*u = wu* = 1,.
For each unitary u € o7, we have the inner automorphism Ad (u) of &7 sending a to
uau*. Denote by Aut(«?) the automorphism group of o7, and by U(<7) the unitary
group of 7.

Let ' be a discrete group with identity element er. A twisted action of I on o
[6, Definition 2.1] is a pair (o, u) of maps a : I' = Aut(«/) and w : I' x I' — U(&/)
such that

(1) aep =1d and Uep s = Use. = 1y for all s € T
(i) asar = Ad (ust)ag for all s,t € T
(1l1) vy (Us )y st = Uy sUqysy for all v, s, 2 € T
Let (o, u) be a twisted action of I" on &7. Define &7 * I' as the space of finitely

supported functions f : I' = 7. We shall write f € & *I"as ) . f;5. Then &/ *T'
is a x-algebra with the algebraic operations defined by

Zfsg"'_ ngg = Z(fs "‘95)57

sel sel’ sel’
(Z fsg)(z gta = Z st%(gt)US,tga
sel tel s,tel’
(D_fe8) =D utn e (s
sel sel

Clearly o * I' is a twisted crossed product in the sense of Section 2.2.
Define a seminorm on & * I' by

(4) /1] = sup [=(1)]

for m ranging over all unital x-representations of o7 % I' on Hilbert spaces. As we
shall see below, this is actually a norm on o % I'. The maximal twisted crossed
product C*-algebra for (o, u) is the completion of o/ x I" under this norm, and will
be denoted by & x4, I

Let 7 : &/ — B(H) be a unital x-representation of <7 on a Hilbert space H.
Denote by ¢*(T', H) the space of all functions = : I' — H satisfying >, [|2* <
+00. We shall write € (*(T',H) as >, a;t. Then ¢*(T', H) is a Hilbert space
equipped with the inner product

(St St = ¥t

tel’ tel’ tel’
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and the associated norm || 3=, z4t|| = (3,cr l@e]|*)V2. For each Y- 1 fis € o +T,
define 7o, (3 o f55) € B(*(T', H)) by

ﬂa,U(Z fsg)(z xtt) = Z ﬂ(a(st)*l(fS)u(st)*l,S)(xt)(St)'

sel’ tel’ s,tel’

Then 7, is a unital *-representation of & * I' on ¢*(T', H). When 7 is injective
(such 7 always exists), m,,, is also injective and hence (4) does define a norm. In
general, T, , extends to a unital *-representation of &/ X, , I" on ¢*(T', H), which we
still denote by 7, 4.

Take an injective unital *-representation 7 of &7 on some Hilbert space H. Denote
by T the isometric embedding H — ¢*(T', H) sending  to rer. Then T*m, (o X4
T = 7n(4f). For each a € & X,, I', denote by €(a) the unique element in
of satisfying T%m, ,(a)T = m(E(a)). Then € is a unital positive linear map from
o Mo to of satisfying €(aer) = a for all a € &7 and E(as) = 0 for all a € o/ and
s € I'\ {er}. In particular, € does not depend on the choice of 7.

3. AMENABLE EXTENSIONS

In this section we define amenable extensions and give some basic examples.

A unital ring R is said to have invariant basis number (IBN) or unique rank
property (URP) if for any distinct n, m € N, the left R-modules R" and R™ are not
isomorphic, or equivalently, the right R-modules R™ and R™ are not isomorphic [22,
page 3]. When R has IBN, for any finitely generated free left R-module M we write
dim(M) for the nonnegative integer satisfying M = RI™O0 Note that if R has a
Sylvester matrix rank function, then it has IBN.

Let R be a unital ring and S be a unital ring containing R with 1z = 1.

Definition 3.1. Assume that R has IBN. A collection F of left R-submodules of S
is called a finite approximation system if the following conditions hold:

(i) Each W € JF is a finitely generated free left R-module.
(ii) For any W,V € &, one has WNV, W+ 7V € .
(iii) For any W,V € F satisfying V C ‘W, one has W =V @& V' for some V' € F.
In particular, dim(V) < dim('W).
(iv) Every finitely generated left R-submodule of S is contained in some W € F.

Denote by F the set of nonzero elements in F. We say that S is a right amenable
extension of R with finite approximation system & if furthermore

(v) For any finite subset V' of S and € > 0 there is some W € F which is (V, ¢)-

invariant in the sense that one has dim(W) < (1 + ¢) dim(W) for some
W € F containing W + WV

Example 3.2. Let R be a field K, I' a discrete group, and S the group ring KI'.
For each finite set F' C I' denote by KF' the set of elements in KI' with support
contained in F. Denote by J the set of KF' for F' ranging over finite subsets of I'.
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Then JF is a finite approximation system for KI'. Clearly KI' is a right amenable
extension of K with this J if and only if I' is amenable.

Example 3.3. Let I' be a discrete group and let R xI' = @, Vi be a twisted
crossed product as in Section 2.2. Assume that R has IBN. Let F be the set of
R-modules of the form ) __. V; where F' is a finite subset of I'. Then J is a finite
approximation system for R x ['. It is easily checked that the ring R x " is a right
amenable extension of R with the above J if and only if I" is amenable.

Example 3.4. Let K be a field and S a unital K-algebra. Let F be the set of
all finite-dimensional K-linear subspaces of S. Then ¥ is a finite approximation
system for S. If S is right amenable over K in the sense of Gromov and Elek as
in Section 2.3, then clearly S is a right amenable extension of K with the above F.
When S is a domain, the converse also holds.

Example 3.5. Let K be a field and E a field containing K. Let R be a K-algebra
with IBN. Denote by F the set of V ®x R for V ranging over finite-dimensional
K-linear subspaces of E. Then J is a finite approximation system for E ®x R. Since
E is right amenable over K, E @k R is a right amenable extension of R with this J.

We shall use the following elementary lemma a few times.

Lemma 3.6. Let F be a finite approrimation system. The following are true.
(i) For any V,W € F, we have

dim(V 4+ W) 4+ dim(VN'W) = dim(V) + dim(W).
(ii) For any Wy,...,W,, W € F with Wy,...,W,, CW, one has

dim(W) — dim ([(|W;) <> (dim(W) — dim(W,)).
j=1 j=1
Proof. (i). We have W =W @& (VN'W) for some W € Fand V=V @& (VN'W) for
some V' € F. Clearly V+W =V & (VNW) ®W'. Thus

dim(V + W) + dim(V N W) = dim(V') + dim(V N'W) + dim(W’) + dim(V N'W)
= dim(V) + dim(W).
(ii). We argue by induction on n. This is trivial when n = 1. Suppose that it
holds for n. Let Wy, ... W, , W,, .1, W e F with Wy,... . 'W,,W,, .1 CW. Then

dim(W) — dim ( ﬂ W;)
— dim(W) — dim ( (n] W;) — dim(Wi1) + dim (Wit + ﬁ W;)
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< dim(W dlm ﬂ — dim(W,41) + dim(W)
n+1

< (dim(W) — dim(W;)),
j=1

where in the equality we apply part (i) and in the last inequality we apply the
inductive hypothesis. ([l

4. SYLVESTER MATRIX RANK FUNCTION FOR AMENABLE EXTENSIONS

In this section we give the Ara-O’Meara-Perera construction of Sylvester matrix
rank functions for amenable extensions using ultralimits in [4]. They did the con-
struction for twisted crossed products in Example 3.3, but their method works for
general case easily.

Let R be a unital ring. Let rk be a Sylvester matrix rank function for R, and
dim(-|-) the corresponding bivariant Sylvester module rank function for R. Let S
be a unital ring containing R with 1z = 1g, and let F be a finite approximation
system.

Let A € Mym(S) and W € F. By the condition (iv) of Definition 3.1 there is
some W € F such that WA, ; C W for all 1 <i<nand1l<j<m. Then we have

Wm A C W™, Take an R-basis w1, . .., w; for W", and an R-basis @y, . . . , W, for W,
Then we have

U)lA U~)1
(5) . | =B

wlA ﬁ)p
for some B € M, ,(R). Note that rk(B) does not depend on the choices of the bases
wy,...,w; and Wy, ..., wW,. In fact, by Lemma 4.1 below rk(B) does not depend on

the choice of W either. Thus we may define
rkyy(A) = rk(B).

Lemma 4.1. Let A € M, ,,(S) and W, W € F such that WA, ,; C W for all 1 <
1 < nandl <j<m If we take an R-basis wy,...,w; for W" and an R-basis
Wy, ..., W, for W™, and define B € M, ,(R) via (5), then

rk(B) = dim(W"A|S™).
Proof. Clearly WA is a finitely generated left R-submodule of W™, and
rk(B) = dim(W"AW™).
For any V € F satisfying WA C V™, by the conditions (i) and (iii) of Definition 3.1

we know that both V" and W™ are direct summands of (W+V)™ as left R-modules,
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and hence
dim(W"A[V™) = dim(W"A|(W + V)™) = dim(W"A|W™).

By the condition (iv) of Definition 3.1 every finitely generated left R-submodule of
S™ is contained in V™ for some V € F. Therefore

dim(W"A|S™) = inf dim(W" AM)

= inf  dim(W"A[V™)
VeF W ACYm

= dim(W"A|W™) = 1k(B),

where in the first line M ranges over all finitely generated left R-submodules of S™
containing W™ A. O

We record some basic properties of rky in the following obvious lemma which we
leave for the reader to check.

Lemma 4.2. Let W € F. The following are true.
(1) tkyw(0) = 0 and rky(lg) = dim(W). ) )
(i1) For any A € M, ,(S) and B € M,,(S), taking W € F with WA; ; CW for
all1 <i<mnandl<j<m, one has rkyw(AB) < min(rky(A), rky(B)).

(iv) rkw([A g}) > rkyw(A) + rkw(B).

(v) For anyV € F with W CV and A € M, ,,(S), one has
rkyw(A) < rky(A) < rkyw(A) + n(dim(V) — dim(W)).

Recall that for a nonempty set J, a nonempty family w of subsets of J is called a
filter if it is closed under taking finite intersections, () € J, and for any X € w and
X CY CJonehasY € w. An ultrafilter on J is a maximal proper filter w, i.e. for
any proper filter w’ on J containing w, one has w = w’. Given any ultrafilter w on
J and any map f from J to a compact Hausdorff space Z, there is a unique zy € Z
such that for every neighborhood U of 2y in Z, the set f~'(U) is in w. We shall
write zg as lim;_,,, f(7).

Now we assume that S is a right amenable extension of R with F. We say that
an ultrafilter w on F is non-principal if for any finite subset V' of S and any ¢ > 0,
the set of all (V,¢)-invariant W € F is an element of w. By Zorn’s lemma there are
non-principal ultrafilters on F. Fix a non-principal ultrafilter w on F

The following lemma is an immediate consequence of Lemma 4.2.(v).
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Lemma 4.3. Let V be a finite subset of S. For each W € F take a Wy € F with
smallest dim(Wy,) such that W+ WV C Wy,. Then

- dim(Wy) U und i T (A) — rky(A)
W-w dim(W) N W—w dim('W)
for every A € M, ,(S5).
For each A € M,, ,,(5), put

=0

T l"kw(A)
rhy(4) = vlvlglw dim(W)

It follows from Lemmas 4.2 and 4.3 that rkg is a Sylvester matrix rank function for
S.

If R has a unique Sylvester matrix rank function rk, then rkgs extends rk. In
general, in order for rkgs to extend rk, we need to assume some extra conditions,
which we shall discuss in Section 5.

5. AMENABLE NORMAL EXTENSIONS

In this section we define amenable normal extensions and discuss some basic
examples. Let R be a unital ring with IBN, and let S be a unital ring containing R
with 1g = 1p.

Recall that a subset G of S is multiplicative if 1¢ € G and st € G for all s,t € G.
The set of all non-zero-divisors in S\ {0} is multiplicative.

Denote by Ng(R) the multiplicative set of non-zero-divisors ¢ in S\ {0} which
normalizes R, i.e. gR = Rg. For each g € Ng(R) and a € R, there is a unique
o4(a) € R satistying ga = 0,(a)g. The map o, : a — o4(a) is an automorphism of
R.

Definition 5.1. We say that a finite approximation system F for S is normal if
there is a multiplicative subset U of Ng(R) such that:

(i) Each W € F has a basis consisting of elements in U.

(ii) For each g € U, Ry is in F.

(iii) For any g € U and W € F with W C Sg, one has {x € S : zg € W} € F.
The conditions (i) and (ii) imply that for any g € U and W € F one has gW, Wg € F.
Thus the conditions (i) and (ii) imply (iii) when U is a group.

We call S a right amenable normal extension of R if it is right amenable with some
normal finite approximation system F, and given a Sylvester matrix rank function
rk for R, call S a right amenable normal extension of R preserving rk if furthermore
rk is og4-invariant for every g € U.

Example 5.2. Let K, I', and F be as in Example 3.2. Then ¥ is normal with U = T',
where we identify I" with its image under the natural embedding I' < KI'. Since K



16 BAOJIE JIANG AND HANFENG LI

has a unique Sylvester matrix rank function rk, when I' is amenable, KI" is a right
amenable normal extension of K preserving rk.

Example 5.3. Let I', R, R« I" and F be as in Example 3.3. Then J is normal with
U consisting of bs for b a unit in R and s an element of I'. If I' is amenable, then
R * T is a right amenable normal extension of R. Since every Sylvester matrix rank
function is invariant under inner automorphisms, when I' is amenable, if rk is a
Sylvester matrix rank function for R invariant under o; for every s € I', then R« I’
is a right amenable normal extension of R preserving rk.

Example 5.4. Let K be a field and S a unital K-algebra without zero-divisors.
Let F be as in Example 3.4. Then ¥ is normal with U equal to the set of nonzero
elements in S. Since K has a unique Sylvester matrix rank function rk, if S is right
amenable over K in the sense of Gromov and Elek as in Section 2.3, then S is a
right amenable normal extension of K preserving rk.

Example 5.5. Let K E, R and J be as in Example 3.5. Then J is normal with
U={a®klg:a € E,a # 0}. For any Sylvester matrix rank function rk of R,
E ®k R is a right amenable normal extension of R preserving rk.

Remark 5.6. If rk is a Sylvester matrix rank function for R and S is a right
amenable normal extension of R preserving rk, then clearly rkg constructed in Sec-
tion 4 extends rk.

For any ring automorphism ¢ of R and any left R-module M, we denote by M?
the left R-module {z : © € M} with addition Z+ gy = x + y and scalar multiplication
o(a)z = az. The following lemma gives us the implication of invariance of rk under
an automorphism in terms of the corresponding dim(-|-).

Lemma 5.7. Let tk be a Sylvester matriz rank function for R and dim(:|-) the
corresponding bivariant Sylvester module rank function for R. Let o be a ring auto-
morphism of R preserving rk. Then the following hold.

(1) For any left R-modules My C My, one has
dim(M;|Mz) = dim(M]|M3).

(ii) Let g € S such that o(a)g = ga for all a € R. For any left S-module N and
any R-submodules My, My of N, one has

dim (7, (9M2)|N/gMy) < dim (g, (Ma)|N/My),

where Ty denotes the quotient map N — N/M' for every R-submodule N’
of N. In particular,

dim(gM3|N) < dim (M| N).
Proof. (i). For any left R-modules M; C My, define
dim? (M| M) = dim(M7|M3).
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Then clearly dim?(+|-) satisfies the conditions in Definition 2.2, and thus is a bivariant
Sylvester module rank function for R. Let A € M, ,,,(R). Denote by ey, ..., e, the
standard basis of R™. Then ey,...,€, is an R-basis of (R™)?. Clearly (R"A)? is
the R-submodule of (R™)” generated by 7" o(A;;)éj for i = 1,...,n. Therefore

dim? (R"A|R™) = dim((R"A)°|(R™)7) = tk(co(A)) = tk(A).

Consequently, dim?(-|-) is the bivariant Sylvester module rank function for R corre-
sponding to rk, and hence dim?(-|-) = dim(-|-).

(ii). Denote by ¢ the R-module homomorphism N? — N sending Z to gz.
Then oM7) = gM; and p(Mg) = gMy. Thus we get an induced R-module
homomorphism ¢' : N7/MJ — N/gM; sending z + M7 to gz + gM;. Clearly
@' (M +M3)/MT) = (gM1 + gMz) /gMy and ' (N7/M7) = gN/gM,. Thus

dim(mgag, (9Ma2)|N/gMy) = dim((gMy + gMz) /g [N/ gMy)
< dim((gMy + gMy) /gMy |gN/gMy)
= dim(¢' (M7 + M3) /M) | (N7 /MT))
< dim((M{ + M3)/MT N7 /MT)
= dim(((My + Ma)/My)7|(N/M1)7)
= dim((M; + My) /My |N/My)
= dim(mg, (M) |N/My),

where in the 2nd inequality we apply Theorem 2.3.(iii) and in the 4th equality we
apply part (i). O

6. LINEAR INFIMUM RULE

In this section we prove Theorem 6.7, showing that for a right amenable normal
extension preserving rk, the Sylvester matrix rank function rks constructed in Sec-
tion 4 is actually a limit and an infimum, so does not depend on the choice of the
ultrafilter. For this we establish an infimum rule in Lemma 6.3.

To motivate Lemma 6.3, we recall what happens for amenable groups. Let r be
an amenable group. Denote by F(I") the set of all finite subsets of I', and by F(I")
the set of all nonempty finite subsets of I'. For an R-valued function ¢ defined on
F(I') or F(I'), we say that ¥(F) converges to L € [—o00,400] when F becomes more
and more right invariant, written as limp ¢(F') = L, if for any neighborhood U of L
in [—00, +00| there are some K € F(I') and 6 > 0 such that for any (K, §)-invariant
F € F(I) one has ¢(F) € U.

There are two well-known results yielding the convergence of ¢(F'). The first one
is the so-called “infimum rule”, showing that actually limp ¢ (F) = inf o g0 P (F).
Below is one of its forms [30, Definitions 2.2.10, 3.1.5, Remark 3.1.7, and Proposition
3.1.9] [8, Appendix] [26, Lemma 3.3] (see also [9] [21, Section 4.7]). The second one
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is the Ornstein-Weiss lemma [27, Theorem 6.1] [21, Theorem 4.38], which is based
on the quasitiling machinery of Ornstein and Weiss for amenable groups [32].

Lemma 6.1. Let I be an amenable group and ¢ an R-valued function on F(I")
satisfying the following conditions:
(i) ¢(0) =0,
(i1) p(sF) = p(F) for every F € F(I') and s € T,
(111) o(Fy U Fy) + o(F1 N Fy) < o(F1) 4+ o(Fy) for all Fy, Fy € F(T).
Then (F) ()
% . 14
lim ——= = inf ——.
FOF] resry |F

Now let R be a unital ring with IBN and let S be a right amenable normal
extension of R with F and U. Recall that for any W,V € &, WV denotes the set of
finite sums of elements of the form wv for w € W and v € V, and hence WV € F.
Here is the linear version of the above definition of limit.

Definition 6.2. For V € F and § > 0 we say W € F is (V, §)-invariant if dim(W +
WV) < (1 + 6)dim(W). For an R-valued function ¢ defined on F or F, we say
(W) converges to L € [—o0,+00] when W becomes more and more right invariant
if for any neighborhood U of L in [—o00, +00] there are some V € F and § > 0 such
that for any (V,8)-invariant W € F we have »(W) € U. In such case we write

Now we give a linear infimum rule.

Lemma 6.3. Let R be a unital ring with IBN and let S be a right amenable normal
extension of R with & and U. Let ¢ be an R-valued function on F satisfying the
following conditions:
(1) ¢({0}) =0,
(11) p(gV) < (V) for everyV € F and g € U,
(i11) p(V+ W)+ o(VNW) < (V) + (W) for all VW € F.

Then W) ")
P L
W T~ L Gy

Proof. Put L = infvgﬂ € [—o00,400). Let r € R with r > L. Take € > 0 with

dim(V)
r —2¢ > L. The set of V € JF satistying dfél\(?\)?) < r — 2¢ is nonempty. Take a V in
this set with smallest dim(V), and put C' := dﬁ%) < r —2¢e. Then dfrfl\(?\?,) > C for

every V' € F satisfying dim(V') < dim(V). From the condition (i) we conclude that
e(V') > Cdim(V)
for every V' € JF satistying dim(V’) < dim(V).
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We claim that o(WV) < C dim(WV) for every W € F. We prove it by induction
on dim(W). The case dim(W) = 0 follows from the condition (i). When dim(W) =
1, we have W = Rg for some g € U and hence

P(WV) = ¢(gV) < (V) = Cdim(V) = C dim(WV),
where the inequality comes from the condition (ii). Suppose that the claim holds
when dim(W) = n. Let W € F with dim(W) = n + 1. Write W as W; & W, with
Wi, Wy € F such that dim(W;) = n and dim(W,) = 1. Then Wy = Rg for some
g € U. By induction hypothesis we have ¢(W;V) < C'dim(W,V) for j = 1,2. If
W1V N WV =W,y V, then WV = W,V + W,V =W, V, and hence
e(WV) = p(W,V) < Cdim(W;V;) = C dim(WV).
Thus we may assume that WV N W,V £ W,y V. Note that W{ VN W,V € F. Thus
Therefore (W1, V N Wy V) > C dim(W,V N W, V). By the condition (iii) we have
e(WV) = (W V + W, V)
= Cdim(W;V + Wy V) = C dim(WV),

where the 2nd equality comes from Lemma 3.6.(i). This proves our claim.

From the condition (i) we have p(Rg) = ¢(gR) < ¢(R) for every g € U. Then
from the conditions (i) and (iii) we have (W) < ¢(R) dim(W) for all W € F.

Take § > 0 with 6 max(|C|, |o(R)|)dim(V) < . Now let W € F be (V,6)-
invariant. Write V as @1§j§dim(v) Rv; for some vy, ..., vgimy) € U. For each 1 <
Jj < dim(V), set W; = {w € W:wv; € W} = {x € §:2v; € WNWuy;}. Then
W; € J, and w — wvj is a left R-module isomorphism from W; onto WN'Wu;. Note
that W+ Wu; € F is contained in W+ WYV, thus dim(W + Wu;) < dim(W + WV).
Therefore

dim(W) — dim(W;) = dim(W) — dim(W N Wu;)
= dim(W + Wu;) — dim(Wu;)
< dim(W + WV) — dim(W)
< 0 dim('W),

where in the 2nd equality we apply Lemma 3.6.(i). Set W' = ﬂdlm W, € F. Then
WiV C W, and by Lemma 3.6.(ii) we have

dim(W) — dim(W') < Z (dim(W) — dim(W;)) < & dim(V) dim(W).
7=1
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Since WV, W € F and WI'V C ‘W, we have W = WiV @ W! for some W# € F. Then
dim(W) > dim(W'V) > dim(W'v;) = dim(W') > dim(W) — ¢ dim(V) dim(W),
and hence
|C dim(WTV) — C dim(W)| < |C|6 dim(V) dim(W) < e dim(W),
and
lo(R) dim(W?)| = |p(R)|-| dim(W)—dim(WIV)| < |p(R)|§ dim(V) dim(W) < e dim(W).
We conclude that
P(W) = p(W'V + WF)

= (W + W) + (WY N WH)

< (W) + p(WH)

< Cdim(W'V) + o(R) dim(WF)

< C'dim(W) + e dim(W) + & dim(W)

< rdim(W),
where the 1st inequality comes from the condition (iii). O

If we take R to be a field K and S to be the group ring KI" of an amenable group
I' in Example 5.2, then Lemma 6.3 yields a new proof of Lemma 6.1.

Now let rk be a Sylvester matrix rank function for R and dim(:|-) the correspond-
ing bivariant Sylvester module rank function for R. We assume further that S is a
right amenable normal extension of R preserving rk.

Lemma 6.4. Let Ni C Ny be left S-modules such that Ny is finitely generated. Let
My be a finitely generated R-submodule of N1 generating N1 as an S-module. Then
w dim(W) veg  dim(V)

This limit does not depend on the choice of My. We denote it by dimg(N7|Na).
Proof. Consider the function ¢y, on F defined by ¢y, (V) = dim(VM;|Nz). Let’s

check that it satisfies the conditions in Lemma 6.3. Clearly ¢y, ({0}) = dim({0}|Ny) =
0. For any g € U and V € F, by Lemma 5.7.(ii) we have

o, (gV) = dim(g VM| Na) < dim(VM;[Na) = oo, (V).
For any V,'W € F, by Theorem 2.3.(ii) we have
o, (V4+W) + op, (VW) < dim(VMy + WM, [N2) 4+ dim(VM; N WM, |N2)
< dim (VM |N2) + dim (WM, |N,)
= o3, (V) + oai, (W).
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Therefore from Lemma 6.3 we get (6). Denote limyy %W by L, -

Let M) be another finitely generated R-submodule of N; generating N; as an
S-module. We shall show Ly, = Ly, By symmetry it suffices to show Ly < Loy, .
Since M; generates N; as an S-module, we have M} C V'M; for some nonzero
finitely generated left R-submodule V' of S. We may assume that V' € F. For any
§>0and Ve F, when W in F(V) is (V' + V'V, §)-invariant, we have

dm(WV' + WV'V) = dim(W(V + V'V)) < (1 + 6) dim(W) < (1 + &) dim(WV').

This shows that when W € F becomes more and more right invariant, so does WV'.
Also clearly limyy S — 1. Therefore

dim (W)
dm(W) W dim(WV)

Lj\/[/l < Lle = hVI\?n = Ljy[l.

O

When R is a field K, it has a unique Sylvester matrix rank function rk, and the
corresponding bivariant Sylvester module rank function is dim(M; |Ms) = dimg (M)
for all left R-modules M; C Ms, where dimyg (M) is the usual dimension for K-vector
spaces and we put dimg(M;) = oo whenever M; is infinite-dimensional. Taking S
to be a unital right amenable K-algebra without zero-divisors in Example 5.4, we
obtain the following consequence of Lemma 6.4.

Corollary 6.5. Let K be a field and let S be a unital right amenable K-algebra
without zero-divisors. Put F to be the set of all finite-dimensional K-linear subspaces
of S. For any finitely generated left S-module N and any finite-dimensional K-linear

subspace M of N generating N as an S-module, the limit limyy —d;?ﬁﬂi\g%[)

Remark 6.6. In [17, page 348] Gromov asked whether the limit limyy %

for every unital right amenable K-algebra S. In [10, page 477] Elek constructed an
example showing that in general the limit does not exist. In this example, S is
the unital K-algebra generated by x and y subject to 22 = 0 and 2y = 0. The
left S-module N is the S-submodule of S generated by = and y, and one can take
M = Kz 4+ Ky. Corollary 6.5 answers Gromov’s question affirmatively in the case S
is a domain.

exists.

exists

Theorem 1.1 is part of the following result.
Theorem 6.7. Let A € M, ,,(S). Then
im rkW(A) = inf rl‘w(A)
w dim(W)  yeg dim(V)
Proof. Denote by M, the left R-submodule of 5™ generated by the rows of A. For
each W € F, clearly WA = WM, and hence by Lemma 4.1 we have
rky(A) = dim(W" A|S™) = dim(WM;|S™).

— dimg(S"A|S™).
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Put N; = S™A and Ny = S™. Now the theorem follows from Lemma 6.4. O

7. CONTINUITY OF EXTENSION

In this section we prove Theorem 7.8, establishing the continuity of the map
rk — rks. For this purpose we need to assume some linear quasitiling property.
To motivate this property, we recall first the Ornstein-Weiss quasitiling theorem for
amenable groups [32] [21, Theorem 4.36].

Theorem 7.1. Let T be an amenable group. Let 0 < e < 1 and K € F(T'). Then
there are some n € N, (K, ¢)-invariant F,...,F, € F(T), § > 0 and K' € F(I)
such that every (K',8)-invariant F € F(T) can be e-quasitiled by Fy, ..., F, in the
sense that there are Cy,...,C, € F and F;. C G for each 1 < j < n and c € C}
satisfying the following conditions:
(1) For each 1 < j <n and c € C}, one has F;. C Fj and |Fj.| > (1 —¢)|F}|.
(it) The sets cF. for 1 <j <mn and c € C; are pairwise disjoint.
(111) Ulgjgn Ucecj cF; CF and } Ulgjgn Ucecj cF]‘ > (1—¢)|F|.

Theorem 7.1 says that one can choose the shapes F7, ..., I}, to be as right invariant
as one wants (i.e. (K, e)-invariant), so that any sufficiently right invariant F' (i.e.
(K',d)-invariant) is almost a disjoint union of translates of Fi,..., F, (i.e. cFj).
When I' = Z, one can take n = 1 and F; = {0,1,..., N — 1} for sufficiently large
N, and take C] to be the set of ¢ € NZ satisfying ¢ + F; C F. In general, if I is
monotileable in the sense that there is a right Felner sequence {K,, }men of T such
that for each m € N one can write [' as a disjoint union of sets of the form cF},
with ¢ € T', then one can always take n = 1 and F} = K, for sufficiently large m.
Every amenable residually finite group is monotileable [41]. It is an open question
whether every amenable group is monotileable or not.

Let R be a unital ring with IBN, and let S be a right amenable normal extension
of R with F and U. Here is our linear version of a weak form of the quasitiling in
Theorem 7.1.

Definition 7.2. We say that (F,U) has the weak quasitiling property if for any
0<e<1andV € F there are some n € N and (V, e)-invariant Wyq,..., W,, € F
such that for any § > 0 and V' € ¥, there is a (V',9)-invariant W € F which can
be e-quasitiled by Wy, ..., W,, in the sense that there are C;,...,C, CUNW and
W;. € J for each 1 < j < n and c € C; satisfying the following conditions:
(i) For each 1 < j < n and ¢ € C}, one has W;. € W, and dim(W,.) >
(1 —¢)dim(W;).
(ii) The left R-modules ¢cW, . for 1 < j < nand ¢ € C; are linearly independent.
(it)) Do 1<jcn Zcecj W; €W and dim (D, .o, Zcecj cW;) > (1 —¢) dim(W).

Example 7.3. Let ', R, R« [',;)F and U be as in Example 5.3. If I is amenable,
then from Theorem 7.1 we know that (F,U) has the weak quasitiling property. In
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fact, Theorem 7.1 implies that (F, U) satisfies some property stronger than the weak
quasitiling property, namely for any 0 < ¢ < 1 and V € F there are some n € N,
(V, ¢)-invariant Wy, ..., W, € F, 8 > 0 and V' € F such that every (V’,§)-invariant
W € F can be 5—qua51tlled by Wy,...,W,.

Lemma 7.4. Let K be a field and E a field containing K. Denote by F the set

of nonzero finite-dimensional K-linear subspaces of E. For any V € F and e > 0,
there is some (V,¢e)-invariant Wy e F such that for any V' € F and § > 0 there
are some (V',0)-invariant W € F and a finite set Cy of nonzero elements in W with

W = ®0601 ch.

Proof. If E is algebraic over K, then we may take W; to be the subfield of E generated
by KUV, W to be the subfield of E generated by KUVUYV', and C; to be a W;-basis
of W. Thus we may assume that E is not algebraic over K.

We may assume that 1x € V.

Let X be a maximal set of elements in E being algebraically independent over K.
Then X is nonempty. Denote by [E; the subfield of E generated by X and K. Then
E is algebraic over E;. We may identify [E; with the field of rational functions with
coefficients in K and indeterminants in X. Denote by P the set of all polynomials
with coefficients in K and indeterminants in X.

Take a finite field extension F of E; contained in E such that V C F. Take a
K-basis A for V, and take an E;-basis B for F with 1z € B. Then we can find some
nonzero h € P such that for any a € A and b € B one has hba = ), fappt’ for
some f,py € P. Let Y be a finite subset of X containing all the indeterminants
appearing in f,,y for all a € A and 0,0’ € B. Denote by m the maximum of the
degree of each y € Y in f,,y for a ranging over elements of A and b,0’ ranging
over elements of B. For each n € N, denote by Qy,, the set of polynomials with
coefficients in K and indeterminants in Y and degree at most n — 1 in each y € Y.
Then dimg Qy.,, = (14 n)¥l. Take n € N large enough such that dimg(Qy.,4m) <

(14 ¢)dimg(Qyn—1). Note that f,pyQyn-1 C Qynim for all a € A and b,V € B.
Set Wy =, c5bQyn—1 € F. Then
WWV =5 0Qvn1d KaCY > faprtQran1 C Y VQvim,
beB a€A a€Abb eB b'eB

and hence
< dlmK(Z bQY,n-‘rm)

beB

= |B| dimg(Qy.ntm)
< (1+¢)|B|dimg(Qyn-1)
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Thus W is (V, ¢)-invariant.

Let V' € F containing 1g and 0 > 0. Then we have ', A", B, ', Y', m/ ., n', Qy' 1, Qv
and W) as above for V' and §. We may choose F' O F. Take an F-basis Z for I’
containing 1g. We may choose B’ to the set of bz for all b € B and z € Z. We may
also choose Y’ D Y and n’ to be a multiple of n. Denote by C; the set of gz for all
z € Z and monomials g in Y’ such that in g each y € Y has degree ¢,n for some
integer 0 < ¢, < n//n and each ¥ € Y\ Y has degree at most n' — 1. Then

W= @ 10 = DD = BB s = B oW,
beB,zeZ beB z€Z beB ceCy ceCq
Since 1x € B, we have C; C W|. Putting W = W finishes the proof. OJ

Example 7.5. Let K, E, R, F and U be as in Example 5.5. It follows from Lemma 7.4
that (F,U) has the weak quasitiling property.

Question 7.6. Does every right amenable normal extension have the weak quasitil-
ing property?

For any V € ﬁ", we say Wi, Wy € F are V-separated if W,V N W,V = {0}.

Lemma 7.7. Let C > 0 and V € F. Denote by ®cv the set of functions ¢ : F — R
satisfying the conditions (i)-(iii) in Lemma 6.3 and
(iv) For any V-separated W1, Wy € F, one has p(W1 + W) = o(W1) + p(W3),
(v) (gW) = (W) for all W e F and g € U,
(vi) p(R) < C,
(vii) p(W1) < @(W3) for all Wi, Wy € F with Wy C 'Ws.

Equip ¢y with the pointwise convergence topology. Assume that (F,U) has the weak

e(W)
dim(W)

quasitiling property. Then the function ¢ — limyy on ey is continuous.

Proof. From the conditions (i) and (vii) we know that every ¢ € ®¢ v is Rso-valued.

For each ¢ € ¢y, put f(p) = limy dfn(j(N\A)?) = inf ;4 % € Rxo.
A b
Let ¢ € ®cy and € > 0. Take a W’ € F with dﬁf:(/\?w)b) < f(¢) + e. Denote by Uy

the set of all ¢’ € @y satisfying ¢’ (W) < ¢(W”)+-e. This is an open neighborhood
of ¢ in ®¢y. For each ¢’ € Uy, we have

W) _ (W)
ne YWV
1) S Fmow) S Tmown)
If f(p) =0, then f(¢') > f(p) for all ¢’ € U;. Thus we may assume f(p) > 0
and € < f(p)/4. Take § > 0 such that 2C¢§ dim(V) < e. Also take 0 < 6 < § such
that (f(p) —2¢)(1 —0) > f(¢) — 3e. By assumption we can find some n € N and

~

(V,d)-invariant Wy, ...,'W,, € F such that for any V; € F and §; > 0 there is some
(Vy, 61)-invariant W € F which can be #-quasitiled by Wy, ..., W,,. Denote by U,
the set of all ¢ € ®¢y satisfying ¢'(W;) > ¢(W;) —e for all 1 < j < n. This

+e < fp) + 2.
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is an open neighborhood of ¢ in ®cvy. Let ¢’ € U,. There are some V; € F and

91 > 0 such that for any (Vy,d;)-invariant W € F one has 2 (( )) < f(¢') + €. Take

a (Vq,0y)-invariant W € F which can be f-quasitiled by Wl, ..., W,,. Then we have
Ci,...,Cpand W, for 1 < j <n and c € C; as in Definition 7.2. Take an R-basis
V1, ..., Vaim(v) of Vin U. For each 1 < j < n, c € C}, and 1 < ¢ < dim(V), denote
by W;.; the set of w € W; satistying wv;, € W;. N W;v;. Then W, .; € F and
dim(Wj ;) = dim(W; . N W,v;). Note that

S dlm(W] + WJV) - dim(ijc)

where in the equality we apply Lemma 3.6.(i). Put W}, = (,c;cqgimw) Wjei € F-
Then o

dim(V

dim(W;) — dim(Wj ) < Z (dim(W;) — dim(W,.;))

dlm(V)
= Z (dlm(W]UZ) - diHl(\/Vj7C N iji))
i=1

< 26 dim(V) dim(W;),

where in the first inequality we apply Lemma 3.6.(ii). We have W; = W’ @ W7
for some WY . € F. Then

' (W)) < ' (W) + ' (W],)
< ¢'(W],) + dim(W} )¢ (R)
= ¢ (W).) + (dim(W;) — dim(W; .))¢'(R)
< g&’(W; ) +2C6 dim(V) dim(W;)
< @'(W) ) + e dim(Wy).

Note that CW’- c\? C cW;j.. Thus

Z ZCW/

1<j<n ceCy

=D D ¢w)

1<j<n ceCy

=2 2 4w,

1<j<n ceC;
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> > ) (¢ (W) — e dim(W;))

1<j<n ceCy
> > (p(W;) — edim(W;) — e dim(W;))
1<j<n ceCy
> Z Z ¢) dim(W;) — 2e dim(W;))
1<j<n ceCy
= (f(p) —2¢) Z Zdlm (cW;)
1<j<n ceC}y
> (f(p) = 2e)dim( Y} W)
1<j<n ceC;

> (f(p) — 22)(1 — 6) dim(W)
> (f(p) - 3¢) dim(W),

where in the first equality we apply the condition (iv) and in the 5th inequality we
apply Lemma 3.6.(i). Therefore

Fe) 2 £~ e fip) - i

It follows that f is continuous on ®¢ y. O

Denote by Py (R) the set of rk € P(R) which is og-invariant for all g € U. This is
a compact convex subset of P(R). A map f: X — Y between convex sets is called
affine if f(tzy + (1 —t)zo) =tf(x1) + (1 —¢)f(x2) forall 0 <t <1 and zq,29 € X.
The following is a restatement of Theorem 1.2.

Theorem 7.8. Assume that (F,U) has the weak quasitiling property. The map
Py(R) — P(S) sending rk to rkys is affine and continuous.

Proof. Clearly this map is affine. We just need to show that it is continuous.

Let A € M, ,,(S). Take V € F with AijeVioralll <i<nandl<j<m.
Put ¢ = n. We have ®¢y in Lemma 7.7. Now it suffices to show that for each
rk € Py(R), the function ¢ : F — R sending W € F to rky(A4) and {0} to 0 lies
in (I)av.

Denote by M the left R-submodule of S™ generated by the rows of A. Put Ny =
S™. It was shown in the proof of Lemma 6.4 that the function W — dim (WM, |N3)
on J satisfies the conditions (i)-(iii) in Lemma 6.3. Note that W*A = WM, for
every W € F. By Lemma 4.1 we have o(W) = rkw(A4) = dim(WM;|N,) for every
W e F. Thus (W) = dim(WM,|N,) for every W € F. Therefore ¢ satisfies the
conditions (i)-(iii) in Lemma 6.3.

Let Wi, Wy € F be V-separated. If Wy or Wy is equal to {0}, say Wy = {0}, then

P(W1 +Wy) = (W) = o(W1) 4+ ©(Wy).



SYLVESTER RANK FUNCTIONS FOR AMENABLE NORMAL EXTENSIONS 27

Thus we may assume that W;, W, € F. Since V # {0}, we have Wy N W, =

{0}. Take an R-basis ws,...,w; for W}, an R-basis w1, ..., wy, for W4, an
R-basis wy, ..., w, for (W1V)™, and an R-basis Wi, ..., W+ for (WyV)™. Then
Wi, ..., W, Wit - - ., Wiy 1S an R-basis for (W1+Wq)™, and @y, . . ., Wy, Wpt1, - - -, Wptq
is an R-basis for (W,V + Wy V)™ = ((W; + W5)V)™. We have
w A wq w1 A Wp41
: =By | | and : =By :
'l,UlA 'lz)p 'IUI+TA 'le+q
for some By € M, ,(R) and By € M, ,(R). Then
[ w A w
1 - [31 } 1
= Bl |
_wl+TA wp+q
Thus
B
(W1 + W) =rk(| ™" ng =1k(B1) + 1k(B2) = p(W1) + p(Ws).

This verifies the condition (iv) of Lemma 7.7.

Let g € U. If Wy = {0}, then p(gW;) = ¢({0}) = ¢(W;). Thus we may assume
W, € F. Then guwy, ..., gw; is an R-basis of (gW4)", and gy, . .., g, is an R-basis
for (¢W;V)™. Note that

guwiA wy g
= gBl - Og(B1>
gqwiA W, gu,
Thus
p(gW1) = 1k(ay(B1)) = 1k(B1) = (W)
This verifies the condition (v) of Lemma 7.7.

For any W € F we have o(W) < dim(W") = ndim(W), verifying the condition
(vi) of Lemma 7.7.

For any Wi, W, € F with W; C W, we have

@(Wl) = d1m(W1M1|N2) S dlm(WQMﬂNQ) = QD(WQ),
verifying the condition (vii) of Lemma 7.7. OJ

8. BIVARIANT SYLVESTER MODULE RANK FUNCTION FOR AMENABLE NORMAL
EXTENSIONS

In this section we describe the bivariant Sylvester module rank function corre-
sponding to the Sylvester matrix rank function rky. Throughout this section we
assume that R is a unital ring with a Sylvester matrix rank function rk, and S is a
right amenable normal extension of R with F and U preserving rk. Then we have
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the Sylvester matrix rank function rks for S extending rk. In Lemma 6.4 we have
defined dimg(N7|N3y) for left S-modules N3 € N in the case N is finitely generated.
Taking A = (1g) in Theorem 6.7 we get dimg(S|S) = 1.

Lemma 8.1. Let N7 C Ny be left S-modules such that Ny is finitely generated. Then
dimg(N1|Ny) = inf dima (N7 | N)
NQ

for Ng ranging over finitely generated S-submodules of No containing N.

Proof. Clearly dimg(N;|Ny) < dimg(N;|N%) for every S-submodule N} of Ny con-
taining N;. Take a finitely genera’ged R-submodule M; of N; generating Ny as an
S-module. Let ¢ > 0. Take a V € & with

dim(V)

Take a finitely generated R-submodule My of Ny containing M; + VM, with

S dlm:}"(NﬂNQ) +e.

Denote by Ng the S-submodule of Ny generated by My. Then N; C Ng, and

dim (VM |N%)
dim('V)
dim (VM| M)
dim(V)
dim(VM;|N,)
dim('V)
< dimg (N7 |N3) + 2¢.

dima (N |NE) <

+é

O

For any left S-modules N; C Ny C N3 with Ny, N, finitely generated, clearly we
have dimg(N7|N3) < dimg(N3|N3). For any left S-modules N; C Ny, we define

dimgs(N1|N3) := sup dims(N*|N)

N

for N* ranging over finitely generated S-submodules of Ny. Then dimg(:|-) clearly
satisfies all the conditions in Definition 2.2 except the condition (vi).

Lemma 8.2. For any left S-modules N1 C Ny C N3, we have
dlmg(NQ|N3) Z dlmg(N1|fN3) —|— dlmg(NQ/N1|N3/N1)
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Proof. Denote by 7 the quotient map N3 — N3/Nj. Let M; be a finitely generated
R-submodule of N; for j = 1,2. It suffices to show
7)1 > 1 .
(7) lim dim(W) W T dmow) W dim(W)
For each R-submodule M of N3 denote by my the quotient map N3 — N3 /M. For
each W € F we have

where the equality comes from Theorem 2.3.(i) and the inequality comes from The-
orem 2.3.(iii) and the fact that 7 factors through myy,. Now (7) follows immedi-
ately. ([l

Theorem 8.3. Assume that (F, W) has the weak quasitiling property. Then dimg(+|-)
is the bivariant Sylvester module rank function for S corresponding to rky.

Proof. We shall show that for any left S-modules N; C Ny C N3, one has
dimg(N2|N3) = dimg(N|N3) 4+ dimg(No /N7 | N3 /Ny).
By Lemma 8.2 it suffices to show
dimg(Na|N3) < dimg(N7|N3) 4 dimg(Ny /Ny | N3 /Ny).
Denote by 7 the quotient map N3 — N3/Nj. Then it suffices to show
(8) dimy(NE|N3) < dimg (N7 | N3) + dimg (r(N3) | N3 /Ny)

for every finitely generated S-submodule Ng of Nj.
For each R-submodule M of N3 denote by my the quotient map N3 — N3 /M. Let

M, be a finitely generated R-submodule of Ng generating Ng as an S-module.
Let € > 0. Take 0 < # < 1 such that

1 ) . .
ﬁ(dlmg(ﬂ(NgﬂNg/Nl) + 2¢) 4 0 dim(Ms|N3) < dimg(m(N3)|N3/Ny) + 3e.

Note that
dim(Wr(M2)|N3/Ny)

dim('W)
By assumption we can find some n € N and Wy,....'W,, € F with
(9) dlm(W]’ﬂ'(Mg) |N3/N1)

dimg ((NA)[N3 /N7 ) = lim

< dimg(m(NL)| N3 /Ny) + &

for all 1 < j < n such that for any V € F and § > 0 there is some (V, §)-invariant
W € F which can be #-quasitiled by Wy, --- ' W,,.
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By parts (iv) and (iii) of Theorem 2.3 we can find a finitely generated R-submodule
My of Ny with
(10) dim(ﬂ'Ml (W]Mg)lNg/M1> S dlm(ﬂ'(W]Mg) |N3/N1> + e
for all 1 < 7 < n. Denote by Nji the S-submodule of Ny generated by M;.

By Theorem 2.3.(i) we have
w dim (‘W) W dim('W) W dim('W)

= dimg(N§ + N5|N3) — dimg(NF[N3).

Then there are some V € F and § > 0 such that for every (V,8)-invariant W € F
one has

dim (mwae, (WM2) | N3 /WM, )
dim('W)
Take a (V,d)-invariant W € F such that W can be 6-quasitiled by W, ..., W,,.

Then (11) holds. Let Cy,...,C, CUNW and W;. for 1 < j <n and c € C; be as
in Definition 7.2. Then

(12) S 10 dimw) < o 30 S dim(W,.)

1<j<n 1<j<n ceC;

= ﬁ Z Z dim(cW;.)

1<j<n ceCy

oaim(Y Y ewy)

1<j<n ceC}

(11)  dimg(N? + NEIN;) — dimg(NFN3) <

1
1-46
We have W=W'® >, _;, > cec, CW; for some W € F. Take an R-basis A of W’
in U. Then
A| = dim(W') = dim(W) — dim( Y _ Y cW;) < 6dim(W).

1<j<n ceC;j

<

dim(W).

Now we have

dim(mwag, (Y W M) [Ng/WMy) < > ) dim(mvone, (W, M) [N /WM, )

1<j<n ceC} 1<j<n ceCy

< >0 dim(ma, (€W M) N3 /M)

1<j<n ceC}

< Y0 dim(mg, (W; M) N3 /M)

1<j<n ceC;
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ST 0 (dim(m (W) Ny /M) + )

1<j<n

(9) , ﬁ ,
< Y |G |(dimg (m(N)[ N /Ny) + 2¢) dim(W;)
1<j<n
12) 1
<
—1-6
where the first inequality comes from Theorem 2.3.(ii), the 2nd inequality comes from
Theorem 2.3.(iii), and the 3rd inequality comes from Lemma 5.7.(ii), and hence

dim (g, (WM2)|Ns/WM;)
< dim(myone, (Y Y W M)[Ng/WMy) + ) dim(myn, (9M2) N3/ WM )

dim(W) (dimg (7 (N%) N3 /Ny ) + 2¢),

1<j<n ceCj geA
1
<1 dim(W) (dimg (w(N5)|N3/N1) + 22) + > dim(gMa|Ns)
geN
1
<1 dim (W) (dimg (w(N5)[Ns/N1) + 2¢) + > dim(Ma|N3)
geA
1
< dim (W) (dimg (7 (N3)| N3 /Ny ) + 2¢) + 6 dim(W) dim (M, |Ns)

1-46
< dim(W)(dimg (m(N3)[Na/N1) + 3¢),

where the first inequality comes from Theorem 2.3.(ii), the 2nd inequality comes
from Theorem 2.3.(iii), and the 3rd inequality comes from Lemma 5.7.(ii). Thus

i : (1) dim(myae, (WMy) | N3 /WM
dlIﬂ?(ijl + Ng|fN3) — dlmg(N§|N3) < (7w glm(%i 3/ 1)

< dimg (m (NL) N3 /Ny ) + 4e.

Therefore
dimg(NE|N3) < dimg(NF + N5|N)
< dimg(NF|Ns) + dimg (m(N5) N5 /Ny ) + 42
< dimg(N;|N3) 4 dimg(m(N5) | N3 /Ny ) + 4e.

Letting € — 0 we obtain (8) as desired. Therefore dims(-|-) is a bivariant Sylvester
module rank function for S. By Theorem 6.7 we have rkys(A) = dimg(S™A|S™) for
every A € My, ,»(S). Thus dimg(-|-) corresponds to rks. O

Remark 8.4. A normalized length function for R [31] is an Rs¢ U {4o00}-valued
function M +— L(M) on the class of all left R-modules satisfying the following
conditions:
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(i) L({0}) =0 and L(R) = 1.
(il) L(M) = supyp L(M') for M’ ranging over finitely generated R-submodules
of M.
(iii) For any short exact sequence 0 — M; — My — M3 — 0 of left R-modules,
one has L(M,) = L(M;) + L(Ms3).
The normalized length functions for R are exactly the bivariant Sylvester module
rank functions dim(:|-) for R satisfying that dim(M;|M;) = dim(M,) for all left
R-modules M; C M,, via L(-) = dim(-) [24, Proposition 4.2]. When dim(-|-) is
actually a normalized length function for R, clearly dimg(+|-) in Theorem 8.3 is also
a normalized length function for S. When S is the twisted crossed product R I’
for an amenable group I" and dim(-|-) is a normalized length function for R, the
normalized length function dimg(+|-) has been constructed in the literature already,
first by Elek for finitely generated left S-modules in the case R is an integral domain
with the fractional field K and dim(M) = dimg(K @z M) for left R-modules M and
S is the group ring RI" [12], then by Li and Liang in the case S is the group ring
RT" [25, Remark 3.16], and finally by Virili for the general case of a twisted crossed
product [40, Theorem B].

9. SYLVESTER RANK FUNCTION FOR FIELD EXTENSIONS

In this section we study the field extension in Example 5.5 in more detail. We
show that rks behaves well with respect to composition of field extensions, and that
it extends the construction of Jaikin-Zapirain in [19].

9.1. Composition. Let K be a field and let E be a field containing K. Let R be a
K-algebra with a Sylvester matrix rank function rk and the corresponding bivariant
Sylvester module rank function dim(:|-). Then E ®k R is a right amenable normal
extension of R preserving rk with & and U as in Example 5.5. Thus we have the
Sylvester matrix rank function rkg for E®g I, and we shall denote it by rkg/x in this
subsection. We denote the corresponding bivariant Sylvester module rank function

Let E’ be a field containing E. Then we have the Sylvester matrix rank function
(tke/x)w /e for B @ (E @k R) = E' ®x R constructed out of rkg/k, and we shall
denote it by rkg/,g. We denote the corresponding bivariant Sylvester module rank
function by dimg /g (:|).

Treating E’ as an extension of K, we also have the Sylvester matrix rank function
kg x for E' ®x R constructed out of rk. We denote the corresponding bivariant
Sylvester module rank function by dimg/ /k(-|-).

Proposition 9.1. We have rkg /g = kg k.

Proof. 1t suffices to show dimg /g(N1|N2) = dimgx(N1|N2) for all left E' ®x R-
modules Ny C Ny with N finitely generated. Take a finitely generated R-submodule
M; of N generating N7 as an E' ®g R-module. Let ¢ > 0. Then there are a
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finite-dimensional K-linear subspace V' of E' containing 1x and 6 > 0 such that for
any nonzero finite-dimensional K-linear subspace W of E’ satisfying dimg(WV) <
(14 0) dimg (1) we have

| dim((W ®x R)My|N»)
(13) dimpr /g (N1[Na) < dimg (W)

S dlm]E//K(N1|N2) + €.

Take n > 0 with (1 +n)? < 1+ 4. Note that (E ®x R)M, is a finitely generated
E ®x R-submodule of N; generating N as an E' @ R-module, and EV is a nonzero
finite-dimensional E-linear subspace of E'. Also note that U ®g (E®x R) = U ®k R
for every E-linear subspace U of E’. Thus there is some nonzero finite-dimensional
E-linear subspace U of E’ satisfying dimg(UEV) < (1 4 n) dimg(U) such that

Take an E-basis B for U and an E-basis B’ for UEV with B C B’. Then there
is some nonzero finite-dimensional K-linear subspace V' of E with 1x € V'’ and
YopepbV C > cp V'V Note that >, (b ®x 1g)M, is a finitely generated R-
submodule of (U ®x R)(E ®x R)M; generating (U ®x R)(E ®x R)M; as an E®x R-
module. Thus there is some nonzero finite-dimensional K-linear subspace Z of E
satisfying dimg (ZV’) < (1 4 n) dimg(Z) such that

(15)
dim((Z ®x R) 3 e p(0 Ok 1) Mi|N,)
S dlmE/K<<U ®K R)(E ®]K R)M1’N2> t+e.

Set W =3, Zb. Then
dimg (W) = |B|dimg (Z) = dimg (V) dimg(Z).
Thus
dimg(WV) = dimg () ZbV)

beB
< dimg () ZHV')
b'eB’
— |B| dimg(2V")
= dimg (UEV) dimg (ZV")
< (1+n)dimg(U)(1 + ) dimg(Z)
= (14 n)*dimg(W) < (1 + 6) dimg(W).
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Therefore (13) holds. Note that (W ®x R)M; = (Z ®k R) >, 5(b @k 1) M. Now

we have

_ (14) dim U @k R)(E ®@x R)M;|N.
dlmE//E(N1|N2) < E/K(( ﬁimi:(((]) K ) 1| 2)
(1<5) dim((Z ®x R) Dy (b @k 1r)M1|Na)
- dimg (Z) dimg(U)
(19) dimg/x((U ®x R)(E @x 7)Mi|Na)

(14)
S dlmE//E(N1|N2) + 25,

and hence

< dim((W @x R)M;|Ny)

Comparing (13) and (16) we get
‘dlmE//E(NﬂNQ) — dlmE//K(NﬂNg)’ S 2e.
Letting ¢ — 0 we obtain dimg/ /g(N1|N2) = dimg /x (N1|N2). O

9.2. Comparison with construction of Jaikin-Zapirain. Let K be a field and
E a field containing K. Let R be a unital K-algebra with a Sylvester matrix rank
function rk. Then we have JF in Example 3.5, and the Sylvester matrix rank function
rks for E ®x R.

When E is an algebraic extension of K, Jaikin-Zapirain constructed a Sylvester
matrix rank function rkge, g for E ®x R extending rk [19, Section 7.5]. Let A €
M,m(E ®x R). Then there is a finite subextension Eq/K of E/K such that A €
M,m(Eo @k R). Take an R-basis wy, ..., w; of (Eg ®x R)" as a left R-module and
an R-basis w0y, ...,w, of (Ey®x R)™ as a left R-module. One has

wlA ’LDI
| =B
'LUlA ﬁ)p

for some B € M;,(R). Then rkgg, r(A) is defined by

rkee,r(A) = %’

and does not depend on the choice of Ey.

Proposition 9.2. We have rkgg, r = rkg.
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Proof. Let A € M,, ,,(E®k R). For any finite-dimensional K-linear subspace V' of E,
take a finite subextension Eq/K of E/K such that A € M, ,,,(Ey ®x R) and V C E,.

Then W := Eo ®k R is in F and is (V ®x R, ¢)-invariant for every ¢ > 0. Clearly

I"kw(A)
theenlA) = Gy
From Theorem 6.7 we conclude rkgg, r(A) = rks(A). O

Next we consider the case E = K(¢) is a transcendental extension of K. Let f be
a monic polynomial in K[¢] of degree d. Denote by 7; the quotient homomorphism
R[t] = R[t]/R]t]f. Note that R[t]/R[t]f is a free left R-module with a basis t/+ R|[t] f
for j =0,1,...,d — 1. Let w = (wy,...,wy) be an R-basis of R[t|/R[t|f as left R-
module. Then right multiplication by 7ns(a) for a € R[t] induces a unital ring
homomorphism v, : R[t] = My(R). Explicitly,

wq w1y

(@) = Yrw(a)

Wq Wq

for all @ € R[t]. Denote by rky the induced Sylvester matrix rank function on R[t],
Le.

1y (4) = rk(ty.0(A))

for all A € M, ,(R[t]). Note that if we choose another R-basis v = (vy,...,v4) of
RI[t]/R]t]f, then there is some invertible B € My(R) such that

Wy Vg

whence ¢ ,,(a) = Bt ,(a)B~! for all a € R[t] and thus rk; does not depend on the
choice of w.

In an earlier version of this paper the following lemma is stated only in the case
fi = t' for all i. We are grateful to the referee for pointing out that the proof actually
works in general situation.

Lemma 9.3. Let { fi}ien be a sequence of monic polynomials in K[t] with lim;_, deg(f;) =
oo. Then

rky(A) = lim rky, (A)

1—00

for every A € M, ,(R]t]).

Proof. Let A € M,, ,,(R]t]). For eachi € N, put d; = deg(f;), V; = spang (1,¢,...,t"1) C
K[t] and W; = V; @k R € F(K(t) ®x R). Take p € N such that A € M,, ,,(Wp41).
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Then (Wg4,)"A C (Wy,1p)™ for every ¢ € N. Take an R-basis w;1,...,W; 4 of

(Wg,)" as a left R-module and an R-basis W; 1, . .., W; (4,+p)m of (Wa,+p)™. One has
W; 1A W 1
wi,dinA wi,(di—i-p)m

for some B; € Mg, (d;+p)m(R). Then rky,, (A) = rk(B;) and dim(Wy,) = d;. Also
take an R-basis w1, ..., w; 4, of (R[t]/R[t]f;)" as a left R-module and an R-basis
Win, ... Wiam of (R[t]/R[t]f;)™. One has
w1 A W; 1
: = B
wi,dinA wi,dim
for some B; € My,p.g,m(R). Then tky,(A) = diirk(éi).
When d; > p, if we choose the above four bases the most natural ones, then
B.

B; }
Ci D;

for some B; € Mg, _pyn.aim(R), Ci, Cs € Myp gm(R), and D; € My, pm(R), and hence
|rk(§i) —1k(B;)| < ]rk(Bi) —1k(B;)| + |tk(B;) — rk(B;)| < pn + pn = 2pn.

Since d; — oo as 1 — 00, we get

rky, A T Ni 7 ;
lim (rky,(4) — #) = lim k(B:) — rk(5:)

=0.
i—00 dim(Wy,) i—00 d;

Note that every V € J is contained in (h ®x 1z)W; for some j € N and invertible
h € K(t). It is easily checked that for every V € F and ¢ > 0, when i € N is
large enough, W; is (V,e)-invariant. Since d; — oo as i — oo, it follows that for
every V € F and ¢ > 0, when 7 € N is large enough, W, is (V, ¢)-invariant. From
Theorem 6.7 we conclude
l"kw d (A)

tho(A) = i oW,y — Ak (A).

O

A unital ring R’ is called von Neumann regular if for any a € R’ there is some
b € R’ such that aba = a [16] [23, page 61]. The Sylvester matrix rank function
rk for R is called regular if there are a ring homomorphism ¢ from R to some von

Neumann regular ring R’ and a Sylvester matrix rank function rk’ for R’ such that
rk(A) = 1k'(p(A)) for all A € M,,,,(R).
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When E = K(¢) is a transcendental extension of K and rk is regular, Jaikin-
Zapirain constructed a Sylvester matrix rank function rkge,r for K(t) ®x R ex-
tending 1k [19, Section 7.2]. Let A € M,,,(R[t]). Then rkx)gyr(A) is defined
by

rkK(t)@)KR(A) = Zliglo I‘ktz(A)

Proposition 9.4. We have rkxeyr = 1k7.

Proof. Since each element of M, ,,(K(¢) ®x R) is of the form (f ®k 1g)A for some
A € M, (R[t]) and invertible f € K(t), it suffices to show rkxg,r(A) = ks (A)
for A € M,,,»(R[t]). This follows from Lemma 9.3. O

Propositions 9.2 and 9.4 tell us that our construction of rks extends the construc-
tion of Jaikin-Zapirain for rkgg,r (when E/K is algebraic) and rkg g,z in [19].
This answers his question [18, Question 8.8] affirmatively.

We remark that Corollary 7.8 and Proposition 7.13 of [19] are consequences of
Theorem 7.8 and Propositions 9.4 and 9.2.

Jaikin-Zapirain proved Proposition 9.6 below in the case rk is regular [19, Corol-
lary 7.9], in terms of rkk (g, r- In an earlier version of this paper Proposition 9.6 is
stated as a question. Lemma 9.5 and Proposition 9.6 are due to the referee.

Lemma 9.5. Let d € N and let xy,...,xq be distinct elements in K. For each
1 < i < d denote by m; the quotient map R[t] — R sending h(t) to h(x;). Put
ft) =TI, (t — x;) € K[t]. Then

thy(4) = 5 3 rk(m(4))

for every A € M, ,,(R[t]).

Proof. We have a natural isomorphism of K-algebras:

d
¢ K[H/KEf — PKE/KEE - =) = EPK
i=1 i=1
given by (¢'(h+K][t]f)); = h(z;) for h € K[t] and 1 < i < d. Taking tensor product
with R, we obtain an isomorphism of K-algebras:

¢ Rlt)/RItS — D RI/RI(E — ) = DR

given by (p(h + R[t]f)); = h(z;) = mi(h) for h € R[t] and 1 < ¢ < d. Then
(pomy)(h) = (mi(h),...,ma(h)) for every h € RJ[t].

Let (eq,...,eq) be the standard R-basis of the left R-module @le R, ie. (ej); =
6;; for all 1 < j,i < d. For each 1 < j < d put w; = ¢ '(e;) € R[t]/R[t]f. Then
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w = (wy,...,wy) is an R-basis of the left R-module R[t|/R[t|f. For each h € R][t]

we have
€1 7T1(h)61 1 (h) €1
Dl elmp(h) = ' ;
() Wd(h)ed Wd(h) €d

Applying »~! on both sides, we get

Wy Wl(h) w1
lilﬂf(h)[ ]{}
Wq ma(h) Wq

7T1<h) j|
)

for every h € R[t]. Then for every A € M, ,,,(R]t]), we can obtain
T (A)

whence

Viw(h) =

T, d(A):I
from 1 ,,(A) via certain row exchanges and column exchanges, therefore
m(A)

rkp(A) = érk(%‘,w(z‘l)) = Erk —
7Td(A)

SN

> rk(n;(4)).

O

Proposition 9.6. Let {z;},en be a sequence of distinct elements in K. For each
i € N denote by m; the quotient map R[t] — R sending f(t) to f(x;). Then

rks(A) = lim rk(m;(A))
for every A € M, ,,(R[t]).

Proof. Let A € My, m(R). Since 0 < rk(m;(A)) < n for every i, it suffices to show
that every convergent subsequence of {rk(m;(A))}ien converges to rkg(A). Thus
passing to a convergent subsequence if necessary, we may assume that rk(m;(A))
converges to some L as i — 00.
For each d € N, put f; = H?zl(t — ;) € K[t]. Then deg(f;) — oo as d — oo,
thus by Lemma 9.3 we have
tky(A) = lim rky, (A).

d—o0
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Since z; # x; for ¢ # j, by Lemma 9.5 we have

d
1
tky,(A) = 5 > rki(4)
i=1
for each d € N. Then rky,(A) — L as d — oo. Therefore L = rks(A). O

10. EXTENSION FOR TWISTED CROSSED PRODUCT C*-ALGEBRAS

In this section we prove Theorem 1.3.

Let (o, u) be a twisted action of a discrete group I' on a unital C*-algebra <7, and
let &7 x4, I' be the maximal twisted crossed product C*-algebra as in Section 2.5.
We may think of &7 as a subalgebra of & x,, I' via the embedding a — aer. We
say that (a,u) preserves a tracial state tr of o7 if tr is preserved by ay for every
s € I. Fix a tracial state tr of o/ preserved by (a,u).

We observe first that tr o € is a tracial state of @ x,, I' extending tr.

Lemma 10.1. tr,, :=tro & is a tracial state of & %, 1 extending tr.

Proof. Clearly tr,,, extends tr. Since € and tr are unital positive linear maps, so is
tro. That is, tr,, is a state.
For any a,b € o/ and s € I', we have

tr0 (a5 - bs™1) = trg.,(ac(b)u, o-1€r)
= tr(ac(b)us s-1)
= tr(as-1(a)as—1(as(b))as-1 (g 1))
= tr(a -1 (a)usfl,sbu:,l’susflvs)
= tr(bas—1(a)us—1)
= trou(bas—1(a)us—1 ser)
= tr(w(bF - as).
Since tr, ,(as) = 0foralla € & and s € I'\{er}, it follows that tr, ,(fg) = tra..(gf)

forall f,g € @/*I". Astr,, is continuous and 7 *I" is dense in &7 %, ,I", we conclude
that try . (fg) = trau(gf) for all f,g € & x4, . d

Lemma 10.2. Let F' be a nonempty finite subset of I'. Put W =% _. .75 C o/ xI..

There is a unitary map W + Iy, , = @, p L*(, tr) sending a5 + Iy, for a € of
and s € F to the vector being ag—1(a)us—1 5+ Iy at s and 0 everywhere else.

Proof. For any a,b € o/ and s € F', we have
(a5 + Iy, ., b5 + Livy ) = tTau((05)*(as8))
= a0 (U1 (1 (b*)s~1as)

= tra,u(u:—lﬁasfl (b")as—1(a)us—1 ser)
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= tr(ug-1 ;a1 (0")ag-1(a)us— )
= (ozsfl(a)usflys + L, as-1 (b)us—1 s + Iiy) .

For any a,b € o/ and distinct s,t € F, we have <a§—|— I, ., bt + Itrw> = 0. Now
the lemma follows easily. O

We are ready to prove Theorem 1.3.

Proof of Theorem 1.3. For any vector space V and r € N, any v € V, and any
1 <k <r, we write v ® §; for the vector in V" being v at the k-th column and 0
everywhere else, and write v ® 6% for the vector in V™! being v at the k-th row and
0 everywhere else.

For each nonempty finite subset F' of I', put Wp = > . &5 € F.

Our argument is similar to the proof of Elek for Linnell’s analytic zero-divisor
conjecture in the amenable group case [11]. Take a finite subset K of I' containing
er such that Aj; € Wi forall1 < j <nand1 <k <m. Let F' be a nonempty finite
subset of I'. Take an .7-basis wy, .. ., wyp| for W} consisting of 5®4; for s € F" and
1 <j <n,and an @/-basis Wy, ..., Wy rk| for Wi consisting of 5 ® J;, for s € FK
and 1 <k < m. Then we have a matrix B € M, p|m|rk|(2/) determined by

wlA 1D1
: =B : )
Wy | A Win| FK|
and (ke )w,(A) = rky(B).
Note that

Here (s®0;)" = uj-1 s I®d fors€ Fand1<j<n,and (5®6)" =u’ 1 Sl
for s € FK and 1 < k: < m. Also note that for any a € & and s € T, if we write
us_l’ss—la as bs~1, then b = uj- ,as-1(a) and hence

Qs (D)t g1 = Qg (Ug1 U -1 QUL (1 U -1 = UL 1 U 10 = 0.

Denote by %41, the bijective linear map (Wp-1)"*! — &7™F1x! sending bs—1 ® ¢/
forbe o/, s € Fand 1 <j <ntoag(b)uss—1 ® 7 such that wy = 5 ® 6;, and by
¥ ri)-1.m the bijective linear map (Wpg)-1)™*t — &/™IFEI¥! sending bs—! @ 6* for
beo/,se€ FK and 1 <k <m to as(b)uss1 ® 0P such that W, = § ® 0. Then

Vp-10((wy,. .. ,w;|F|)y) =y
for all y € &7™F1*1 and

%FK)fl,m((wiv cee 7U~Jjn\FK|>x) =T
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for all z € &Z™FEIX1 Now for every y € .&/"FI*! we have

* * * * * * * (17) ~ % ~ % *
A (wl,...,wn|p|)y: (A*wi,..., A wn|F|)y =" ( 1,...,wm|FK|)B Y,

and hence
Virr)-1,m(A*(wy, .. 7w;|F|)y) = Nrr)-1m((07, . .. 71D:1\FK|)B*?/) = By.
Thus
(18) Vrk)y-1m(A"2) = B Vp-1,(2)
for all z € (Wp-1)"*L. )

By Lemma 10.2 there is a unitary operator Up-1,, : Wp—1 + Iy, , g L2 (ot | )Xt
sending (bF + lir,,) ® 6 for s € Fand 1 < j <nto (as(b)uss1 + Iiy) ® 69 such

mx1

that w, = 5® d;, and there isiunitary operator Upgy-1,m : Wirry-1 + I,
L2(o, tr)™FEIL sending (bs™' + Iy, ) ® 6" for s € FK and 1 < k < m to
(as(b)us -1 + Iiy) ® 67 such that W, = 5 ® .

Put

H = Trtra,u<A*) ' (WF—1 + Itra,u)nXI g W(FK)_l + Itra,u

From (18) we have

m

N C LA Mg T )™

U(FK)—I,thra,u(A*) = 7Ttr<B*)UF—1,n

o——————nx1
on Wg—1 + Iy, , . Therefore

(19) Up-t oWpr + I Nkermy, ,(A*)) = ker m(B¥).
and
(20) Uipror-1m(H) = 7e(B*) - L2(/, t)"F1X1 = i (B¥).

Denote by C* the diagonal matrix in M, p(<7) such that ng = ug1 for 1 < g <
n|F| and s € F satisfying w, = §®6;, and by C the diagonal matrix in M, rx|(7)
such that Cp, = us -1 for 1 <p < m|FK| and s € FK satistying @, = § ® dy.

Denote by @ (Q resp.) the orthogonal projection from L*(&/ Xg. [, tre )™
(Wirk)— + Itra’umﬂ resp.) to H. Then H C immy,, ,(A*), and hence Q < P

immra’u (A*) :

Also from (20) we have U(FK)flvaU;‘FK),l,m = P Thus
ki, (A7) =t (P )
1 U FEJ
= ﬁ Z trOé,u<7Ttra,u< )Pimﬂ'tra,u (A*)ﬂ—tra,u (i))

= PR 2 D (e () Priy i () Gir . © 6%), ur,, © 6F)

| te(FK)~! k=1
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1 m - )

" |FK| > (P ((E+ L) @ 08), (F+ ) @ 0F)
te(FK)~! k=1 ’

1 m

=17 > {QUE+ Ln,,) ®6), (T + Ly,,) @ %)
| | te(FK)~1 k=1

1 LS

= FK| S {QUE+ L) © ), (F+ L) @ 6")

m|FK|
1

|FK\ Z < im7e, (B*) 7Ttr( ) (e ® 0P), Ty (C) (€ ®5p)>

1 *
= ey (e O By (C))

— U
= 7] @)

_F] (ke )w, (A)
IFK| dim(Wp)

Therefore

| (hawe(4) | (thaw, (4)

ke, (A" >1 =
r tau< ) 1m r |FK| dim(Wp) errwl dim(Wpg)

= (rker)5(A).

Denote by Q* (Q' resp.) the orthogonal projection from L?(a Xg ., T, tre.,)?
Wp + L, - resp.) to Wp-1 + Iy, , “!Aker Ttre . (A*). Then QF < Ber mn, , (4%)-
Also from (19) we have UF717nQTU;;,17n = Piermn(p+)- Thus

(Pker Tora, u Z tro‘ u ﬂ—tra “ )Pker Ttra,u (A*)ﬂ—tra,u (t_))

teF 1

| ‘ Z Z <7Ttrllu t Pkermrau A* Wtfocu(ﬂ(é-trau ®5 ) Etrau ®5j>

teF—1 j=1
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- % > 2 <P ker e (A) (E 4 Ty ) @ 87), (E+ Ty, ) © 5a'>

teF—1 j=1

> Y Y@ ) @ ) @)

|F :
teF-1 j=1

_ ﬁ S STQUE + L, ) © ), (F+ T, ) @ 67)

teF-1 j=1

1 “ _ , _ .
B m Z Z <Pker7rtr(B*)UF*1,n((t + Itra,u) ® 5J)7 UFfl,n((t + Itra,u) ® 5J)>
teF—1 j=1
1 n|F|
- m Z <Pker7rtr(B*)7Ttr(Cﬁ)<€tr X 6(1)7 7T-tr(C(tt)(gtr X 5q)>
q=1
1
- Wtr//(ﬂ—tr(Cﬁ)*Pkermr(B*)Trtr(Cﬁ))
1 "
- mtr (Pkermr(B*))7
and hence
rktra,u (A*) (3:) n— trlolz,u(Pkerﬂtra,u(A*))
1
= W(”W — 1" (Piermu(87)))
@ 1 .
= ertr(B )
@ 1
= mrktr(B)
(ke (4)
Therefore (cke o, (A)
* . ITKgr Wg
< _— L = .
thin, . (A7) < i dim(Wp) (rkr)(4)

We conclude that
2 *
tir o (A) 2 1k, L (A7) = (tky)(A).
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