INTRINSIC ERGODICITY, GENERATORS AND SYMBOLIC REPRESENTATIONS OF ALGEBRAIC GROUP ACTIONS

HANFENG LI AND KLAUS SCHMIDT

Dedicated to Anatole M. Vershik on the occasion of his 90th birthday

Abstract

We construct natural symbolic representations of intrinsically ergodic, but not necessarily expansive, principal algebraic actions of countably infinite amenable groups and use these representations to find explicit generating partitions (up to null-sets) for such actions.

1. Introduction

Let Γ be a countably infinite discrete group with integral and real group rings $\mathbb{Z} \Gamma \subset \mathbb{R} \Gamma$. Every $g \in \mathbb{R} \Gamma$ is written as a finite formal sum $g=\sum_{\gamma \in \Gamma} g_{\gamma} \cdot \gamma$ with g_{γ} in \mathbb{Z} or \mathbb{R}, respectively, for every γ. We write $\operatorname{supp}(g)=\left\{\gamma \in \Gamma \mid g_{\gamma} \neq 0\right\}$ for the support of g and set $g^{+}=\sum_{\gamma \in \Gamma} \max \left\{g_{\gamma}, 0\right\} \cdot \gamma$ and $g^{-}=\sum_{\gamma \in \Gamma} \min \left\{g_{\gamma}, 0\right\} \cdot \gamma$.

For $g=\sum_{\gamma \in \Gamma} g_{\gamma} \cdot \gamma, h=\sum_{\gamma \in \Gamma} h_{\gamma} \cdot \gamma$ in $\mathbb{R} \Gamma$ we denote by $g+h=\sum_{\gamma \in \Gamma}\left(g_{\gamma}+h_{\gamma}\right) \cdot \gamma$ their sum, by $g h=\sum_{\gamma, \delta \in \Gamma} g_{\gamma} h_{\delta} \cdot \gamma \delta$ their product, and by $g^{*}=\sum_{\gamma \in \Gamma} g_{\gamma} \cdot \gamma^{-1}$ and $h^{*}=\sum_{\gamma \in \Gamma} h_{\gamma} \cdot \gamma^{-1}$ their adjoints. The adjoint map $g \mapsto g^{*}$ is an involution on $\mathbb{R} \Gamma$, i.e., $(g h)^{*}=h^{*} g^{*}$.

An algebraic Γ-action is a homomorphism $\tau: \Gamma \rightarrow \operatorname{Aut}(X)$ from Γ to the group of continuous automorphisms of a compact metrizable abelian group X. If τ is such an algebraic Γ-action, then $\tau^{\gamma} \in \operatorname{Aut}(X)$ denotes the image of $\gamma \in \Gamma$, and $\tau^{\gamma \delta}=\tau^{\gamma} \tau^{\delta}$ for every $\gamma, \delta \in \Gamma$. The action τ induces an action of $\mathbb{Z} \Gamma$ by group homomorphisms $\tau^{f}: X \rightarrow X$, where $\tau^{f}=\sum_{\gamma \in \Gamma} f_{\gamma} \tau^{\gamma}$ for every $f=\sum_{\gamma \in \Gamma} f_{\gamma} \cdot \gamma \in \mathbb{Z} \Gamma$. Clearly, if $f, g \in \mathbb{Z} \Gamma$, then $\tau^{f g}=\tau^{f} \tau^{g}$.
Let \hat{X} be the dual group of X. If $\hat{\tau}^{\gamma}$ is the automorphism of \hat{X} dual to τ^{γ}, then the map $\hat{\tau}: \Gamma \rightarrow \operatorname{Aut}(\hat{X})$ satisfies that $\hat{\tau}^{\gamma \delta}=\hat{\tau}^{\delta} \hat{\tau}^{\gamma}$ for all $\gamma, \delta \in \Gamma$. We denote by $\hat{\tau}^{f}: \hat{X} \rightarrow \hat{X}$ the group homomorphism dual to τ^{f} and set $f \cdot a=\hat{\tau}^{f^{*}} a$ for every $f \in \mathbb{Z} \Gamma$ and $a \in \hat{X}$. The resulting map $(f, a) \mapsto f \cdot a$ from $\mathbb{Z} \Gamma \times \hat{X}$ to \hat{X} satisfies that $(f g) \cdot a=f \cdot(g \cdot a)$ for all $f, g \in \mathbb{Z} \Gamma$ and turns \hat{X} into a left module over the group ring $\mathbb{Z} \Gamma$. Conversely, if M is a countable left module over $\mathbb{Z} \Gamma$, we set $X=\widehat{M}$ and put $\hat{\tau}^{f} a=f^{*} \cdot a$ for $f \in \mathbb{Z} \Gamma$ and $a \in M$. The maps $\tau^{f}: \widehat{M} \rightarrow \widehat{M}$ dual to $\hat{\tau}^{f}$ define an action of $\mathbb{Z} \Gamma$ by homomorphisms of \widehat{M}, which in turn induces an algebraic action τ of Γ on $X=\widehat{M}$.
The simplest examples of algebraic Γ-actions arise from $\mathbb{Z} \Gamma$-modules of the form $M=\mathbb{Z} \Gamma /(f)$, where $(f)=\mathbb{Z} \Gamma f$ is the principal left ideal generated by f : such actions are called principal. For an explicit description of such actions we put $\mathbb{T}=\mathbb{R} / \mathbb{Z}$ and define the left and right shift-actions λ and ρ of Γ on \mathbb{T}^{Γ} by

$$
\begin{equation*}
\left(\lambda^{\gamma} x\right)_{\delta}=x_{\gamma^{-1} \delta} \quad \text { and } \quad\left(\rho^{\gamma} x\right)_{\delta}=x_{\delta \gamma} \tag{1.1}
\end{equation*}
$$

for every $\gamma \in \Gamma$ and $x=\left(x_{\delta}\right)_{\delta \in \Gamma} \in \mathbb{T}^{\Gamma}$. The actions λ and ρ extend to $\mathbb{Z} \Gamma$-actions on \mathbb{T}^{Γ} given by

$$
\lambda^{f}=\sum_{\gamma \in \Gamma} f_{\gamma} \lambda^{\gamma}, \quad \rho^{f}=\sum_{\gamma \in \Gamma} f_{\gamma} \rho^{\gamma},
$$

for every $f=\sum_{\gamma \in \Gamma} f_{\gamma} \cdot \gamma \in \mathbb{Z} \Gamma$. These $\mathbb{Z} \Gamma$-actions obviously commute: for every $f, g \in \mathbb{Z} \Gamma$ and $x \in \mathbb{T}^{\Gamma}$,

$$
\left(\lambda^{f} \circ \rho^{g}\right) x=\left(\rho^{g} \circ \lambda^{f}\right) x .
$$

The pairing $\langle f, x\rangle=\sum_{\gamma \in \Gamma} f_{\gamma} x_{\gamma}=\left(\rho^{f} x\right)_{1_{\Gamma}}$ with $f=\sum_{\gamma \in \Gamma} f_{\gamma} \cdot \gamma \in \mathbb{Z} \Gamma$ and $x=\left(x_{\gamma}\right) \in \mathbb{T}^{\Gamma}$, identifies $\mathbb{Z} \Gamma$ with the dual group $\widehat{\mathbb{T}^{\Gamma}}$ of \mathbb{T}^{Γ} and has the property that

$$
\begin{aligned}
\left\langle h, \rho^{f} x\right\rangle & =\left\langle h, \sum_{\delta \in \Gamma} f_{\delta} \rho^{\delta} x\right\rangle=\sum_{\gamma \in \Gamma} h_{\gamma} \sum_{\delta \in \Gamma} f_{\delta} x_{\gamma \delta} \\
& =\sum_{\gamma \in \Gamma} \sum_{\delta \in \Gamma} h_{\gamma \delta-1} f_{\delta} x_{\gamma}=\sum_{\gamma \in \Gamma}(h f)_{\gamma} x_{\gamma}=\langle h f, x\rangle
\end{aligned}
$$

for every $f, h \in \mathbb{Z} \Gamma$ and $x \in \mathbb{T}^{\Gamma}$. Every $f \in \mathbb{Z} \Gamma$ defines a λ-invariant closed subgroup

$$
\begin{align*}
X_{f} & =\operatorname{ker} \rho^{f}=\left\{x \in \mathbb{T}^{\Gamma} \mid \rho^{f} x=0\right\} \\
& =\left\{x \in \mathbb{T}^{\Gamma} \mid\left\langle h, \rho^{f} x\right\rangle=\langle h f, x\rangle=0 \text { for every } h \in \mathbb{Z} \Gamma\right\}=(f)^{\perp} \subset \widehat{\mathbb{Z}}=\mathbb{T}^{\Gamma} . \tag{1.2}
\end{align*}
$$

We denote by $\lambda_{f}=\lambda_{X_{f}}$ the restriction of λ to X_{f} and note that the normalized Haar measure μ_{f} on X_{f} is invariant under λ_{f}.

Definition 1.1. For every $f \in \mathbb{Z} \Gamma$ we call the left shift-action λ_{f} on the probability space (X_{f}, μ_{f}) the principal algebraic Γ-action defined by f.

Dynamical properties of algebraic actions of countably infinite groups - and, in particular, of principal actions - have been investigated at various levels of generality (cf. e.g., [29], [4], [19], or [14]). In this paper we focus on symbolic representations of principal algebraic actions of countably infinite amenable groups and on generators of such actions arising from these representations.

Symbolic representations of algebraic actions have a long history. The first such representations arose from geometrically constructed Markov partitions around 1967-1970 (cf. [32], [2]) and helped to provide a crucial link between smooth and symbolic dynamics. A different approach to symbolic representations of toral automorphisms had its origins in the paper [34] by Vershik from 1992, where he represented the hyperbolic toral automorphism $\left(\begin{array}{cc}1 & 1 \\ 1 & 0\end{array}\right)$ by the Golden Mean shift by using homoclinic points rather than Markov partitions. Vershik's original construction was subsequently extended to arbitrary hyperbolic toral and solenoidal automorphisms in [15] and [17], and to the 'homoclinic' construction of symbolic covers of expansive ${ }^{1}$ principal algebraic \mathbb{Z}^{d}-actions (cf. [10]). What these constructions have in common is that they use a summable homoclinic point $w \in X_{f}$ of a principal algebraic action λ_{f} of a countably infinite discrete group Γ to define a shiftequivariant surjective map $\xi_{w}: \ell^{\infty}(\Gamma, \mathbb{Z}) \rightarrow X_{f}$, and to restrict this map to a suitable compact shift-invariant subset $\mathcal{V} \subset \ell^{\infty}(\Gamma, \mathbb{Z})$ (cf. e.g. [10], [13], or [23]).
While expansive principal algebraic actions always have summable homoclinic points permitting such a construction, this is generally not the case for nonexpansive actions (cf. [4], [8], [21]). In this paper we obviate the need for summable homoclinic points and show directly that, for every countably infinite discrete amenable group Γ and every $f \in \mathbb{Z} \Gamma$ for which the principal algebraic action λ_{f} on $\left(X_{f}, \mu_{f}\right)$ is intrinsically ergodic there exists a natural isomorphism

[^0]$\left(\bmod \mu_{f}\right)$ of λ_{f} with the left shift action $\bar{\lambda}$ of Γ on a closed, shift-invariant subset \bar{Z}_{f} of the symbolic space $\left\{-\left\|f^{-}\right\|_{1}, \ldots,\left\|f^{+}\right\|_{1}\right\}^{\Gamma}$, furnished with a shift-invariant Borel probability measure $\nu_{f}^{\#}$ (Theorem 3.18). As an obvious consequence of this isomorphism one obtains that the 'alphabet' $\mathcal{B}_{f} \subsetneq\left\{-\left\|f^{-}\right\|_{1}, \ldots,\left\|f^{+}\right\|_{1}\right\}$ of \bar{Z}_{f} determines a natural generator ${ }^{2}$ for λ_{f} on $\left(X_{f}, \mu_{f}\right)$ (Corollary 4.1). As a further corollary of this construction we see that the partition $\mathcal{C}_{f}=\left\{C_{j} \mid\right.$ $\left.j=0, \ldots,\|f\|_{1}-1\right\}$ of X_{f}, defined by
$$
C_{j}=\left\{x=\left(x_{\gamma}\right)_{\gamma \in \Gamma} \in X_{f} \left\lvert\, \frac{j}{\|f\|_{1}} \leq x_{1_{\Gamma}}<\frac{j+1}{\|f\|_{1}}(\bmod 1)\right.\right\}
$$
for $j=0, \ldots,\|f\|_{1}-1$, is a generator $\left(\bmod \mu_{f}\right)$ for $\lambda_{f}\left(\right.$ Corollary 4.2). If λ_{f} is expansive, \mathcal{C}_{f} is obviously a generator without any conditions on Γ (cf. Subsection 5.2.1), but for nonexpansive actions this result is nontrivial.

In Section 5 we present examples of intrinsically ergodic principal algebraic actions $\lambda_{f}, f \in$ $\mathbb{Z} \Gamma$, of countably infinite discrete amenable groups Γ. If $\Gamma=\mathbb{Z}^{d}, d \geq 1$, or if Γ is arbitrary and λ_{f} is expansive, the situation is well-understood (Subsections 5.1 or 5.2.1). For nonexpansive principal algebraic actions intrinsic ergodicity is a more elusive property. A sufficient condition for intrinsic ergodicity is that the group $\Delta^{1}\left(X_{f}\right)$ of summable homoclinic points of λ_{f} is dense in the group X_{f} carrying the action (Proposition 5.3). In Theorem 6.1 we verify the latter condition for well-balanced polynomials $f \in \mathbb{Z} \Gamma$, provided that Γ is not virtually \mathbb{Z} or \mathbb{Z}^{2} and the center of Γ contains an element of infinite order.

2. Linearization of principal algebraic actions

Let Γ be a countably infinite discrete group, and let $\ell^{\infty}(\Gamma, \mathbb{R})$ be the space of all bounded maps $v: \Gamma \rightarrow \mathbb{R}$, furnished with the norm $\|v\|_{\infty}=\sup _{\gamma \in \Gamma}\left|v_{\gamma}\right|$. We write $\eta: \ell^{\infty}(\Gamma, \mathbb{R}) \rightarrow \mathbb{T}^{\Gamma}$ for the weak*-continuous map defined by

$$
\begin{equation*}
\eta(w)_{\gamma}=w_{\gamma}(\bmod 1), \gamma \in \Gamma \tag{2.1}
\end{equation*}
$$

and define the shift-actions $\bar{\lambda}$ and $\bar{\rho}$ of Γ on $\ell^{\infty}(\Gamma, \mathbb{R})$ as in (1.1) by

$$
\begin{equation*}
\left(\bar{\lambda}^{\gamma} v\right)_{\delta}=v_{\gamma^{-1} \delta}, \quad\left(\bar{\rho}^{\gamma} v\right)_{\delta}=v_{\delta \gamma}, \tag{2.2}
\end{equation*}
$$

for every $v=\left(v_{\delta}\right)_{\delta \in \Gamma} \in \ell^{\infty}(\Gamma, \mathbb{R})$ and $\gamma \in \Gamma$. Again we extend these Γ-actions to $\mathbb{Z} \Gamma$-actions on $\ell^{\infty}(\Gamma, \mathbb{R})$ by setting

$$
\bar{\lambda}^{h}=\sum_{\gamma \in \Gamma} h_{\gamma} \bar{\lambda}^{\gamma} \quad \text { and } \quad \bar{\rho}^{h}=\sum_{\gamma \in \Gamma} h_{\gamma} \bar{\rho}^{\gamma}
$$

for every $h=\sum_{\gamma \in \Gamma} h_{\gamma} \cdot \gamma \in \mathbb{Z} \Gamma$. These actions correspond to the usual convolutions

$$
\begin{equation*}
\bar{\lambda}^{h} v=h \cdot v, \quad \bar{\rho}^{h} v=v \cdot h^{*}, \tag{2.3}
\end{equation*}
$$

for $h \in \mathbb{Z} \Gamma$ and $v \in \mathbb{R} \Gamma$, and extend further to $h \in \ell^{1}(\Gamma, \mathbb{R})$ and $v \in \ell^{\infty}(\Gamma, \mathbb{R})$.
We fix a nonzero element $f \in \mathbb{Z} \Gamma$ and consider the left shift action λ_{f} on the compact group $X_{f} \subset \mathbb{T}^{\Gamma}$ defined in (1.1) - (1.2). The space

$$
\begin{align*}
W_{f}:=\eta^{-1}\left(X_{f}\right) & =\left\{w \in \ell^{\infty}(\Gamma, \mathbb{R}) \mid \eta(w) \in X_{f}\right\} \\
& =\left\{w \in \ell^{\infty}(\Gamma, \mathbb{R}) \mid \bar{\rho}^{f} w=w \cdot f^{*} \in \ell^{\infty}(\Gamma, \mathbb{Z})\right\} \tag{2.4}
\end{align*}
$$

[^1]is the linearization of X_{f}, and the restriction of $\bar{\lambda}$ to W_{f} is the linearization of λ_{f}. We set
\[

$$
\begin{equation*}
Y_{f}=W_{f} \cap[0,1)^{\Gamma} \subset \ell^{\infty}(\Gamma, \mathbb{R}), \quad Z_{f}=\bar{\rho}^{f}\left(Y_{f}\right) \subset \ell^{\infty}(\Gamma, \mathbb{Z}), \tag{2.5}
\end{equation*}
$$

\]

write \bar{Y}_{f} and \bar{Z}_{f} for the weak* closures of Y_{f} and Z_{f} in $\ell^{\infty}(\Gamma, \mathbb{R})$. Since $0 \leq y_{\gamma}<1$ for every $y \in Y_{f}$ and $\gamma \in \Gamma$, it is clear that

$$
c_{f}^{-} \leq\left(\bar{\rho}^{f} y\right)_{\gamma} \leq c_{f}^{+}
$$

for every $y \in Y_{f}$ and $\gamma \in \Gamma$, where

$$
c_{f}^{-}=\min \left\{0,1-\left\|f^{-}\right\|_{1}\right\} \quad \text { and } \quad c_{f}^{+}=\max \left\{0,\left\|f^{+}\right\|_{1}-1\right\} .
$$

It follows that

$$
\begin{equation*}
Z_{f} \subseteq \bar{Z}_{f} \subseteq\left\{c_{f}^{-}, \ldots, c_{f}^{+}\right\}^{\Gamma} . \tag{2.6}
\end{equation*}
$$

Finally we denote by

$$
\begin{equation*}
K_{f}=\left\{w \in \ell^{\infty}(\Gamma, \mathbb{R}) \mid \bar{\rho}^{f} w=0\right\} \subset W_{f} \tag{2.7}
\end{equation*}
$$

the kernel of $\bar{\rho}^{f}$ in $\ell^{\infty}(\Gamma, \mathbb{R})$. By [8, Theorem 3.2], the action λ_{f} on X_{f} is expansive if and only if $K_{f}=\{0\}$.

If there is any danger of confusion we denote the restrictions of $\bar{\lambda}$ to the $\bar{\lambda}$-invariant sets \bar{Y}_{f}, \bar{Z}_{f}, and K_{f} by $\bar{\lambda}_{\bar{Y}_{f}}, \bar{\lambda}_{\bar{Z}_{f}}$ and $\bar{\lambda}_{K_{f}}$, respectively. The map $\eta: \ell^{\infty}(\Gamma, \mathbb{R}) \rightarrow \mathbb{T}^{\Gamma}$ in (2.1) induces a left shift-equivariant, continuous, surjective map from \bar{Y}_{f} to X_{f} whose restriction to Y_{f} is bijective, and $\bar{\rho}^{f}$ intertwines the Γ-actions $\bar{\lambda}_{\bar{Y}_{f}}$ and $\bar{\lambda}_{\bar{Z}_{f}}$.
Proposition 2.1. Let Γ be a countably infinite discrete group, $0 \neq f \in \mathbb{Z} \Gamma$, and let $W_{f}, \bar{Y}_{f}, \bar{Z}_{f}, K_{f}$ be the closed, $\bar{\lambda}$-invariant subsets of $\ell^{\infty}(\Gamma, \mathbb{R})$ defined in (2.4) - (2.7). Put $\tilde{Z}_{f}=\bar{Z}_{f} \times K_{f}$, and denote by $\tilde{\lambda}=\bar{\lambda}_{\bar{Z}_{f}} \times \bar{\lambda}_{K_{f}}$ the product Γ-action on \tilde{Z}_{f}. Then there exists, for every $\bar{\lambda}$-invariant Borel probability measure ν on \bar{Y}_{f}, a $\tilde{\lambda}$-invariant Borel probability measure $\tilde{\nu}$ on \tilde{Z}_{f} with the following properties:
(1) $\pi_{*}^{(1)} \tilde{\nu}=\bar{\rho}_{*}^{f} \nu=: \nu^{\#}$, where $\pi^{(1)}: \tilde{Z}_{f} \rightarrow \bar{Z}_{f}$ is the first coordinate projection;
(2) $\tilde{\nu}\left(\bar{Z}_{f} \times B_{2}\left(K_{f}\right)\right)=1$, where $B_{r}\left(K_{f}\right)=\left\{w \in K_{f} \mid\|w\|_{\infty} \leq r\right\}$ for every $r \geq 0$;
(3) The Γ-actions $\bar{\lambda}$ on $\left(\bar{Y}_{f}, \nu\right)$ and $\tilde{\lambda}$ on $\left(\tilde{Z}_{f}, \tilde{\nu}\right)$ are measurably conjugate.

Proof. Since $\bar{\rho}^{f}$ is continuous, [26, Theorem I.4.2] shows that there exists a Borel map $\zeta: \bar{Z}_{f} \rightarrow$ \bar{Y}_{f} with $\bar{\rho}^{f} \circ \zeta(z)=z$ for every $z \in \bar{Z}_{f}$. For every $z \in \bar{Z}_{f}$ and $\gamma \in \Gamma$ we set

$$
\begin{equation*}
c(\gamma, z)=\zeta \circ \bar{\lambda}^{\gamma}(z)-\bar{\lambda}^{\gamma} \circ \zeta(z) \in B_{1}\left(K_{f}\right) . \tag{2.8}
\end{equation*}
$$

Then

$$
c(\gamma \delta, z)=c\left(\gamma, \bar{\lambda}^{\delta} z\right)+\bar{\lambda}^{\gamma} c(\delta, z)
$$

for every $\gamma, \delta \in \Gamma$ and $z \in \bar{Z}_{f}$, i.e., the Borel map $c: \Gamma \times \bar{Z}_{f} \rightarrow K_{f}$ is a cocycle taking values in $B_{1}\left(K_{f}\right)$. We define a Borel action $\tilde{\lambda}_{1}$ of Γ on \tilde{Z}_{f} by setting

$$
\tilde{\lambda}_{1}^{\gamma}(z, v)=\left(\bar{\lambda}^{\gamma} z, \bar{\lambda}^{\gamma} v-c(\gamma, z)\right)
$$

for every $(z, v) \in \tilde{Z}_{f}$, and consider the injective Borel map $\theta_{1}: \bar{Y}_{f} \rightarrow \bar{Z}_{f} \times B_{1}\left(K_{f}\right) \subset \tilde{Z}_{f}$ given by

$$
\begin{equation*}
\theta_{1}(w)=\left(\bar{\rho}^{f} w, w-\zeta \circ \bar{\rho}^{f}(w)\right) \tag{2.9}
\end{equation*}
$$

for every $w \in \bar{Y}_{f}$. Then

$$
\begin{equation*}
\theta_{1} \circ \bar{\lambda}^{\gamma}=\tilde{\lambda}_{1}^{\gamma} \circ \theta_{1} \tag{2.10}
\end{equation*}
$$

for every $\gamma \in \Gamma$.
Let ν be a $\bar{\lambda}$-invariant Borel probability measure on \bar{Y}_{f} and let $\nu^{\#}=\bar{\rho}_{*}^{f} \nu$. The probability measure $\tilde{\nu}^{(1)}=\left(\theta_{1}\right)_{*} \nu$ is $\tilde{\lambda}_{1}$-invariant by (2.10), and is supported in the weak*-compact and metrizable set $\bar{Z}_{f} \times B_{1}\left(K_{f}\right) \subset \tilde{Z}_{f}$. Furthermore, $\pi_{*}^{(1)} \tilde{\nu}^{(1)}=\nu^{\#}$, where $\pi^{(1)}: \tilde{Z}_{f} \rightarrow \bar{Z}_{f}$ is the first coordinate projection. We decompose $\tilde{\nu}^{(1)}$ over \bar{Z}_{f} by choosing a Borel measurable family $\tilde{\nu}_{z}^{(1)}, z \in \bar{Z}_{f}$, of Borel probability measures on K_{f} with $\tilde{\nu}_{z}^{(1)}\left(B_{1}\left(K_{f}\right)\right)=1$ for every $z \in \bar{Z}_{f}$, and with

$$
\int g(z, v) d \tilde{\nu}^{(1)}(z, v)=\int_{\bar{Z}_{f}} \int_{K_{f}} g(z, v) d \tilde{\nu}_{z}^{(1)}(v) d \nu^{\#}(z)
$$

for every bounded Borel map $g: \tilde{Z}_{f} \rightarrow \mathbb{R}$. Since $\tilde{\nu}^{(1)}$ is $\tilde{\lambda}_{1}$-invariant,

$$
\begin{equation*}
\int h(v) d \tilde{\nu}_{z}^{(1)}(v)=\int h\left(\bar{\lambda}^{\gamma} v-c\left(\gamma, \bar{\lambda}^{\gamma^{-1}} z\right)\right) d \tilde{\nu}_{\bar{\lambda}^{\gamma}}^{(1)}(v) \tag{2.11}
\end{equation*}
$$

for every bounded Borel map $h: K_{f} \rightarrow \mathbb{R}$, every $\gamma \in \Gamma$, and $\nu^{\#}$-a.e. $z \in \bar{Z}_{f}$.
Define a Borel map $b: \bar{Z}_{f} \rightarrow K_{f}$ by setting $b(z)=\int_{K_{f}} v d \tilde{\nu}_{z}^{(1)}(v) \in B_{1}\left(K_{f}\right)$ for every $z \in \bar{Z}_{f}$, where the integral is taken coordinate-wise (or, equivalently, in the weak*-topology) on $\ell^{\infty}(\Gamma, \mathbb{R})$. Equation (2.11) shows that

$$
\begin{aligned}
b(z) & =\int_{K_{f}} v d \tilde{\nu}_{z}^{(1)}(v)=\int_{K_{f}}\left(\bar{\lambda}^{\gamma} v-c\left(\gamma, \bar{\lambda}^{\gamma^{-1}} z\right)\right) d \tilde{\nu}_{\bar{\lambda}^{-1} z}^{(1)}(v) \\
& =\int_{K_{f}} \bar{\lambda}^{\gamma} v d \tilde{\nu}_{\bar{\lambda} \gamma^{-1} z}^{(1)}(v)-c\left(\gamma, \bar{\lambda}^{\gamma^{-1}} z\right)=\bar{\lambda}^{\gamma} b\left(\bar{\lambda}^{\gamma^{-1}} z\right)-c\left(\gamma, \bar{\lambda}^{\gamma^{-1}} z\right)
\end{aligned}
$$

for $\nu^{\#}$-a.e. $z \in \bar{Z}_{f}$. If we replace z by $\bar{\lambda}^{\gamma} z$ in the last equation we see that

$$
\begin{equation*}
c(\gamma, \cdot)=\bar{\lambda}^{\gamma} \circ b-b \circ \bar{\lambda}^{\gamma} \quad \nu^{\#}-\text { a.e. }, \text { for every } \gamma \in \Gamma . \tag{2.12}
\end{equation*}
$$

In other words, the cocycle $c: \Gamma \times \bar{Z}_{f} \rightarrow K_{f}$ is a coboundary ($\bmod \nu^{\#}$) with Borel cobounding function $b: \bar{Z}_{f} \rightarrow B_{1}\left(K_{f}\right)$.

Let $\theta_{2}: \tilde{Z}_{f} \rightarrow \tilde{Z}_{f}$ be the bijection given by

$$
\theta_{2}(z, v)=(z, v-b(z))
$$

for every $(z, v) \in \tilde{Z}_{f}$, and put $\tilde{\nu}=\left(\theta_{2}\right)_{*} \tilde{\nu}^{(1)}=\left(\theta_{2} \circ \theta_{1}\right)_{*} \nu$. Then $\pi_{*}^{(1)} \tilde{\nu}=\pi_{*}^{(1)} \tilde{\nu}^{(1)}=\nu^{\#}$. We set

$$
\begin{equation*}
\theta=\theta_{2} \circ \theta_{1}: \bar{Y}_{f} \rightarrow \tilde{Z}_{f} \tag{2.13}
\end{equation*}
$$

and obtain that

$$
\theta(w)=\left(\bar{\rho}^{f} w, w-\zeta \circ \bar{\rho}^{f}(w)-b \circ \bar{\rho}^{f}(w)\right) \text { for every } w \in \bar{Y}_{f} .
$$

For ν-a.e. $w \in \bar{Y}_{f}$ we have that

$$
\begin{align*}
\tilde{\lambda}^{\gamma} \circ \theta(w)= & \left(\bar{\lambda}^{\gamma} \circ \bar{\rho}^{f}(w), \bar{\lambda}^{\gamma} w-\bar{\lambda}^{\gamma} \circ \zeta \circ \bar{\rho}^{f}(w)-\bar{\lambda}^{\gamma} \circ b \circ \bar{\rho}^{f}(w)\right) \\
= & \left(\bar{\rho}^{f}\left(\bar{\lambda}^{\gamma} w\right), \bar{\lambda}^{\gamma} w+c\left(\gamma, \bar{\rho}^{f} w\right)-\zeta \circ \bar{\rho}^{f} \circ \bar{\lambda}^{\gamma}(w)\right. \\
& \left.\quad-c\left(\gamma, \bar{\rho}^{f} w\right)-b \circ \bar{\rho}^{f} \circ \bar{\lambda}^{\gamma}(w)\right) \quad(\text { by (2.8) and (2.12)) } \tag{2.14}\\
= & \left(\bar{\rho}^{f}\left(\bar{\lambda}^{\gamma} w\right), \bar{\lambda}^{\gamma} w-\zeta \circ \bar{\rho}^{f}\left(\bar{\lambda}^{\gamma} w\right)-b \circ \bar{\rho}^{f}\left(\bar{\lambda}^{\gamma} w\right)\right)=\theta \circ \bar{\lambda}^{\gamma}(w),
\end{align*}
$$

which proves that the Γ-actions $\bar{\lambda}$ on $\left(\bar{Y}_{f}, \nu\right)$ and $\tilde{\lambda}$ on ($\left.\tilde{Z}_{f}, \tilde{\nu}\right)$ are measurably conjugate, as claimed in (3).

In the next section we show that, if Γ is amenable and λ_{f} has finite and completely positive entropy, there exist unique $\bar{\lambda}$-invariant Borel probability measures ν_{f} on \bar{Y}_{f} and $\nu_{f}^{\#}$ on \bar{Z}_{f} such that the principal algebraic Γ-action λ_{f} on $\left(X_{f}, \mu_{f}\right)$ is measurably conjugate to the Γ-actions $\bar{\lambda}_{\bar{Y}_{f}}$ and $\bar{\lambda}_{\bar{Z}_{f}}$ on $\left(\bar{Y}_{f}, \nu_{f}\right)$ and ($\left.\bar{Z}_{f}, \nu_{f}^{\#}\right)$, respectively (cf. Theorem 3.18).

3. Symbolic representation of intrinsically ergodic principal algebraic

 actionsThroughout this section we assume that Γ is a countably infinite discrete amenable group and that $f \in \mathbb{Z} \Gamma$ is nonzero. We denote by μ_{f} the normalized Haar measure on X_{f} and define $\bar{Y}_{f} \subset$ $W_{f} \subset \ell^{\infty}(\Gamma, \mathbb{R})$ and $\bar{Z}_{f}=\bar{\rho}^{f}\left(\bar{Y}_{f}\right) \subset \ell^{\infty}(\Gamma, \mathbb{Z})$ as in (2.4) - (2.5).

Lemma 3.1. The principal algebraic Γ-action λ_{f} on X_{f} has infinite topological entropy if and only if f is a left zero divisor in $\mathbb{R} \Gamma$, i.e., if and only if there exists a nonzero $g \in \mathbb{R} \Gamma$ with $f g=0$.

Proof. This is a special case of [4, Theorem 4.11]. For later reference we include here an explicit proof of the fact that $\mathrm{h}_{\text {top }}\left(\lambda_{f}\right)=\infty$ if f is a left zero divisor in $\mathbb{R} \Gamma$.

We embed $\mathbb{R} \Gamma$ in $\ell^{\infty}(\Gamma, \mathbb{R})$ in the obvious manner by identifying each $h=\sum_{\gamma \in \Gamma} h_{\gamma} \cdot \gamma \in \mathbb{R} \Gamma$ with $\left(h_{\gamma}\right)_{\gamma \in \Gamma} \in \ell^{\infty}(\Gamma, \mathbb{R})$.

If $f \in \mathbb{Z} \Gamma$ is a left zero divisor in $\mathbb{R} \Gamma$ we choose $g=\sum_{\gamma \in \Gamma} g_{\gamma} \cdot \gamma \in \mathbb{R} \Gamma$ with $1_{\Gamma} \in \operatorname{supp}(g)$ and $f g=0$. Then $\bar{\rho}^{f} g^{*}=g^{*} f^{*}=0$ (cf. (2.3)), and hence $\bar{\rho}^{f}\left(c g^{*}\right)=c g^{*} f^{*}=0$ for every $c \in \mathbb{R}$. This shows that $c g^{*} \in W_{f}$ and $\eta\left(c g^{*}\right) \in X_{f}$ for every $c \in \mathbb{R}$ (cf. (2.4)).

If $I \subset \mathbb{R}$ is the open interval $\left(-\frac{1}{2\|g\|_{\infty}}, \frac{1}{2\|g\|_{\infty}}\right)$, then the elements $\eta\left(c g^{*}\right) \in X_{f}, 0 \neq c \in I$, are all distinct with identical supports $E=\operatorname{supp}\left(g^{*}\right)=\operatorname{supp}(g)^{-1}$.

Choose a maximal set $D \subset \Gamma$ such that the translates $\{\delta E \mid \delta \in D\}$ are disjoint. We claim that $D E E^{-1}=\bigcup_{\delta \in D} \delta E E^{-1}=\Gamma$. Indeed, if $D E E^{-1} \neq \Gamma$, then there exists a $\gamma \in \Gamma$ which is not equal to $\delta \gamma^{\prime} \gamma^{\prime \prime-1}$ for any $\delta \in D$ and $\gamma^{\prime}, \gamma^{\prime \prime} \in E$. Then $\gamma E \cap \delta E=\varnothing$ for every $\delta \in D$, which contradicts the maximality of D. This proves the last claim.
Since the sets $\delta E, \delta \in D$, are disjoint, we obtain for every $z=\left(z_{\delta}\right)_{\delta \in D} \in I^{D}$, a point $\tilde{z} \in W_{f} \cap\left(-\frac{1}{2}, \frac{1}{2}\right)^{\Gamma}$ which coincides on each δE with $z_{\delta} \bar{\lambda}^{\delta} g^{*}$. This shows that the restriction of X_{f} to its coordinates in $D E$ contains - in essence - a Cartesian product of the form I^{D}. Since $(D E) E^{-1}=\Gamma$ and E^{-1} is finite, λ_{f} must have infinite topological entropy on X_{f}.

Proposition 3.2. If the principal algebraic Γ-action λ_{f} on X_{f} has finite topological entropy, then the restriction $\bar{\lambda}_{C}$ of $\bar{\lambda}$ to every weak*-closed, bounded, $\bar{\lambda}$-invariant subset $C \subset K_{f}$ has topological entropy zero (cf. (2.7)).

For the proof of Proposition 3.2 we need a lemma.
Lemma 3.3. Let $\tau: \Gamma \rightarrow \operatorname{Aut}(X)$ be an action of a countably infinite discrete amenable group Γ by continuous automorphisms of a compact metrizable group X such that $\mathrm{h}_{\mathrm{top}}(\tau)<\infty$. Then there exists, for every $\varepsilon>0$, a neighbourhood U of 1_{X} in X such that the topological entropy $\mathrm{h}_{\text {top }}\left(\tau_{C}\right)$ of the restriction of τ to any closed τ-invariant subset $C \subset U$ is less than ε.

Proof. Choose a compatible left translation invariant metric d on X (i.e., $\mathrm{d}(x, y)=\mathrm{d}(z x, z y)$ for all $x, y, z \in X$). For every nonempty finite subset $F \Subset \Gamma$, put

$$
\mathrm{d}_{F}(x, y)=\max _{\gamma \in F} \mathrm{~d}\left(\tau^{\gamma} x, \tau^{\gamma} y\right), \quad x, y \in X .
$$

For each $\zeta>0$ we denote by $\operatorname{sep}(X, \mathrm{~d}, \zeta)$ the maximal cardinality of subsets $Z \subset X$ which are (d, ζ)-separated in the sense that $\mathrm{d}(y, z) \geq \zeta$ for all distinct $y, z \in Z$.

Take a left Følner sequence $\left(F_{n}\right)_{n \geq 1}$ for Γ, i.e., a sequence of nonempty finite sets $F_{n} \subset \Gamma$ with $\lim _{n \rightarrow \infty} \frac{\left|\gamma F_{n} \cap F_{n}\right|}{\left|F_{n}\right|}=0$ for every $\gamma \in \Gamma$. Then there exists, for every $\varepsilon>0$, some $\zeta>0$ such that

$$
\liminf _{n \rightarrow \infty} \frac{1}{\left|F_{n}\right|} \log \operatorname{sep}\left(X, \mathrm{~d}_{F_{n}}, \zeta\right) \geq \mathrm{h}_{\mathrm{top}}(\tau)-\varepsilon / 2
$$

For large enough n, take a $\left(\mathrm{d}_{F_{n}}, \zeta\right)$-separated set $X_{n} \subset X$ such that $\frac{1}{\left|F_{n}\right|} \log \left|X_{n}\right| \geq \mathrm{h}_{\text {top }}(\tau)-\varepsilon$.
Put $U=\left\{x \in X \mid \mathrm{d}\left(x, 1_{X}\right)<\zeta / 10\right\}$. Let $Y \subset U$ be closed and Γ-invariant, and let τ_{Y} be the restriction of τ to Y. In order to show that $\mathrm{h}_{\text {top }}\left(\tau_{Y}\right) \leq \varepsilon$ it suffices to show that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{1}{\left|F_{n}\right|} \log \operatorname{sep}\left(Y, \mathrm{~d}_{F_{n}}, \delta\right) \leq \varepsilon \tag{3.1}
\end{equation*}
$$

whenever $0<\delta<\zeta / 10$. In order to verify (3.1) we choose, for each n, a $\left(\mathrm{d}_{F_{n}}, \delta\right)$-separated set $Y_{n} \subset Y$ of cardinality $\left|Y_{n}\right|=\operatorname{sep}\left(Y, \mathrm{~d}_{F_{n}}, \delta\right)$. When n is large enough, then $\left|X_{n} Y_{n}\right|=\left|X_{n}\right| \cdot\left|Y_{n}\right|$ and $X_{n} Y_{n}$ is $\left(\mathrm{d}_{F_{n}}, \delta\right)$-separated: indeed,

$$
\mathrm{d}_{F_{n}}(x y, x z)=\mathrm{d}_{F_{n}}(y, z) \geq \delta
$$

for $x \in X_{n}$ and distinct $y, z \in Y_{n}$, whereas

$$
\begin{aligned}
\mathrm{d}_{F_{n}}\left(x_{1} y, x_{2} z\right) & \geq \mathrm{d}_{F_{n}}\left(x_{1}, x_{2}\right)-\mathrm{d}_{F_{n}}\left(x_{1} y, x_{1}\right)-\mathrm{d}_{F_{n}}\left(x_{2} z, x_{2}\right) \\
& =\mathrm{d}_{F_{n}}\left(x_{1}, x_{2}\right)-\mathrm{d}_{F_{n}}\left(y, 1_{X}\right)-\mathrm{d}_{F_{n}}\left(z, 1_{X}\right) \geq \zeta-\zeta / 10-\zeta / 10 \geq \delta
\end{aligned}
$$

for $y, z \in Y_{n}$ and distinct $x_{1}, x_{2} \in X_{n}$.
Then

$$
\begin{aligned}
\mathrm{h}_{\mathrm{top}}(\tau) & \geq \limsup _{n \rightarrow \infty} \frac{1}{\left|F_{n}\right|} \log \operatorname{sep}\left(X, \mathrm{~d}_{F_{n}}, \delta\right) \geq \limsup _{n \rightarrow \infty} \frac{1}{\left|F_{n}\right|} \log \left(\left|X_{n}\right| \cdot\left|Y_{n}\right|\right) \\
& \geq \mathrm{h}_{\mathrm{top}}(\tau)-\varepsilon+\limsup _{n \rightarrow \infty} \frac{1}{\left|F_{n}\right|} \log \operatorname{sep}\left(Y, \mathrm{~d}_{F_{n}}, \delta\right)
\end{aligned}
$$

which implies (3.1).
Proof of Proposition 3.2. Since the Γ-actions $\bar{\lambda}_{B_{r}\left(K_{f}\right)}, r>0$, are all conjugate to each other, $\mathrm{h}_{\text {top }}\left(\bar{\lambda}_{B_{r}\left(K_{f}\right)}\right)$ is the same for all $r>0$.

For $0<r<1 / 2$, the map $\eta: \ell^{\infty}(\Gamma, \mathbb{R}) \rightarrow \mathbb{T}^{\Gamma}$ in (2.1) embeds $B_{r}\left(K_{f}\right)$ injectively as a closed Γ-invariant subset of X_{f}. If $U \subset X_{f}$ is any open neighbourhood of $1_{X_{f}}$, then $\eta\left(B_{r}\left(K_{f}\right)\right) \subset U$ for all sufficiently small $r>0$.

Let $C \subset K_{f}$ be a weak*-closed, bounded, $\bar{\lambda}$-invariant subset. Then $C \subset B_{r}\left(K_{f}\right)$ for some $r>0$, and $\mathrm{h}_{\text {top }}\left(\bar{\lambda}_{C}\right) \leq \mathrm{h}_{\text {top }}\left(\bar{\lambda}_{B_{r}\left(K_{f}\right)}\right)=\mathrm{h}_{\text {top }}\left(\bar{\lambda}_{B_{r^{\prime}}\left(K_{f}\right)}\right)$ for every $r^{\prime}>0$.

Let $\varepsilon>0$. By Lemma 3.3 there is some neighbourhood U of $1_{X_{f}}$ in X_{f} such that for any closed Γ-invariant subset Y of X_{f} contained in U the restriction $\left(\lambda_{f}\right)_{Y}$ of λ_{f} to Y has entropy $\leq \varepsilon$. If $r^{\prime}>0$ is small enough, $\eta\left(B_{r^{\prime}}\left(K_{f}\right)\right) \subset U$, so that

$$
\mathrm{h}_{\mathrm{top}}\left(\bar{\lambda}_{C}\right) \leq \mathrm{h}_{\mathrm{top}}\left(\bar{\lambda}_{B_{r}\left(K_{f}\right)}\right)=\mathrm{h}_{\mathrm{top}}\left(\bar{\lambda}_{B_{r^{\prime}}\left(K_{f}\right)}\right)=\mathrm{h}_{\mathrm{top}}\left(\left(\lambda_{f}\right)_{\eta\left(B_{r^{\prime}}\left(K_{f}\right)\right)}\right) \leq \varepsilon
$$

As $\varepsilon>0$ is arbitrary, we conclude that $\mathrm{h}_{\mathrm{top}}\left(\bar{\lambda}_{C}\right)=0$.

Proposition 3.4 (cf. [30, Proposition 8.7]). Let Y_{1}, Y_{2} be compact metrizable spaces, and let τ_{1}, τ_{2} be continuous actions of a countably infinite discrete amenable group Γ on Y_{1} and Y_{2} such that the topological entropy $\mathrm{h}_{\text {top }}\left(\tau_{2}\right)$ of τ_{2} is equal to zero. We write $\pi^{(i)}: Y_{1} \times Y_{2} \rightarrow Y_{i}$ for the two coordinate projections. If μ is a $\left(\tau_{1} \times \tau_{2}\right)$-invariant Borel probability measure on $Y_{1} \times Y_{2}$ we set $\mu_{i}=\pi_{*}^{(i)} \mu$. Then $h_{\mu}\left(\tau_{1} \times \tau_{2}\right)=h_{\mu_{1}}\left(\tau_{1}\right)$.
Proof. Let \mathcal{P} and \mathcal{Q} be finite Borel partitions of Y_{1} and Y_{2}, respectively, and set $\tilde{\mathcal{P}}=\left\{P \times Y_{2} \mid\right.$ $P \in \mathcal{P}\}$ and $\tilde{\mathcal{Q}}=\left\{Y_{1} \times Q \mid Q \in \mathcal{Q}\right\}$. If $\left(F_{n}\right)$ is a left Følner sequence in Γ, then

$$
\begin{aligned}
h_{\mu}\left(\tau_{1} \times \tau_{2}, \tilde{\mathcal{P}} \vee \tilde{\mathcal{Q}}\right)= & \lim _{n \rightarrow \infty} \frac{1}{\left|F_{n}\right|} H_{\mu}\left(\bigvee_{\gamma \in F_{n}}\left(\tau_{1} \times \tau_{2}\right)^{\gamma^{-1}}(\tilde{\mathcal{P}} \vee \tilde{\mathcal{Q}})\right) \\
= & \lim _{n \rightarrow \infty} \frac{1}{\left|F_{n}\right|} H_{\mu}\left(\bigvee_{\gamma \in F_{n}} \tau_{1}^{\gamma^{-1}}(\tilde{\mathcal{P}}) \vee \bigvee_{\gamma \in F_{n}} \tau_{2}^{\gamma^{-1}}(\tilde{\mathcal{Q}})\right) \\
= & \lim _{n \rightarrow \infty} \frac{1}{\left|F_{n}\right|}\left(H_{\mu}\left(\bigvee_{\gamma \in F_{n}} \tau_{1}^{\gamma^{-1}}(\tilde{\mathcal{P}})\right)\right. \\
& \left.\quad+H_{\mu}\left(\bigvee_{\gamma \in F_{n}} \tau_{2}^{\gamma^{-1}}(\tilde{\mathcal{Q}}) \mid \bigvee_{\gamma \in F_{n}} \tau_{1}^{\gamma^{-1}}(\tilde{\mathcal{P}})\right)\right) \\
\leq & \lim _{n \rightarrow \infty} \frac{1}{\left|F_{n}\right|}\left(H_{\mu}\left(\bigvee_{\gamma \in F_{n}} \tau_{1}^{\gamma^{-1}}(\tilde{\mathcal{P}})\right)+H_{\mu}\left(\bigvee_{\gamma \in F_{n}} \tau_{2}^{\gamma^{-1}}(\tilde{\mathcal{Q}})\right)\right) \\
= & \lim _{n \rightarrow \infty} \frac{1}{\left|F_{n}\right|}\left(H_{\mu_{1}}\left(\bigvee_{\gamma \in F_{n}} \tau_{1}^{\gamma^{-1}}(\mathcal{P})\right)+H_{\mu_{2}}\left(\bigvee_{\gamma \in F_{n}} \tau_{2}^{\gamma^{-1}}(\mathcal{Q})\right)\right) \\
\leq & h_{\mu_{1}}\left(\tau_{1}, \mathcal{P}\right)+\mathrm{h}_{\mathrm{top}}\left(\tau_{2}\right)=h_{\mu_{1}}\left(\tau_{1}, \mathcal{P}\right)
\end{aligned}
$$

by the variational principle [16, Theorem 9.48]. By taking the supremum over all finite partitions \mathcal{P} and \mathcal{Q} we obtain that $h_{\mu}\left(\tau_{1} \times \tau_{2}\right) \leq h_{\mu_{1}}\left(\tau_{1}\right)$. The reverse inequality $h_{\mu_{1}}\left(\tau_{1}\right) \leq h_{\mu}\left(\tau_{1} \times \tau_{2}\right)$ is obvious.

Proposition 3.5 (cf. [30, Corollary 8.9]). Suppose that the principal algebraic Γ-action λ_{f} on X_{f} has finite topological entropy. Then the following is true.
(1) For every $\bar{\lambda}$-invariant Borel probability measure ν on \bar{Y}_{f}, the probability measure $\nu^{\#}=$ $\bar{\rho}_{*}^{f} \nu$ on \bar{Z}_{f} is $\bar{\lambda}$-invariant, and $h_{\nu}\left(\bar{\lambda}_{\bar{Y}_{f}}\right)=h_{\nu \#}\left(\bar{\lambda}_{\bar{Z}_{f}}\right)$.
(2) $\mathrm{h}_{\text {top }}\left(\bar{\lambda}_{\bar{Y}_{f}}\right)=\mathrm{h}_{\text {top }}\left(\bar{\lambda}_{\bar{Z}_{f}}\right)$.

Proof. Since $\bar{\rho}^{f}$ induces a continuous surjective $\bar{\lambda}$-equivariant map from \bar{Y}_{f} to $\bar{Z}_{f}, \mathrm{~h}_{\text {top }}\left(\bar{\lambda}_{\bar{Z}_{f}}\right) \leq$ $\mathrm{h}_{\text {top }}\left(\bar{\lambda}_{\bar{Y}_{f}}\right)$ and $h_{\nu \#}\left(\bar{\lambda}_{\bar{Z}_{f}}\right) \leq h_{\nu}\left(\bar{\lambda}_{\bar{Y}_{f}}\right)$ for every $\bar{\lambda}$-invariant Borel probability measure ν on \bar{Y}_{f}.

By applying the Propositions 3.2 and 3.4 with $Y_{1}=\bar{Z}_{f}, Y_{2}=B_{2}\left(K_{f}\right), \tau_{1}=\bar{\lambda}_{\bar{Z}_{f}}, \tau_{2}=$ $\bar{\lambda}_{B_{2}\left(K_{f}\right)}, \mu=\tilde{\nu}$, and $\mu_{1}=\nu^{\#}=\bar{\rho}_{*}^{f} \nu$, we obtain that $h_{\nu}\left(\bar{\lambda}_{\bar{Y}_{f}}\right)=h_{\tilde{\nu}}(\tilde{\lambda})=h_{\nu \#}\left(\bar{\lambda}_{\bar{L}_{f}}\right)$. This proves (1).
(2): The variational principle [16, Theorem 9.48] implies that

$$
\mathrm{h}_{\mathrm{top}}\left(\bar{\lambda}_{\bar{Y}_{f}}\right)=\sup _{\mu} h_{\mu}\left(\bar{\lambda}_{\bar{Y}_{f}}\right)=\sup _{\mu} h_{\bar{\rho}_{*}^{f} \mu}\left(\bar{\lambda}_{\bar{Z}_{f}}\right) \leq \mathrm{h}_{\mathrm{top}}\left(\bar{\lambda}_{\bar{Z}_{f}}\right),
$$

where the supremum is taken over the set of $\bar{\lambda}$-invariant Borel probability measures μ on \bar{Y}_{f}. Since the opposite inequality $\mathrm{h}_{\text {top }}\left(\bar{\lambda}_{\bar{Z}_{f}}\right) \leq \mathrm{h}_{\text {top }}\left(\bar{\lambda}_{\bar{Y}_{f}}\right)$ is trivially satisfied, this completes the proof of the proposition.

Proposition 3.2 yields a strengthening of Proposition 3.5 for $\bar{\lambda}$-invariant probability measures ν on \bar{Y}_{f} with completely positive entropy. We use the same notation as in the Propositions 2.1 and 3.5 .

Corollary 3.6. Suppose that the principal algebraic Γ-action λ_{f} on X_{f} has finite topological entropy. Then the Γ-actions $\bar{\lambda}_{\bar{Y}_{f}}$ on $\left(\bar{Y}_{f}, \nu\right)$ and $\bar{\lambda}_{\bar{Z}_{f}}$ on $\left(\bar{Z}_{f}, \nu^{\#}\right)$ are measurably conjugate for every $\bar{\lambda}$-invariant Borel probability measure ν on \bar{Y}_{f} with completely positive entropy.

Proof. As in the proof of Proposition 2.1 we define $\theta_{1}: \bar{Y}_{f} \rightarrow \tilde{Z}_{f}$ by (2.9) and set $\tilde{\nu}^{(1)}=\left(\theta_{1}\right)_{*} \nu$ and $\tilde{\nu}=\left(\theta_{2}\right)_{*} \tilde{\nu}^{(1)}=\theta_{*} \nu$. Then $\tilde{\nu}$ is $\tilde{\lambda}$-invariant by (2.14), and $\pi_{*}^{(1)} \tilde{\nu}=\nu^{\#}$. We write $\pi^{(2)}: \tilde{Z}_{f} \rightarrow$ K_{f} for the second coordinate projection, denote by $\xi_{f}=\pi_{*}^{(2)} \tilde{\nu}$ the projection of $\tilde{\nu}$ onto K_{f}, and note that the Γ-action $\tilde{\lambda}$ on $\left(\tilde{Z}_{f}, \tilde{\nu}\right)$ has the zero-entropy Γ-action $\bar{\lambda}$ on $\left(K_{f}, \xi_{f}\right)$ as a factor (cf. Proposition 3.2). Since $\tilde{\lambda}$ on ($\left.\tilde{Z}_{f}, \tilde{\nu}\right)$ is measurably conjugate to $\bar{\lambda}$ on (\bar{Y}_{f}, ν) and thus has completely positive entropy, we obtain a contradiction unless ξ_{f} is concentrated in a single point.

Since ξ_{f} is a point mass, the first coordinate projection $\pi^{(1)}:\left(\tilde{Z}_{f}, \tilde{\nu}\right) \rightarrow\left(\bar{Z}_{f}, \nu^{\#}\right)$ is injective $(\bmod \tilde{\nu})$, and the Γ-actions $\tilde{\lambda}$ on $\left(\tilde{Z}_{f}, \tilde{\nu}\right)$ and $\bar{\lambda}$ on $\left(\bar{Z}_{f}, \nu^{\#}\right)$ are conjugate. This proves that the Γ-actions $\bar{\lambda}$ on $\left(\bar{Y}_{f}, \nu\right)$ and on ($\left.\bar{Z}_{f}, \nu^{\#}\right)$ are measurably conjugate.

Having discussed the relation between $\bar{\lambda}$-invariant probability measures on \bar{Y}_{f} and \bar{Z}_{f} we turn to the corresponding question for measures on \bar{Y}_{f} and their images under η.

Lemma 3.7. There exists a unique $\bar{\lambda}$-invariant Borel probability measure ν_{f} on \bar{Y}_{f} with $\eta_{*} \nu_{f}=$ μ_{f}, and the map $\eta: \bar{Y}_{f} \rightarrow X_{f}$ induces a conjugacy of the Γ-actions $\bar{\lambda}$ on $\left(\bar{Y}_{f}, \nu_{f}\right)$ and λ_{f} on $\left(X_{f}, \mu_{f}\right)$.

Proof. Let ν be a $\bar{\lambda}$-invariant Borel probability measure on \bar{Y}_{f} such that $\eta_{*} \nu=\mu_{f}$. If $\nu\left(\bar{Y}_{f} \backslash Y_{f}\right)>$ 0 , the set

$$
V=\left\{y \in \bar{Y}_{f} \mid y_{1_{\Gamma}}=1\right\}
$$

must have positive ν-measure, which implies that the closed subgroup

$$
H=\left\{x \in X_{f} \mid x_{1_{\Gamma}}=0\right\} \supset \eta(V)
$$

has positive μ_{f}-measure. We set

$$
K=\pi_{1_{\Gamma}}\left(X_{f}\right) \subset \mathbb{T},
$$

observe that K is a closed subgroup of \mathbb{T}, and denote by μ_{K} the normalized Haar measure of K. Since $\mu_{K}(\{t\})=\mu_{K}(\{0\})=\mu_{f}(H)>0$ for every $t \in K$, the group K must be finite, which implies that $X_{f} \subset K^{\Gamma}$ and hence $Y_{f}=\bar{Y}_{f}$, contrary to our assumption that $\nu\left(\bar{Y}_{f} \backslash Y_{f}\right)>0$. It follows that $\nu(B)=\nu\left(B \cap Y_{f}\right)=\mu_{f}(\eta(B))$ for every Borel set $B \subset \bar{Y}_{f}$, as claimed. Hence the map $\eta: \bar{Y}_{f} \rightarrow X_{f}$ induces a measure space isomorphism from $\left(\bar{Y}_{f}, \nu_{f}\right)$ to $\left(X_{f}, \mu_{f}\right)$ which carries the Γ-action $\bar{\lambda}_{f}$ on $\left(\bar{Y}_{f}, \nu_{f}\right)$ to λ_{f} on $\left(X_{f}, \mu_{f}\right)$.

Theorem 3.8. Let Γ be a countably infinite discrete amenable group, $f \in \mathbb{Z} \Gamma$, and assume that the principal algebraic Γ-action λ_{f} on X_{f} has finite topological entropy. Then $\mathrm{h}_{\text {top }}\left(\bar{\lambda}_{\bar{Z}_{f}}\right)=$ $\mathrm{h}_{\text {top }}\left(\bar{\lambda}_{\bar{Y}_{f}}\right)=\mathrm{h}_{\text {top }}\left(\lambda_{f}\right)$.

We start the proof of Theorem 3.8 with four lemmas. For any finite subset $F \subset \Gamma$ containing 1_{Γ} and any $Q \subset \Gamma$ we put

$$
\begin{equation*}
\operatorname{Int}_{F} Q=\{\gamma \in \Gamma \mid \gamma F \subset Q\} . \tag{3.2}
\end{equation*}
$$

Lemma 3.9 ([30, Lemma 6.4]). Let V be a finite dimensional vector space over \mathbb{R}, and let $k>$ $\operatorname{dim} V$. Let $\phi_{1}, \ldots, \phi_{k}$ be affine functions on V and $b_{1}, \ldots, b_{k} \in \mathbb{R}$. Then there exist $a_{1}, \ldots, a_{k} \in$ $\{0,1\}$ such that $\bigcap_{j=1}^{k} W_{j}\left(a_{j}\right)=\varnothing$, where

$$
W_{j}\left(a_{j}\right)= \begin{cases}\left\{x \in V \mid \phi_{j}(x)<b_{j}\right\} & \text { if } a_{j}=0, \\ \left\{x \in V \mid \phi_{j}(x) \geq b_{j}\right\} & \text { if } a_{j}=1 .\end{cases}
$$

Lemma 3.10. Suppose that $f \in \mathbb{R} \Gamma$ satisfies that $\mathrm{h}_{\mathrm{top}}\left(\lambda_{f}\right)<\infty$, and that $1_{\Gamma} \in E=\operatorname{supp}(f)$. Let $Q \Subset \Gamma$. For every nonzero $v \in \mathbb{R} \Gamma$, the product $v \cdot f^{*}$ is nonzero (since f is not a left zero divisor), and the restriction of $v \cdot f^{*}$ to $\operatorname{Int}_{E} Q$ depends only on the restriction $\pi_{Q}(v)$ of v to Q : for every $v, v^{\prime} \in \mathbb{R} \Gamma$ with $\pi_{Q}(v)=\pi_{Q}\left(v^{\prime}\right), \pi_{\operatorname{Int}_{E} Q}\left(v \cdot f^{*}\right)=\pi_{\operatorname{Int}_{E} Q}\left(v^{\prime} \cdot f^{*}\right)$. Since the map $v \mapsto \bar{\rho}^{f} v=v \cdot f^{*}$ from $\mathbb{R} \Gamma$ to $\mathbb{R} \Gamma$ in (2.3) induces an injective map from \mathbb{R}^{Q} to $\mathbb{R}^{Q E^{-1}}$, the linear space

$$
\begin{equation*}
V_{Q}=\left\{v=\left(v_{\gamma}\right)_{\gamma \in Q} \in \mathbb{R}^{Q} \mid \pi_{\operatorname{Int}_{E} Q}\left(v \cdot f^{*}\right)=0\right\}, \tag{3.3}
\end{equation*}
$$

has dimension $\operatorname{dim} V_{Q} \leq\left|Q E^{-1} \backslash \operatorname{Int}_{E} Q\right|$ (cf. (3.2)).
Proof. Since $\operatorname{dim}\left(\left\{w \in \mathbb{R}^{Q E^{-1}} \mid \pi_{\operatorname{Int}_{E} Q}(w)=0\right\}\right)=\left|Q E^{-1} \backslash \operatorname{Int}_{E} Q\right|$ and the map $\mathbb{R}^{Q} \rightarrow$ $\mathbb{R}^{Q E^{-1}}$ induced by $\bar{\rho}^{f}$ is injective, $\operatorname{dim} V_{Q} \leq\left|Q E^{-1} \backslash \operatorname{Int}_{E} Q\right|$, as claimed.

For the next lemma we recall that a family of subsets \mathcal{Z} of a finite set Z is said to scatter a set $J \subset Z$ if $\mathcal{Z} \cap J=\{C \cap J \mid C \in \mathcal{Z}\}=\mathcal{P}(J)$, the set of all subsets of J.

Lemma 3.11 (Sauer-Perles-Shelah [25], [28, Theorem 1], [31]). Let Z be a finite set with cardinality $n \geq 1$ and let \mathcal{Z} be a collection of subsets of Z. If $|\mathcal{Z}|>\sum_{i=0}^{k-1}\binom{|Z|}{i}$ for some $k \in\{1, \ldots,|Z|\}$, then \mathcal{Z} scatters a subset $J \subset Z$ of size k.

Proof. For a proof see, e.g., [36].
Lemma 3.12 ([3, Lemma A.1]). Let $0<\beta<1 / 2$. Then there exist $\kappa=\kappa(\beta)>0$ and $m_{0}=$ $m_{0}(\beta) \in \mathbb{N}=\{1,2, \ldots\}$ with

$$
\lim _{\beta \rightarrow 0} \kappa(\beta)=0,
$$

such that

$$
\sum_{i=0}^{\lfloor\beta m\rfloor}\binom{m}{i} \leq e^{\kappa m}
$$

for all $m \in \mathbb{N}$ with $m \geq m_{0}$.
Proof of Theorem 3.8. For $\delta \in \Gamma$, the spaces X_{f}, Y_{f} do not change if we replace $f=\sum_{\gamma \in \Gamma} f_{\gamma} \cdot \gamma$ by $\delta f=\sum_{\gamma \in \Gamma} f_{\gamma} \cdot \delta \gamma$, and $Z_{\delta f}=\bar{\rho}^{\delta}\left(Z_{f}\right)$. For the proof of this theorem we may therefore assume without loss of generality that $1_{\Gamma} \in \operatorname{supp}(f)$.

Since the continuous shift-equivariant map $\eta: \ell^{\infty}(\Gamma, \mathbb{R}) \rightarrow \mathbb{T}^{\Gamma}$ in (2.1) sends \bar{Y}_{f} onto X_{f}, we know that $\mathrm{h}_{\text {top }}\left(\bar{\lambda}_{\bar{Y}_{f}}\right) \geq \mathrm{h}_{\text {top }}\left(\lambda_{f}\right)$. It will suffice to show that $\mathrm{h}_{\text {top }}\left(\bar{\lambda}_{\bar{Y}_{f}}\right) \leq \mathrm{h}_{\text {top }}\left(\lambda_{f}\right)$.

Denote by $\mathrm{d}_{\mathbb{I}}(s, t)=|s-t|$ the Euclidean metric on the closed unit interval $\mathbb{I}=[0,1]$ and by $d_{\mathbb{T}}$ the metric on \mathbb{T} given by

$$
\mathrm{d}_{\mathbb{T}}(s+\mathbb{Z}, t+\mathbb{Z})=\min _{k \in \mathbb{Z}}|s-t-k| .
$$

For any $F \Subset \Gamma$ we define continuous pseudometrics $\mathrm{d}_{\mathbb{I}}^{(F)}$ and $\mathrm{d}_{\mathbb{T}}^{(F)}$ on \bar{Y}_{f} and X_{f}, respectively, by

$$
\mathrm{d}_{\mathbb{I}}^{(F)}\left(y, y^{\prime}\right):=\max _{\gamma \in F^{-1}} \mathrm{~d}_{\mathbb{I}}\left(y_{\gamma}, y_{\gamma}^{\prime}\right), \quad y, y^{\prime} \in \bar{Y}_{f},
$$

$$
\mathrm{d}_{\mathbb{T}}^{(F)}\left(x, x^{\prime}\right):=\max _{\gamma \in F^{-1}} \mathrm{~d}_{\mathbb{T}}\left(x_{\gamma}, x_{\gamma}^{\prime}\right), \quad x, x^{\prime} \in X_{f}
$$

For every $\varepsilon>0$ we denote by $\operatorname{sep}\left(\bar{Y}_{f}, \mathrm{~d}_{\mathbb{I}}^{(F)}, \varepsilon\right)$ and $\operatorname{sep}\left(X_{f}, \mathrm{~d}_{\mathbb{T}}^{(F)}, \varepsilon\right)$ the maximal cardinalities of $\left(\mathrm{d}_{\mathbb{I}}^{(F)}, \varepsilon\right)$-separated subsets of \bar{Y}_{f} and $\left(\mathrm{d}_{\mathbb{T}}^{(F)}, \varepsilon\right)$-separated subsets of X_{f}, respectively.

Let $\left(F_{n}\right)$ be a left Følner sequence of Γ. By [6, Proposition 2.3] we have

$$
\begin{aligned}
& \mathrm{h}_{\text {top }}\left(\bar{\lambda}_{\bar{Y}_{f}}\right)=\sup _{\varepsilon>0} \limsup _{n \rightarrow \infty} \frac{\log \operatorname{sep}\left(\bar{Y}_{f}, \mathrm{~d}_{\mathbb{I}}^{\left(F_{n}\right)}, \varepsilon\right)}{\left|F_{n}\right|} \\
& \mathrm{h}_{\mathrm{top}}\left(\lambda_{f}\right)=\sup _{\varepsilon>0} \limsup _{n \rightarrow \infty} \frac{\log \operatorname{sep}\left(X_{f}, \mathrm{~d}_{\mathbb{T}}^{\left(F_{n}\right)}, \varepsilon\right)}{\left|F_{n}\right|}
\end{aligned}
$$

Assume that $\mathrm{h}_{\text {top }}\left(\bar{\lambda}_{\bar{Y}_{f}}\right)>\mathrm{h}_{\text {top }}\left(\lambda_{f}\right)$. Then we can find some $0<\varepsilon<\frac{1}{\max \left(10,2\|f\|_{1}\right)}$ and $c>0$ such that, passing to a subsequence of $\left(F_{n}\right)$ if necessary, one has

$$
\begin{equation*}
\operatorname{sep}\left(\bar{Y}_{f}, \mathrm{~d}_{\mathbb{I}}^{\left(F_{n}\right)}, \varepsilon\right) \geq \operatorname{sep}\left(X_{f}, \mathrm{~d}_{\mathbb{T}}^{\left(F_{n}\right)}, \varepsilon / 3\right) \exp \left(c\left|F_{n}\right|\right) \tag{3.4}
\end{equation*}
$$

for all $n \geq 1$.
We fix $n \geq 1$ for the moment and choose a $\left(\mathrm{d}_{\mathbb{I}}^{\left(F_{n}\right)}, \varepsilon\right)$-separated subset $\mathcal{W}_{n} \subset \bar{Y}_{f}$ with $\left|\mathcal{W}_{n}\right|=$ $\operatorname{sep}\left(\bar{Y}_{f}, \mathrm{~d}_{\mathbb{I}}^{\left(F_{n}\right)}, \varepsilon\right)$. Then \mathcal{W}_{n} is $\left(\mathrm{d}_{\mathbb{I}}^{\left(F_{n}\right)}, \varepsilon\right)$-spanning in \bar{Y}_{f}. Since $\eta^{-1}\left(X_{f}\right) \cap[0,1)^{\Gamma}$ is dense in \bar{Y}_{f}, we may move some of the points in \mathcal{W}_{n} by less than $\varepsilon / 10$ in the pseudometric $\mathrm{d}_{\mathbb{I}}^{\left(F_{n}\right)}$, if necessary, and without changing notation, so that $\mathcal{W}_{n} \subset \bar{Y}_{f} \cap[0,1)^{\Gamma}$, while remaining $\left(\mathrm{d}_{\mathbb{I}}^{\left(F_{n}\right)}, \varepsilon\right)$-spanning and $\left(\mathrm{d}_{\mathbb{I}}^{\left(F_{n}\right)}, 4 \varepsilon / 5\right)$-separated in \bar{Y}_{f}. Similarly, if $\mathcal{V}_{n} \subset X_{f}$ is a maximal $\left(\mathrm{d}_{\mathbb{T}}^{\left(F_{n}\right)}, \varepsilon / 3\right)$-separated subset in X_{f}, then

$$
X_{f} \subset \bigcup_{x \in \mathcal{V}_{n}} B_{\mathbb{T}}^{\left(F_{n}\right)}(x, \varepsilon / 3)
$$

where $B_{\mathbb{T}}^{\left(F_{n}\right)}(x, \varepsilon / 3)$ is the open $\mathrm{d}_{\mathbb{T}}^{\left(F_{n}\right)}$-ball in X_{f} with centre x and radius $\varepsilon / 3$, and we can find, for every $n \geq 1$, a point $z^{(n)} \in \mathcal{V}_{n}$ such that $\left|\eta\left(\mathcal{W}_{n}\right) \cap B_{\mathbb{T}}^{\left(F_{n}\right)}\left(z^{(n)}, \varepsilon / 3\right)\right| \geq \exp \left(c\left|F_{n}\right|\right)$ (cf. (3.4)). For every $n \geq 1$ we set $\mathcal{W}_{n}^{\prime}=\left\{y \in \mathcal{W}_{n} \mid \eta(y) \in B_{\mathbb{T}}^{\left(F_{n}\right)}\left(z^{(n)}, \varepsilon / 3\right)\right\}$ and denote by $\tilde{z}^{(n)} \in[0,1)^{F_{n}^{-1}}$ the unique point with $z_{\gamma}^{(n)}=\tilde{z}_{\gamma}^{(n)}(\bmod 1)$ for every $\gamma \in F_{n}^{-1}$.

For every $y \in \mathcal{W}_{n}^{\prime}$ there is a unique $\tilde{y} \in\{-1,0,1\}^{F_{n}^{-1}}$ such that $\left|y_{\gamma}-\tilde{y}_{\gamma}-\tilde{z}_{\gamma}^{(n)}\right|<\varepsilon / 3$ for every $\gamma \in F_{n}^{-1}$. We set
$G_{y}^{+}=\left\{\gamma \in F_{n}^{-1} \mid \tilde{y}_{\gamma}=1\right\}, \quad G_{y}^{\circ}=\left\{\gamma \in F_{n}^{-1} \mid \tilde{y}_{\gamma}=0\right\}, \quad G_{y}^{-}=\left\{\gamma \in F_{n}^{-1} \mid \tilde{y}_{\gamma}=-1\right\}$.
Since \mathcal{W}_{n}^{\prime} is $\left(\mathrm{d}_{\mathbb{I}}^{\left(F_{n}\right)}, 4 \varepsilon / 5\right)$-separated and $G_{y}^{+} \cup G_{y}^{\circ} \cup G_{y}^{-}=F_{n}^{-1}$, it is clear that $\tilde{y} \neq \tilde{y}^{\prime}$ and hence $\left(G_{y}^{+}, G_{y}^{-}\right) \neq\left(G_{y^{\prime}}^{+}, G_{y^{\prime}}^{-}\right)$for any $y \neq y^{\prime}$ in \mathcal{W}_{n}^{\prime}.

We recall that $1_{\Gamma} \in E=\operatorname{supp}(f)$ and define $\operatorname{Int}_{E} F_{n}^{-1}$ as in (3.2). For any $y \in \mathcal{W}_{n}$, the restrictions of $y \cdot f^{*}$ and $\left.y\right|_{F_{n}^{-1}} \cdot f^{*}$ to $\operatorname{Int}_{E} F_{n}^{-1}$ coincide; since $y \cdot f^{*} \in \ell^{\infty}(\Gamma, \mathbb{Z})$, this implies that $\left.y\right|_{F_{n}^{-1}} \cdot f^{*}$ and $\left(\left.y\right|_{F_{n}^{-1}}-\tilde{z}^{(n)}\right) \cdot f^{*}$ have integral coordinates on $\operatorname{Int}_{E} F_{n}^{-1}$. Furthermore, since $\left|y_{\gamma}-\tilde{y}_{\gamma}-\tilde{z}_{\gamma}^{(n)}\right|<\varepsilon / 3$ for every $\gamma \in F_{n}^{-1}$, we obtain that

$$
\left\|\left.\left(\left(\left.y\right|_{F_{n}^{-1}}-\tilde{y}-\tilde{z}^{(n)}\right) \cdot f^{*}\right)\right|_{\operatorname{Int}_{E} F_{n}^{-1}}\right\|_{\infty}<\frac{\varepsilon}{3} \cdot\|f\|_{1}<1
$$

so that

$$
v(y):=\left.y\right|_{F_{n}^{-1}}-\tilde{y}-\tilde{z}^{(n)} \in V_{F_{n}^{-1}}
$$

for every $y \in \mathcal{W}_{n}^{\prime}$ (cf. (3.3)).

Put $\mathcal{W}_{n}^{\prime \prime}=\left\{\left(G_{y}^{+}, G_{y}^{-}\right) \mid y \in \mathcal{W}_{n}^{\prime}\right\}, \mathcal{W}_{n}^{+}=\left\{G_{y}^{+} \mid y \in \mathcal{W}_{n}^{\prime}\right\}$ and $\mathcal{W}_{n}^{-}=\left\{G_{y}^{-} \mid y \in \mathcal{W}_{n}^{\prime}\right\}$. Since $\left|\mathcal{W}_{n}^{\prime \prime}\right|=\left|\mathcal{W}_{n}^{\prime}\right| \geq \exp \left(c\left|F_{n}\right|\right)$ it is clear that $\max \left(\left|\mathcal{W}_{n}^{+}\right|,\left|\mathcal{W}_{n}^{-}\right|\right) \geq \exp \left(c\left|F_{n}\right| / 2\right)$.

Suppose that $\left|\mathcal{W}_{n}^{+}\right| \geq \exp \left(c\left|F_{n}\right| / 2\right)$ for infinitely many $n \geq 1$ (if $\left|\mathcal{W}_{n}^{-}\right| \geq \exp \left(c\left|F_{n}\right| / 2\right)$ for infinitely many n the proof is completely analogous). By passing to a subsequence we may assume that $\left|\mathcal{W}_{n}^{+}\right| \geq \exp \left(c\left|F_{n}\right| / 2\right)$ for every $n \geq 1$. By Lemma 3.12 there exists $\beta>0$ such that $\kappa=\kappa(\beta)<c / 2$ and $\sum_{i=0}^{\left\lfloor\beta\left|F_{n}\right|\right\rfloor}\binom{\left|F_{n}\right|}{i}<\exp \left(\kappa\left|F_{n}\right|\right)<\exp \left(c\left|F_{n}\right| / 2\right) \leq\left|\mathcal{W}_{n}^{+}\right|$for every sufficiently large $n \geq 1$. Lemma 3.11 implies that \mathcal{W}_{n}^{+}scatters a subset $J_{n}^{+} \subset F_{n}^{-1}$ of size $\geq \beta\left|F_{n}^{-1}\right|$.

We are going to show that $\operatorname{dim} V_{F_{n}^{-1}} \geq\left|J_{n}^{+}\right|$for infinitely many $n \geq 1$, thereby contradicting Lemma 3.10. For this we define, for every $\gamma \in F_{n}^{-1}$, a linear functional $\phi_{\gamma}: V_{F_{n}^{-1}} \rightarrow \mathbb{R}$ by setting $\phi_{\gamma}(v)=v_{\gamma}$ for every $v \in V_{F_{n}^{-1}}$. For every $y \in \mathcal{W}_{n}^{\prime}$ and $\gamma \in F_{n}^{-1}$, we have the following possibilities:

$$
\begin{aligned}
& \gamma \in G_{y}^{+} \text {and } \phi_{\gamma}(v(y))+\tilde{z}_{\gamma}^{(n)}=y_{\gamma}-1<0 \\
& \gamma \in G_{y}^{\circ} \text { and } 1>\phi_{\gamma}(v(y))+\tilde{z}_{\gamma}^{(n)}=y_{\gamma} \geq 0 \\
& \gamma \in G_{y}^{-} \text {and } \phi_{\gamma}(v(y))+\tilde{z}_{\gamma}^{(n)}=y_{\gamma}+1 \geq 1
\end{aligned}
$$

In particular, $\phi_{\gamma}(v(y))<-\tilde{z}_{\gamma}^{(n)}$ if $\gamma \in G_{y}^{+}$, and $\phi_{\gamma}(v(y)) \geq-\tilde{z}_{\gamma}^{(n)}$ if $\gamma \in F_{n}^{-1} \backslash G_{y}^{+}$.
We can thus find, for every subset $H \subset J_{n}^{+}$, a $y \in \mathcal{W}_{n}^{\prime}$ for which

$$
\phi_{\gamma}(v(y))<-\tilde{z}_{\gamma}^{(n)} \quad \text { if } \quad \gamma \in H
$$

and

$$
\phi_{\gamma}(v(y)) \geq-\tilde{z}_{\gamma}^{(n)} \quad \text { if } \quad \gamma \in J_{n}^{+} \backslash H
$$

According to Lemma 3.9 this means that $\operatorname{dim} V_{F_{n}^{-1}} \geq\left|J_{n}^{+}\right| \geq \beta\left|F_{n}\right|$. If we set $Q=F_{n}^{-1}$, where n is sufficiently large, we obtain a contradiction to Lemma 3.10. This contradiction shows that $\mathrm{h}_{\mathrm{top}}\left(\bar{\lambda}_{\bar{Y}_{f}}\right) \leq \mathrm{h}_{\text {top }}\left(\lambda_{f}\right)$ and completes the proof of Theorem 3.8.

Lemma 3.13. Any $\bar{\lambda}$-invariant Borel probability measure ν on \bar{Y}_{f} satisfies that $h_{\nu}\left(\bar{\lambda}_{\bar{Y}_{f}}\right)=$ $h_{\eta_{*} \nu}\left(\lambda_{f}\right)$.

Proof. For every $x \in X_{f}$ we denote by $\mathrm{h}_{\text {top }}\left(\bar{\lambda}_{\bar{Y}_{f}} \mid \eta^{-1}(x)\right)$ the fibre entropy of $\bar{\lambda}_{\bar{Y}_{f}}$, given x, defined in [18, Definition 6.7]. The proof of Theorem 3.8 shows that $\mathrm{h}_{\text {top }}\left(\bar{\lambda}_{\bar{Y}_{f}} \mid \eta^{-1}(x)\right)=0$ for every $x \in X_{f}$. By [18, Lemmas 6.8 and 6.9], $h_{\nu}\left(\bar{\lambda}_{\bar{Y}_{f}} \mid \eta^{-1}\left(\mathcal{B}_{X_{f}}\right)\right)=0$ for every $\bar{\lambda}$-invariant Borel probability measure ν on \bar{Y}_{f}, where $\mathcal{B}_{X_{f}}$ is the Borel σ-algebra of X_{f}. By [5, Theorem 0.2] or [16, Theorem 9.16], $h_{\nu}\left(\bar{\lambda}_{\bar{Y}_{f}}\right)=h_{\nu}\left(\bar{\lambda}_{\bar{Y}_{f}} \mid \mathcal{B}_{X_{f}}\right)+h_{\eta_{* \nu}}\left(\lambda_{f}\right)=h_{\eta_{* \nu}}\left(\lambda_{f}\right)$.

The coincidence of topological entropies of the Γ-actions λ_{f} and $\bar{\lambda}_{\bar{Y}_{f}}$ in Theorem 3.8 is not quite as obvious as one might think. As noted in the proof of Lemma 3.13, the conditional fibre entropy $\mathrm{h}_{\text {top }}\left(\bar{\lambda}_{\bar{Y}_{f}} \mid \eta^{-1}(x)\right)$ is equal to zero for every $x \in X_{f}$ whenever Γ is amenable and $f \in \mathbb{Z} \Gamma$ is not a left zero divisor. This is no longer true if f is a left zero divisor (in which case the topological entropies $\mathrm{h}_{\text {top }}\left(\lambda_{f}\right)$ and $\mathrm{h}_{\mathrm{top}}\left(\bar{\lambda}_{\bar{Y}_{f}}\right)$ are infinite by Lemma 3.1). A slight modification of the proof of Lemma 3.1 yields the following result.

Proposition 3.14. Let Γ be a countably infinite amenable group, and let $f \in \mathbb{Z} \Gamma$ be a left zero divisor in $\mathbb{R} \Gamma$. Then the fibre entropy $\mathrm{h}_{\mathrm{top}}\left(\bar{\lambda}_{\bar{Y}_{f}} \mid \eta^{-1}\left(0_{X_{f}}\right)\right)$ is positive.

Proof. Take a compatible metric d on \bar{Y}_{f} such that $\mathrm{d}(y, z) \geq\left|y_{1_{\Gamma}}-z_{1_{\Gamma}}\right|$ for all $y, z \in \bar{Y}_{f}$.
If $f \in \mathbb{Z} \Gamma$ is a left zero divisor we choose $g=\sum_{\gamma \in \Gamma} g_{\gamma} \cdot \gamma \in \mathbb{R} \Gamma$ with $g_{1_{\Gamma}}=\|g\|_{\infty}>0$ and $f g=0$. Following the proof of Lemma 3.1 we note that $c g^{*} \in W_{f}$ and $\eta\left(c g^{*}\right) \in X_{f}$ for every $c \in \mathbb{R}$. Put $E=\operatorname{supp}\left(g^{*}\right)$ and choose a maximal set $D \subset \Gamma$ such that the translates $\{\delta E \mid \delta \in D\}$ are disjoint. Then $D E E^{-1}=\Gamma$ (cf. the proof of Lemma 3.1). Since the sets $\delta E, \delta \in D$, are disjoint, we obtain, for every $z=\left(z_{\delta}\right)_{\delta \in D} \in\{-1,1\}^{D}$ and every $c \in \mathbb{R}$ with $0<c<\frac{1}{2\|g\|_{\infty}}$, a point $w^{(c, z)}=c \cdot \sum_{\delta \in D} z_{\delta} \bar{\lambda}^{\delta} g^{*} \in W_{f}$ with $\left\|w^{(c, z)}\right\|_{\infty}=c\|g\|_{\infty}$ and $w_{\delta}^{(c, z)}=c z_{\delta}\|g\|_{\infty}$ for every $\delta \in D$.

We set $x^{(c, z)}=\eta\left(w^{(c, z)}\right) \in X_{f}$ and denote by $y^{(c, z)}$ the unique point in Y_{f} satisfying $\eta\left(y^{(c, z)}\right)$ $=x^{(c, z)}=\eta\left(w^{(c, z)}\right)$. For every $\delta \in D$,

$$
y_{\delta}^{(c, z)}= \begin{cases}c\|g\|_{\infty} & \text { if } z_{\delta}=1 \\ 1-c\|g\|_{\infty} & \text { if } z_{\delta}=-1\end{cases}
$$

As $c \searrow 0, y^{(c, z)}$ converges coordinate-wise to a point $y^{(z)} \in \bar{Y}_{f}$ with

$$
y_{\delta}^{(z)}= \begin{cases}0 & \text { if } z_{\delta}=1 \\ 1 & \text { if } z_{\delta}=-1\end{cases}
$$

for $\delta \in D$. With the exception of the single point $z^{\prime}=\left(z_{\delta}^{\prime}\right)_{\delta \in D}$ with $z_{\delta}^{\prime}=1$ for every $\delta \in D$, all the points $y^{(z)}, z \in\{-1,1\}^{D}$ lie in $\bar{Y}_{f} \backslash Y_{f}$ and satisfy that $\eta\left(y^{(z)}\right)=0_{X_{f}}$. As in the proof of Lemma 3.1 we conclude that the fibre entropy $\mathrm{h}_{\text {top }}\left(\bar{\lambda}_{\bar{Y}_{f}} \mid \eta^{-1}\left(0_{X_{f}}\right)\right)$ is positive.

Definition 3.15 ([35]). A continuous action τ of a countably infinite amenable group Γ on a compact metrizable space X is intrinsically ergodic if it has finite topological entropy and there exists a unique τ-invariant Borel probability measure μ on X with $h_{\mu}(\tau)=\mathrm{h}_{\text {top }}(\tau)$.

If Γ is a countably infinite amenable group, and if $f \in \mathbb{Z} \Gamma$ satisfies that $\mathrm{h}_{\text {top }}\left(\lambda_{f}\right)<\infty$, then the principal algebraic action λ_{f} on X_{f} is intrinsically ergodic (with unique maximal measure μ_{f}) if and only if λ_{f} has completely positive entropy w.r.t. μ_{f} ([4, Theorem 8.6]). If λ_{f} is intrinsically ergodic on X_{f}, the next result extends this property to the Γ-actions $\bar{\lambda}_{\bar{Y}_{f}}$ and $\bar{\lambda}_{\bar{Z}_{f}}$.

Proposition 3.16. Suppose that Γ is a countably infinite discrete amenable group, $f \in \mathbb{Z} \Gamma$, and λ_{f} is intrinsically ergodic on X_{f}. Then the following are true.
(1) The Γ-actions $\bar{\lambda}_{\bar{Y}_{f}}$ and $\bar{\lambda}_{\bar{Z}_{f}}$ are intrinsically ergodic;
(2) The maximal entropy measures of the Γ-actions $\bar{\lambda}_{\bar{Y}_{f}}$ and $\bar{\lambda}_{\bar{Z}_{f}}$ have completely positive entropy.

The proof of Proposition 3.16 consists of three lemmas.
Lemma 3.17. If λ_{f} is intrinsically ergodic on X_{f}, then the Γ-actions $\bar{\lambda}_{\bar{Y}_{f}}$ on $\left(\bar{Y}_{f}, \nu_{f}\right)$ and $\bar{\lambda}_{\bar{Z}_{f}}$ on $\left(\bar{Z}_{f}, \nu_{f}^{\#}\right)\left(\right.$ with $\left.\nu_{f}^{\#}:=\bar{\rho}_{*}^{f} \nu_{f}\right)$ have completely positive entropy.

Proof. Since λ_{f} on $\left(X_{f}, \mu_{f}\right)$ is measurably conjugate to $\bar{\lambda}_{\bar{Y}_{f}}$ on $\left(\bar{Y}_{f}, \nu_{f}\right)$ by Lemma 3.7, and $\bar{\lambda}_{\bar{Z}_{f}}$ on ($\left.\bar{Z}_{f}, \nu_{f}^{\#}\right)$ is a factor of $\bar{\lambda}_{\bar{Y}_{f}}$ on $\left(\bar{Y}_{f}, \nu_{f}\right)$, all these actions have completely positive entropy.

Proof of Proposition 3.16. If ν is a $\bar{\lambda}$-invariant Borel probability measure on \bar{Y}_{f} with entropy $h_{\nu}\left(\bar{\lambda}_{\bar{Y}_{f}}\right)=\mathrm{h}_{\text {top }}\left(\bar{\lambda}_{\bar{Y}_{f}}\right)=\mathrm{h}_{\text {top }}\left(\lambda_{f}\right)$ (cf. Theorem 3.8), then Lemma 3.13 implies that $\eta_{*} \nu=\mu_{f}$,
the unique λ_{f}-invariant Borel probability measure on X_{f} with maximal entropy. By Lemma 3.7, $\nu=\nu_{f}$, and the Γ-actions λ_{f} and $\bar{\lambda}_{\bar{Y}_{f}}$ on $\left(X_{f}, \mu_{f}\right)$ and $\left(\bar{Y}_{f}, \nu_{f}\right)$ are conjugate. Lemma 3.17 completes the proof of Proposition 3.16.

Theorem 3.18. Suppose that Γ is a countably infinite amenable group, $f \in \mathbb{Z} \Gamma$, and the principal algebraic Γ-action λ_{f} on X_{f} is intrinsically ergodic. Then the principal algebraic Γ-action λ_{f} on (X_{f}, μ_{f}) is measurably conjugate to the Γ-actions $\bar{\lambda}_{\bar{Y}_{f}}$ and $\bar{\lambda}_{\bar{Z}_{f}}$ on $\left(\bar{Y}_{f}, \nu_{f}\right)$ and $\left(\bar{Z}_{f}, \nu_{f}^{\#}\right)$, respectively.

Proof. If λ_{f} is intrinsically ergodic on X_{f}, then $\mathrm{h}_{\text {top }}\left(\lambda_{f}\right)<\infty$ and μ_{f} has c.p.e. (cf. Definition 3.15). Lemma 3.7 shows that the Γ-actions λ_{f} on $\left(X_{f}, \mu_{f}\right)$ and $\bar{\lambda}$ on $\left(\bar{Y}_{f}, \nu_{f}\right)$ are measurably conjugate, and the Γ-actions $\bar{\lambda}_{\bar{Y}_{f}}$ and $\bar{\lambda}_{\bar{Z}_{f}}$ on $\left(\bar{Y}_{f}, \nu_{f}\right)$ and $\left(\bar{Z}_{f}, \nu_{f}^{\#}\right)$ are measurably conjugate by Corollary 3.6.

4. Generators of intrinsically ergodic principal algebraic actions

In this section we apply Theorem 3.18 to find generators of intrinsically ergodic principal algebraic actions of a countably infinite amenable group Γ.

Let $f \in \mathbb{Z} \Gamma$ be a nonzero element such that the principal algebraic Γ-action λ_{f} on X_{f} is intrinsically ergodic. We view $X_{f} \subset \mathbb{T}^{\Gamma}$ as a subset of $[0,1)^{\Gamma}$ as in (2.1) - (2.4) by identifying Y_{f} and X_{f} through η and set, for every $j \in \mathbb{Z}$,

$$
\begin{equation*}
B[j]=\left\{x \in X_{f} \mid \sum_{\gamma \in \operatorname{supp}(f)} f_{\gamma} x_{\gamma}=j\right\}=\left\{x \in X_{f} \mid\left(\bar{\rho}^{f} x\right)_{1_{\Gamma}}=j\right\} . \tag{4.1}
\end{equation*}
$$

The following corollaries are immediate consequences of Theorem 3.18.

Corollary 4.1. Put

$$
\mathcal{B}_{f}= \begin{cases}\left\{B[j] \mid j=-\left\|f^{-}\right\|_{1}+1, \ldots,\left\|f^{+}\right\|_{1}-1\right\} & \text { if both } f^{+} \text {and } f^{-} \text {are nonzero, } \tag{4.2}\\ \left\{B[j] \mid j=0, \ldots,\left\|f^{+}\right\|_{1}-1\right\} & \text { if } f^{+} \neq 0 \text { and } f^{-}=0, \\ \left\{B[j] \mid j=-\left\|f^{-}\right\|_{1}+1, \ldots, 0\right\} & \text { if } f^{+}=0 \text { and } f^{-} \neq 0 .\end{cases}
$$

Then \mathcal{B}_{f} is a Borel partition of X_{f} which is a generator $\left(\bmod \mu_{f}\right)$ for λ_{f}.
Corollary 4.2. The Borel partition $\mathcal{C}_{f}=\left\{C_{j} \mid j=0, \ldots,\|f\|_{1}-1\right\}$ of X_{f} with

$$
C_{j}=\left\{x \in X_{f} \mid j /\|f\|_{1} \leq x_{1_{\Gamma}}<(j+1) /\|f\|_{1}(\bmod 1)\right\} \text { for } j=0, \ldots,\|f\|_{1}-1 \text {, }
$$

is a generator $\left(\bmod \mu_{f}\right)$ for λ_{f}.
By imposing further conditions on Γ and f we can sometimes find slightly smaller generators $\left(\bmod \mu_{f}\right)$ for λ_{f} in Corollary 4.1.

Corollary 4.3. Suppose that the group Γ in Theorem 3.18 is left (or, equivalently, right) orderable. If $f \in \mathbb{Z} \Gamma$ satisfies that $|\operatorname{supp}(f)| \geq 2$, then the collection of sets

$$
\mathcal{B}_{f}^{\prime}=\left\{B[j] \mid j=-\left\|f^{-}\right\|_{1}+1, \ldots,\left\|f^{+}\right\|_{1}-1\right\}
$$

defined as in (4.1), is a generator $\left(\bmod \mu_{f}\right)$ for λ_{f}.
For the proof of Corollary 4.3 we require an additional lemma. For notation we refer to Lemma 3.7.

Lemma 4.4. Suppose that the group Γ in Theorem 3.18 is left (or, equivalently, right) orderable. If $f \in \mathbb{Z} \Gamma$ satisfies that $|\operatorname{supp}(f)| \geq 2$, then $K=\pi_{1_{\Gamma}}\left(X_{f}\right)=\mathbb{T}$ and hence $\left(\pi_{1_{\Gamma}}\right)_{*} \mu_{f}=\mu_{\mathbb{T}}$, the Lebesgue measure on \mathbb{T}.

Proof. Since $K \subset \mathbb{T}$ is a closed subgroup, it is either finite or equal to \mathbb{T}. If K is finite we choose $L \geq 1$ such that $L K=\{L t \mid t \in K\}=\{0\}$ and conclude from (1.2) that L lies in the left ideal $(f) \subset \mathbb{Z} \Gamma$ generated by f. Then there exists $h \in \mathbb{Z} \Gamma$ such that $L=h f$ or, equivalently, $1=h \cdot \frac{1}{L} f$. In other words, the rational group ring $\mathbb{Q} \Gamma$ contains the nontrivial unit $\frac{1}{L} f$, in violation of [27, Lemmas 13.1.7 and 13.1.10].

If $\pi_{1_{\Gamma}}\left(X_{f}\right)=\mathbb{T}$, then obviously $\left(\pi_{1_{\Gamma}}\right)_{*} \mu_{f}=\mu_{\mathbb{T}}$.
Proof of Corollary 4.3. If both f^{+}and f^{-}are nonzero our assertion follows from Corollary 4.1. If $f^{-}=0$, then

$$
B[0]=\left\{x \in X_{f} \mid \sum_{\gamma \in \operatorname{supp}(f)} f_{\gamma} x_{\gamma}=0\right\}=\left\{x \in X_{f} \mid x_{\gamma}=0 \text { for every } \gamma \in \operatorname{supp}(f)\right\} .
$$

Hence $\mu_{f}(B[0]) \leq \mu_{f}\left(\left\{x \in X_{f} \mid x_{\gamma}=0\right\}\right)$ for every $\gamma \in \Gamma$, so that $\mu_{f}(B[0])=0$ by Lemma 4.4. By Corollary 4.1, $\left\{B[j] \mid j=1, \ldots,\left\|f^{+}\right\|_{1}-1\right\}$ is a generator $\left(\bmod \mu_{f}\right)$ for λ_{f}.

If $f^{+}=0$ the proof is completely analogous.

5. Examples

Let Γ be a countably infinite discrete amenable group, $f \in \mathbb{Z} \Gamma$, and let λ_{f} be the principal algebraic Γ-action on X_{f} in Definition 1.1. In order to apply Theorem 3.18 and its corollaries to λ_{f} we require the action λ_{f} to be intrinsically ergodic.
5.1. Intrinsically ergodic principal algebraic \mathbb{Z}^{d}-actions. If $\Gamma=\mathbb{Z}^{d}$ for some $d \geq 1$, the conditions for principal algebraic Γ-actions to be intrinsically ergodic are well understood: if f is nonzero and not divisible by a generalized cyclotomic polynomial, then λ_{f} is intrinsically ergodic [29, Theorem 11.2, Propositions 19.4 and 20.5].

Example 5.1. The matrix $M=\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 1 & 1 & 1\end{array}\right] \in \operatorname{SL}(4, \mathbb{Z})$ defines a nonhyperbolic ergodic automorphism α_{M} of \mathbb{T}^{4}. The question of finding 'nice' finite generating partitions for such automorphisms was discussed in [20, Theorem 1]. By observing that α_{M} is algebraically conjugate to the intrinsically ergodic algebraic \mathbb{Z}-action λ_{f} on $\left(X_{f}, \mu_{f}\right)$ for the characteristic polynomial $f=u^{4}-u^{3}-u^{2}-u+1$ of M and applying Corollary 4.2 we see that the sets

$$
C_{j}=\left\{x \in X_{f} \left\lvert\, \frac{j}{5} \leq x_{0}<\frac{j+1}{5}(\bmod 1)\right.\right\}, 0 \leq j \leq 4,
$$

form a generating partition for λ_{f} w.r.t. μ_{f} on X_{f}. When translating this information back to α_{M} we obtain the generator

$$
\mathcal{D}=\left\{\left.D_{j}=\left\{t=\left(t_{1}, t_{2}, t_{3}, t_{4}\right) \in \mathbb{T}^{4} \left\lvert\, \frac{j}{5} \leq t_{1}<\frac{j+1}{5}(\bmod 1)\right.\right\} \right\rvert\, j=0, \ldots, 4\right\}
$$

for α_{M} w.r.t. Lebesgue measure $\mu_{\mathbb{T}^{4}}$ on \mathbb{T}^{4}.
Corollary 4.1 shows that α_{M} on $\left(\mathbb{T}^{4}, \mu_{\mathbb{T}^{4}}\right)$ also has the 4 -element generator corresponding to $\{B[-2], B[-1], B[0], B[1]\}$ in (4.2).

Example 5.2. Let $\Gamma=\mathbb{Z}^{2}$, and let $f=1-u_{1}-u_{2} \in \mathbb{Z}\left[u_{1}^{ \pm 1}, u_{2}^{ \pm 1}\right] \cong \mathbb{Z}\left[\mathbb{Z}^{2}\right]$. By [29, Proposition 19.7], $\mathrm{h}_{\text {top }}\left(\lambda_{f}\right)=\frac{3 \sqrt{3}}{4 \pi} L\left(2, \chi_{3}\right)>0$, where $L\left(2, \chi_{3}\right)$ is the Dirichlet L-function defined there. Since λ_{f} is intrinsically ergodic, Corollary 4.1 shows that λ_{f} on $\left(X_{f}, \mu_{f}\right)$ has the 2-element generator $\{B[-1], B[0]\}\left(\bmod \mu_{f}\right)$ defined as in (4.1).
5.2. Intrinsically ergodic principal algebraic actions of amenable groups. If Γ is a countably infinite discrete amenable group, establishing the intrinsic ergodicity of a principal algebraic action $\lambda_{f}, f \in \mathbb{Z} \Gamma$, is much more delicate than for $\Gamma=\mathbb{Z}^{d}$. A sufficient condition for intrinsic ergodicity of λ_{f} can be expressed in terms of homoclinic points: a point $x=\left(x_{s}\right) \in X_{f}$ is summable homoclinic if $\sum_{s \in \Gamma}\left\|x_{s}\right\|<\infty$, where $\|t\|$ denotes the distance from 0 of a point $t \in \mathbb{T}$ (cf. [24]). Clearly, every summable homoclinic point $x \in X_{f}$ is homoclinic, i.e., $\lim _{s \rightarrow \infty} \lambda_{f}^{s} x=0$ (cf. e.g., [21, Definition 3.1] or [4]).

Proposition 5.3. Let Γ be a countably infinite amenable discrete group, $f \in \mathbb{Z} \Gamma$, and let $\Delta^{1}\left(X_{f}\right)$ $\subset X_{f}$ be the group of summable homoclinic points of the principal algebraic Γ-action λ_{f} on X_{f}. If $\Delta^{1}\left(X_{f}\right)$ is dense in X_{f} and $\mathrm{h}_{\mathrm{top}}\left(\lambda_{f}\right)<\infty$ then λ_{f} is intrinsically ergodic.

The converse of Proposition 5.3 is clearly not true: the principal algebraic \mathbb{Z}-action λ_{f} on X_{f} (or, equivalently, the automorphism α_{M} of \mathbb{T}^{4}) in Example 5.1 is intrinsically ergodic, but has no nonzero homoclinic points (cf. [21, Example 3.4]).
Proof of Proposition 5.3. According to (1.2), the dual group $\widehat{X_{f}}$ is given by $\widehat{X_{f}}=\mathbb{Z} \Gamma /(f)$ and is, in particular, a finitely generated left $\mathbb{Z} \Gamma$-module. By [4, Theorem 7.8], $\Delta^{1}\left(X_{f}\right) \subset \operatorname{IE}\left(X_{f}\right)$, the closed subgroup of X_{f} defined in [4, Definition 7.2], and hence $\operatorname{IE}\left(X_{f}\right)=X_{f}$ by assumption. By [4, Corollary 8.4 and Theorem 8.6], λ_{f} is intrinsically ergodic.
5.2.1. Expansive principal algebraic actions. For every countably infinite discrete group Γ and every $f \in \mathbb{Z} \Gamma$, the principal algebraic Γ-action λ_{f} on X_{f} in Definition 1.1 is expansive if and only if the map $\bar{\rho}^{f}: \ell^{\infty}(\Gamma, \mathbb{R}) \rightarrow \ell^{\infty}(\Gamma, \mathbb{R})$ in (2.3) is injective or, equivalently, if f is invertible in $\ell^{1}(\Gamma, \mathbb{R})\left(\left[8\right.\right.$, Theorem 3.2]). If this is the case, $w^{\Delta}:=\left(f^{*}\right)^{-1} \in W_{f}$ since $\bar{\rho}^{f}\left(w^{\Delta}\right)=1_{\Gamma}$. Вy [8, Proposition 4.2], the map $\bar{\rho}^{w^{\Delta}}: \ell^{\infty}(\Gamma, \mathbb{Z}) \rightarrow \ell^{\infty}(\Gamma, \mathbb{R})$ is continuous in the weak*-topology on closed, bounded subsets of $\ell^{\infty}(\Gamma, \mathbb{Z})$, and the map $\xi:=\eta \circ \bar{\rho}^{w^{\Delta}}: \ell^{\infty}(\Gamma, \mathbb{Z}) \rightarrow \mathbb{T}^{\Gamma}$ satisfies that $\xi\left(\left\{v \in \ell^{\infty}(\Gamma, \mathbb{Z}) \mid\|v\|_{\infty} \leq\|f\|_{1} / 2\right\}\right)=X_{f}\left(c f .\left[8\right.\right.$, Lemma 4.5]). Since $\xi(\mathbb{Z} \Gamma) \subset \Delta^{1}\left(X_{f}\right)$, the continuity of ξ implies that $\Delta^{1}\left(X_{f}\right)$ is dense in X_{f}. If Γ is amenable, we conclude from Proposition 5.3 that every expansive principal algebraic Γ-action is intrinsically ergodic.

If Γ is amenable and λ_{f} is expansive, the partitions \mathcal{B}_{f} and \mathcal{C}_{f} in the Corollaries 4.1 and 4.2 are obviously generators (and not only generators $\left(\bmod \mu_{f}\right)$) for λ_{f}.

We mention two examples, taken from [9]. Let $\mathbb{H} \subset \operatorname{SL}(3, \mathbb{Z})$ be the discrete Heisenberg group, generated by

$$
u_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \tag{5.1}\\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right], \quad u_{2}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad \text { and } \quad u_{3}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

Example 5.4 ([9, Example 8.4]). Let $f=\left|a_{1}\right|+\left|a_{2}\right|+\left|a_{3}\right|+a_{1} \cdot u_{1}+a_{2} \cdot u_{2}+a_{3} \cdot u_{3} \in \mathbb{Z} \mathbb{H}$. Then the principal algebraic \mathbb{H}-action λ_{f} is expansive if and only if $a_{1} a_{2} \neq 0$ and $a_{3}>0$. In these cases the partitions \mathcal{B}_{f} and \mathcal{C}_{f} in the Corollaries 4.1-4.2 are generators for λ_{f}.

Example 5.5. Let $f=1-u_{1}-u_{2} \in \mathbb{Z} \mathbb{H}$. The principal algebraic \mathbb{H}-action λ_{f} on $\left(X_{f}, \mu_{f}\right)$ has zero entropy by [7, Theorem 11] or [22, Theorem 9.2], so that the hypotheses of Theorem 3.18
are not satisfied. We do not know whether the \mathbb{H}-actions λ_{f} on $\left(X_{f}, \mu_{f}\right)$ and $\bar{\lambda}_{\bar{Z}_{f}}$ on $\left(\bar{Z}_{f}, \nu_{f}^{\#}\right)$ are measurably conjugate and whether $\mathcal{B}_{f}=\{B[-1], B[0]\}$ is a generator $\left(\bmod \mu_{f}\right)$ for λ_{f}.

6. Summable homoclinic points of nonexpansive principal algebraic actions

The existence of a nonzero summable homoclinic point for a nonexpansive principal algebraic action in the second part of Example 5.5 is an interesting fact. For $\Gamma=\mathbb{Z}^{d}$ this phenomenon is well understood: for $f=\sum_{\mathbf{n} \in \mathbb{Z}^{d}} f_{\mathbf{n}} u^{\mathbf{n}} \in \mathbb{Z}\left[\mathbb{Z}^{d}\right]$ we denote by

$$
\begin{equation*}
\mathbf{U}(f)=\left\{\mathbf{z}=\left(z_{1}, \ldots, z_{d}\right) \in \mathbb{S}^{d} \mid f(\mathbf{z})=0\right\} \tag{6.1}
\end{equation*}
$$

the unitary variety of f, where $\mathbb{S}=\{z \in \mathbb{C}| | z \mid=1\}$. According to [29, Theorem 6.5], λ_{f} is expansive if and only if $\mathrm{U}(f)=\varnothing$. If f is nonzero and irreducible, then [24, Theorem 3.2] shows that $\Delta^{1}\left(X_{f}\right) \neq\{0\}$ if and only if the dimension of $\mathrm{U}(f) \subset \mathbb{S}^{d}$ is $\leq d-2$. In this case $\Delta^{1}\left(X_{f}\right)$ is dense in X_{f}, λ_{f} is intrinsically ergodic, and the partitions \mathcal{B}_{f} and \mathcal{C}_{f} are generators $\left(\bmod \mu_{f}\right)$ for λ_{f}.

For nonabelian groups Γ, examples of nonexpansive principal algebraic actions with summable homoclinic points are much harder to come by. In order to present a class of such actions we assume for the remainder of this section that Γ is a countably infinite discrete group with center H. We say $f \in \mathbb{R} \Gamma$ is well-balanced ($[1$, Definition 1.2]) if
(1) $\sum_{s \in \Gamma} f_{s}=0$,
(2) $f_{s} \leq 0$ for every $s \in \Gamma \backslash\left\{1_{\Gamma}\right\}$,
(3) $f=f^{*}$,
(4) $\operatorname{supp}(f)$ generates Γ.

We shall prove the following theorem.
Theorem 6.1. Assume that for any finite $F \subseteq \Gamma$ there is some s in the center H of Γ such that none of s, s^{2}, s^{3} is in F (this happens for example when $H^{6}=\left\{s^{6} \mid s \in H\right\}$ is infinite). Also assume that Γ is not virtually \mathbb{Z} or \mathbb{Z}^{2}. Let $f \in \mathbb{Z} \Gamma$ be well-balanced. Then $\Delta^{1}\left(X_{f}\right)$ is dense in X_{f}.

Corollary 6.2. Assume that the group Γ in Theorem 6.1 is amenable. If $f \in \mathbb{Z} \Gamma$ is well-balanced, then the principal algebraic Γ-action λ_{f} on X_{f} is intrinsically ergodic.

Proof. The proof of Corollary 6.11 implies that f is not a left zero divisor in $\mathbb{Z} \Gamma$, so that $\mathrm{h}_{\text {top }}\left(\lambda_{f}\right)<$ ∞ by Lemma 3.1. Now apply Theorem 6.1 and Proposition 5.3.

The proof of Theorem 6.1 requires a brief excursion into Banach algebras.
Lemma 6.3. Let \mathcal{A} be a unital Banach algebra such that $\|a b\| \leq\|a\| \cdot\|b\|$ for all $a, b \in \mathcal{A}$. Let $0<c<1$ and $q, r \in \mathcal{A}$ such that $\|r\| \leq 1-c$ and $\|q\| \leq c$. Then

$$
\sum_{k=0}^{\infty}\left\|r^{k}(c-q)^{3}(1-q)^{-(k+1)}\right\|<\infty .
$$

The proof of Lemma 6.3 requires some auxiliary results.
Lemma 6.4. Let $0<c<1$. For any $x, y>0$ one has

$$
\frac{c^{x}(1-c)^{y}(x+y)^{x+y}}{x^{x} y^{y}} \leq 1 .
$$

Proof. Fix $y>0$ and put
$\phi(x)=\log \frac{c^{x}(1-c)^{y}(x+y)^{x+y}}{x^{x} y^{y}}=x \log c+y \log (1-c)+(x+y) \log (x+y)-x \log x-y \log y$ for $x>0$. Then

$$
\phi^{\prime}(x)=\log c+\log (x+y)-\log x=\log \frac{c(x+y)}{x}
$$

Clearly $\phi^{\prime}>0$ on the interval $\left(0, \frac{c y}{1-c}\right), \phi^{\prime}=0$ at $\frac{c y}{1-c}$, and $\phi^{\prime}<0$ on $\left(\frac{c y}{1-c}, \infty\right)$. Thus ϕ attains its maximum value at $\frac{c y}{1-c}$. Since $\phi\left(\frac{c y}{1-c}\right)=0$, one concludes that $\phi(x) \leq 0$ for all $x>0$.

Lemma 6.5. Let $0<c<1$ and $k \in \mathbb{N}$. Let g_{k} be the cubic polynomial given by

$$
\begin{align*}
g_{k}(x)= & -(x+1)(x+2)(x+3)+3 c(x+k+1)(x+2)(x+3) \tag{6.2}\\
& -3 c^{2}(x+k+1)(x+k+2)(x+3)+c^{3}(x+k+1)(x+k+2)(x+k+3) \\
= & (c-1)^{3} x^{3}+\left(3 c(c-1)^{2} k+6(c-1)^{3}\right) x^{2} \\
& +\left(3 c^{2}(c-1) k^{2}+3 c(c-1)(4 c-5) k+11(c-1)^{3}\right) x \\
& +c^{3} k^{3}+\left(6 c^{3}-9 c^{2}\right) k^{2}+\left(11 c^{3}-27 c^{2}+18 c\right) k+6(c-1)^{3}
\end{align*}
$$

For $\eta>0$, put

$$
\begin{equation*}
y_{k, \eta, \pm}=\frac{c k}{1-c}-2 \pm \frac{1}{1-c} \sqrt{\eta k+\frac{1}{3}(1-c)^{2}} \tag{6.3}
\end{equation*}
$$

Then

$$
g_{k}\left(y_{k, \eta, \pm}\right)=\left(c^{2}+c\right) k \pm\left((3 c-\eta) k+\frac{2}{3}(c-1)^{2}\right) \sqrt{\eta k+\frac{1}{3}(1-c)^{2}}
$$

Proof. This is a direct computation:

$$
\begin{aligned}
g_{k}\left(y_{k, \eta, \pm}\right)= & (c-1)^{3} y_{k, \eta, \pm}^{3}+\left(3 c(c-1)^{2} k+6(c-1)^{3}\right) y_{k, \eta, \pm}^{2} \\
& +\left(3 c^{2}(c-1) k^{2}+3 c(c-1)(4 c-5) k+11(c-1)^{3}\right) y_{k, \eta, \pm} \\
& +c^{3} k^{3}+\left(6 c^{3}-9 c^{2}\right) k^{2}+\left(11 c^{3}-27 c^{2}+18 c\right) k+6(c-1)^{3} \\
= & (c-1)^{3}\left(\frac{c k}{1-c}-2\right)\left(\left(\frac{c k}{1-c}-2\right)^{2}+3 \frac{1}{(1-c)^{2}}\left(\eta k+\frac{1}{3}(1-c)^{2}\right)\right) \\
& +\left(3 c(c-1)^{2} k+6(c-1)^{3}\right)\left(\left(\frac{c k}{1-c}-2\right)^{2}+\frac{1}{(1-c)^{2}}\left(\eta k+\frac{1}{3}(1-c)^{2}\right)\right) \\
& +\left(3 c^{2}(c-1) k^{2}+3 c(c-1)(4 c-5) k+11(c-1)^{3}\right)\left(\frac{c k}{1-c}-2\right) \\
& +c^{3} k^{3}+\left(6 c^{3}-9 c^{2}\right) k^{2}+\left(11 c^{3}-27 c^{2}+18 c\right) k+6(c-1)^{3} \\
& \pm(c-1)^{3}\left(\frac{c k}{1-c}-2\right)^{2} \frac{3}{1-c} \sqrt{\eta k+\frac{1}{3}(1-c)^{2}} \\
& \pm(c-1)^{3} \frac{1}{(1-c)^{3}}\left(\eta k+\frac{1}{3}(1-c)^{2}\right) \sqrt{\eta k+\frac{1}{3}(1-c)^{2}} \\
& \pm 2\left(3 c(c-1)^{2} k+6(c-1)^{3}\right)\left(\frac{c k}{1-c}-2\right) \frac{1}{1-c} \sqrt{\eta k+\frac{1}{3}(1-c)^{2}} \\
& \pm\left(3 c^{2}(c-1) k^{2}+3 c(c-1)(4 c-5) k+11(c-1)^{3}\right) \frac{1}{1-c} \sqrt{\eta k+\frac{1}{3}(1-c)^{2}} \\
= & -(c k+2(c-1))\left((c k+2(c-1))^{2}+\left(3 \eta k+(1-c)^{2}\right)\right) \\
& +(c k+2(c-1))\left(3(c k+2(c-1))^{2}+\left(3 \eta k+(1-c)^{2}\right)\right) \\
& -\left(3 c^{2} k^{2}+3 c(4 c-5) k+11(c-1)^{2}\right)(c k+2(c-1)) \\
& +c^{3} k^{3}+\left(6 c^{3}-9 c^{2}\right) k^{2}+\left(11 c^{3}-27 c^{2}+18 c\right) k+6(c-1)^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \mp 3(c k+2(c-1))^{2} \sqrt{\eta k+\frac{1}{3}(1-c)^{2}} \\
& \mp\left(\eta k+\frac{1}{3}(1-c)^{2}\right) \sqrt{\eta k+\frac{1}{3}(1-c)^{2}} \\
& \pm 6(c k+2(c-1))^{2} \sqrt{\eta k+\frac{1}{3}(1-c)^{2}} \\
& \mp\left(3 c^{2} k^{2}+3 c(4 c-5) k+11(c-1)^{2}\right) \sqrt{\eta k+\frac{1}{3}(1-c)^{2}} \\
& =\left(c^{2}+c\right) k \pm\left((3 c-\eta) k+\frac{2}{3}(c-1)^{2}\right) \sqrt{\eta k+\frac{1}{3}(1-c)^{2}} .
\end{aligned}
$$

Lemma 6.6. Fix $0<c<1$. Then there is some $k_{c} \in \mathbb{N}$ such that for each $k \in \mathbb{N}$ with $k \geq k_{c}$ the following hold:
(1) the polynomial g_{k} given by (6.2) has 3 roots $t_{k, 1}<t_{k, 2}<t_{k, 3}$ such that

$$
1<y_{k, 4 c,-}<t_{k, 1}<y_{k, c,-}<t_{k, 2}<y_{k, c,+}<t_{k, 3}<y_{k, 4 c,+}
$$

where $y_{k, \eta, \pm}$ is given in (6.3);
(2) $g_{k}>0$ on $\left(-\infty, t_{k, 1}\right) \cup\left(t_{k, 2}, t_{k, 3}\right)$ and $g_{k}<0$ on $\left(t_{k, 1}, t_{k, 2}\right) \cup\left(t_{k, 3}, \infty\right)$.

Proof. Take $k_{c} \in \mathbb{N}$ such that for each $k \geq k_{c}$ one has

$$
\frac{c k}{1-c}-2-\frac{1}{1-c} \sqrt{4 c k+\frac{1}{3}(1-c)^{2}}>1
$$

and

$$
\left(c^{2}+c\right) k-\left(-c k+\frac{2}{3}(c-1)^{2}\right) \sqrt{4 c k+\frac{1}{3}(1-c)^{2}}>0
$$

and

$$
\left(c^{2}+c\right) k-\left(2 c k+\frac{2}{3}(c-1)^{2}\right) \sqrt{c k+\frac{1}{3}(1-c)^{2}}<0
$$

and

$$
\left(c^{2}+c\right) k+\left(-c k+\frac{2}{3}(c-1)^{2}\right) \sqrt{4 c k+\frac{1}{3}(1-c)^{2}}<0
$$

Then for each $k \in \mathbb{N}$ with $k \geq k_{c}$, one has $y_{k, 4 c,-}>1$ and by Lemma 6.5 one has $g_{k}\left(y_{k, 4 c,-}\right)>0$, $g_{k}\left(y_{k, c,-}\right)<0, g_{k}\left(y_{k, c,+}\right)>0$, and $g_{k}\left(y_{k, 4 c,+}\right)<0$. Since $y_{k, 4 c,-}<y_{k, c,-}<y_{k, c,+}<y_{k, 4 c,+}$, it follows that (1) holds. As g_{k} is a cubic polynomial, (2) must also hold.

Lemma 6.7. Fix $0<c<1$. For $k \in \mathbb{N}$ set

$$
\begin{equation*}
f_{k}(m)=c^{m}\binom{m+k}{k}-2 c^{m+1}\binom{m+k+1}{k}+c^{m+2}\binom{m+k+2}{k} \tag{6.4}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{k}(m)=(1-c)^{k} f_{k}(m) \tag{6.5}
\end{equation*}
$$

for $m \in \mathbb{Z}_{\geq 0}$. Let $\xi: \mathbb{N} \rightarrow \mathbb{N}$ such that $\xi(k)=\frac{c k}{1-c}+\mathcal{O}\left(k^{1 / 2}\right)$ as $k \rightarrow \infty$. Then

$$
h_{k}(\xi(k))=\mathcal{O}\left(k^{-3 / 2}\right)
$$

as $k \rightarrow \infty$.
Proof. For $k \in \mathbb{N}$ define $\varphi_{k}, \psi_{k}: \mathbb{N} \rightarrow \mathbb{R}$ by

$$
\varphi_{k}(m)=(1-c)^{k} c^{m}\binom{m+k}{k}
$$

and

$$
\psi_{k}(m)=\frac{(m+1)(m+2)-2 c(m+k+1)(m+2)+c^{2}(m+k+1)(m+k+2)}{(m+1)(m+2)} .
$$

For each $m \in \mathbb{N}$, one has

$$
f_{k}(m)=c^{m}\binom{m+k}{k}\left(1-2 c \frac{m+k+1}{m+1}+c^{2} \frac{(m+k+1)(m+k+2)}{(m+1)(m+2)}\right)=c^{m}\binom{m+k}{k} \psi_{k}(m)
$$

whence

$$
h_{k}(m)=\varphi_{k}(m) \psi_{k}(m)
$$

Therefore it suffices to show that $\varphi_{k}(\xi(k))=\mathcal{O}\left(k^{-1 / 2}\right)$ and $\psi_{k}(\xi(k))=\mathcal{O}\left(k^{-1}\right)$.
By Stirling's approximation formula there are constants $C_{1}, C_{2}>0$ such that

$$
C_{1} \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \leq n!\leq C_{2} \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
$$

for all $n \in \mathbb{N}$. Then

$$
\varphi_{k}(m)=(1-c)^{k} c^{m} \frac{(m+k)!}{m!k!} \leq(1-c)^{k} c^{m} \frac{C_{2} \sqrt{2 \pi(m+k)}(m+k)^{m+k}}{C_{1}^{2} 2 \pi \sqrt{m k} m^{m} k^{k}} \leq \frac{C_{2} \sqrt{2 \pi(m+k)}}{C_{1}^{2} 2 \pi \sqrt{m k}}
$$

where the 2 nd inequality comes from taking $x=m$ and $y=k$ in Lemma 6.4. Thus

$$
\varphi_{k}(\xi(k)) \leq \frac{C_{2} \sqrt{2 \pi(\xi(k)+k)}}{C_{1}^{2} 2 \pi \sqrt{\xi(k) k}}=\mathcal{O}\left(k^{-1 / 2}\right)
$$

whence $\varphi_{k}(\xi(k))=\mathcal{O}\left(k^{-1 / 2}\right)$.
Write $\xi(k)$ as $\frac{c k}{1-c}+\lambda_{k} k^{1 / 2}$ with $\lambda_{k}=\mathcal{O}(1)$ as $k \rightarrow \infty$. Then

$$
\begin{aligned}
(\xi(k)+1)(\xi(k)+2) & =\frac{c^{2} k^{2}}{(1-c)^{2}}+\frac{2 c \lambda_{k}}{1-c} k^{3 / 2}+\mathcal{O}(k), \\
2 c(\xi(k)+k+1)(\xi(k)+2) & =\frac{2 c^{2} k^{2}}{(1-c)^{2}}+\frac{2 c(1+c) \lambda_{k}}{1-c} k^{3 / 2}+\mathcal{O}(k), \\
c^{2}(\xi(k)+k+1)(\xi(k)+k+2) & =\frac{c^{2} k^{2}}{(1-c)^{2}}+\frac{2 c^{2} \lambda_{k}}{1-c} k^{3 / 2}+\mathcal{O}(k),
\end{aligned}
$$

whence
$(\xi(k)+1)(\xi(k)+2)-2 c(\xi(k)+k+1)(\xi(k)+2)+c^{2}(\xi(k)+k+1)(\xi(k)+k+2)=\mathcal{O}(k)$.
It follows that $\psi_{k}(\xi(k))=\mathcal{O}\left(k^{-1}\right)$.
For a power series $\phi(x)=\sum_{m=0}^{\infty} a_{m} x^{m} \in \mathbb{C}[[x]]$, we set $|\phi|$ to be the power series

$$
|\phi|(x)=\sum_{m=0}^{\infty}\left|a_{m}\right| x^{m}
$$

Lemma 6.8. Fix $0<c<1$. For each $k \in \mathbb{Z}_{\geq 0}$ let ϕ_{k} be the power series given by

$$
\begin{equation*}
\phi_{k}(x)=(c-x)^{3} \sum_{m=0}^{\infty}\binom{m+k}{k} x^{m} \tag{6.6}
\end{equation*}
$$

Then $(1-c)^{k}\left|\phi_{k}\right|(c)=\mathcal{O}\left(k^{-3 / 2}\right)$ as $k \rightarrow \infty$.
Proof. Let $k \in \mathbb{Z}_{\geq 0}$. For each $m \in \mathbb{Z}_{\geq 0}$, put

$$
\begin{aligned}
b_{k, m} & =-\binom{m+k}{k}+3 c\binom{m+k+1}{k}-3 c^{2}\binom{m+k+2}{k}+c^{3}\binom{m+k+3}{k} \\
& =\binom{m+k}{k}\left(-1+\frac{3 c(m+k+1)}{m+1}-\frac{3 c^{2}(m+k+1)(m+k+2)}{(m+1)(m+2)}+\frac{c^{3}(m+k+1)(m+k+2)(m+k+3)}{(m+1)(m+2)(m+3)}\right) \\
& =\binom{m+k}{k} \frac{g_{k}(m)}{(m+1)(m+2)(m+3)},
\end{aligned}
$$

where g_{k} is given by (6.2). Then

$$
\begin{equation*}
\phi_{k}(x)=c^{3}+x\left(c^{3}(k+1)-3 c^{2}\right)+x^{2}\left(c^{3} \frac{(k+1)(k+2)}{2}-3 c^{2}(k+1)+3 c\right)+\sum_{m=0}^{\infty} x^{m+3} b_{k, m} \tag{6.7}
\end{equation*}
$$

Let $k_{c} \in \mathbb{N}$ be given by Lemma 6.6. Let $k \in \mathbb{N}$ with $k \geq k_{c}$. Then g_{k} has the roots $t_{k, i}$ for $i=1,2,3$ described in Lemma 6.6. Put $m_{k, i}=\left\lfloor t_{k, i}\right\rfloor$ for $i=1,3$, and $m_{k, 2}=\left\lceil t_{k, 2}\right\rceil$. Then $b_{k, m} \geq 0$ exactly when $0 \leq m \leq m_{k, 1}$ or $m_{k, 2} \leq m \leq m_{k, 3}$. Increasing k_{c} if necessary, we may assume that $c^{3}(k+1)-3 c^{2}, c^{3} \frac{(k+1)(k+2)}{2}-3 c^{2}(k+1)+3 c>0$. Then

$$
\begin{aligned}
\left|\phi_{k}\right|(x)= & \left|c^{3}\right|+x\left|c^{3}(k+1)-3 c^{2}\right|+x^{2}\left|c^{3} \frac{(k+1)(k+2)}{2}-3 c^{2}(k+1)+3 c\right|+\sum_{m=0}^{\infty} x^{m+3}\left|b_{k, m}\right| \\
= & c^{3}+x\left(c^{3}(k+1)-3 c^{2}\right)+x^{2}\left(c^{3} \frac{(k+1)(k+2)}{2}-3 c^{2}(k+1)+3 c\right) \\
& +\sum_{0 \leq m \leq m_{k, 1} \text { or } m_{k, 2} \leq m \leq m_{k, 3}} x^{m+3} b_{k, m}-\sum_{m_{k, 1}<m<m_{k, 2} \text { or } m>m_{k, 3}} x^{m+3} b_{k, m} .
\end{aligned}
$$

Note that ϕ_{k} converges absolutely on the open interval $(-1,1)$. Taking $x=c$ in (6.7) we get

$$
0=c^{3}+c\left(c^{3}(k+1)-3 c^{2}\right)+c^{2}\left(c^{3} \frac{(k+1)(k+2)}{2}-3 c^{2}(k+1)+3 c\right)+\sum_{m=0}^{\infty} c^{m+3} b_{k, m}
$$

Thus

$$
\begin{align*}
\left|\phi_{k}\right|(c)= & 2\left(c^{3}+c\left(c^{3}(k+1)-3 c^{2}\right)+c^{2}\left(c^{3} \frac{(k+1)(k+2)}{2}-3 c^{2}(k+1)+3 c\right)\right. \tag{6.8}\\
& \left.+\sum_{0 \leq m \leq m_{k, 1} \text { or } m_{k, 2} \leq m \leq m_{k, 3}} c^{m+3} b_{k, m}\right)
\end{align*}
$$

Similar to (6.7), we have

$$
\begin{gathered}
(c-x)^{3} \sum_{0 \leq m \leq m_{k, 1}} x^{m}\binom{m+k}{k}=c^{3}+x\left(c^{3}(k+1)-3 c^{2}\right)+x^{2}\left(c^{3} \frac{(k+1)(k+2)}{2}-3 c^{2}(k+1)+3 c\right) \\
\quad+\sum_{0 \leq m \leq m_{k, 1}} x^{m+3} b_{k, m}-\left(c^{3}-3 c^{2} x+3 c x^{2}\right) x^{m_{k, 1}+1}\binom{m_{k, 1}+k+1}{k} \\
\quad-\left(c^{3}-3 c^{2} x\right) x^{m_{k, 1}+2}\binom{m_{k, 1}+k+2}{k}-c^{3} x^{m_{k, 1}+3}\binom{m_{k, 1}+k+3}{k}
\end{gathered}
$$

and

$$
\begin{aligned}
(c-x)^{3} & \sum_{m_{k, 2} \leq m \leq m_{k, 3}} x^{m}\binom{m+k}{k}=\left(c^{3}-3 c^{2} x+3 c x^{2}\right) x^{m_{k, 2}}\binom{m_{k, 2}+k}{k} \\
& +\left(c^{3}-3 c^{2} x\right) x^{m_{k, 2}+1}\binom{m_{k, 2}+k+1}{k}+c^{3} x^{m_{k, 2}+2}\binom{m_{k, 2}+k+2}{k} \\
& +\sum_{m_{k, 2} \leq m \leq m_{k, 3}} x^{m+3} b_{k, m}-\left(c^{3}-3 c^{2} x+3 c x^{2}\right) x^{m_{k, 3}+1}\binom{m_{k, 3}+k+1}{k} \\
& -\left(c^{3}-3 c^{2} x\right) x^{m_{k, 3}+2}\binom{m_{k, 3}+k+2}{k}-c^{3} x^{m_{k, 3}+3}\binom{m_{k, 3}+k+3}{k} .
\end{aligned}
$$

Taking $x=c$ in the two identities above, we get

$$
\begin{aligned}
0=c^{3} & +c\left(c^{3}(k+1)-3 c^{2}\right)+c^{2}\left(c^{3} \frac{(k+1)(k+2)}{2}-3 c^{2}(k+1)+3 c\right) \\
& +\sum_{0 \leq m \leq m_{k, 1}} c^{m+3} b_{k, m}-c^{3} f_{k}\left(m_{k, 1}+1\right)
\end{aligned}
$$

and

$$
0=c^{3} f_{k}\left(m_{k, 2}\right)+\sum_{m_{k, 2} \leq m \leq m_{k, 3}} c^{m+3} b_{k, m}-c^{3} f_{k}\left(m_{k, 3}+1\right)
$$

where f_{k} is defined in (6.4). Then (6.8) becomes

$$
\left|\phi_{k}\right|(c)=2 c^{3}\left(f_{k}\left(m_{k, 1}+1\right)-f_{k}\left(m_{k, 2}\right)+f_{k}\left(m_{k, 3}+1\right)\right)
$$

whence

$$
(1-c)^{k}\left|\phi_{k}\right|(c)=2 c^{3}\left(h_{k}\left(m_{k, 1}+1\right)-h_{k}\left(m_{k, 2}\right)+h_{k}\left(m_{k, 3}+1\right)\right),
$$

where h_{k} is defined in (6.5). Note that the two sequences $\left\{y_{k, 4 c,-}\right\}$ and $\left\{y_{k, 4 c,+}\right\}$ are both $\frac{c k}{1-c}+$ $\mathcal{O}\left(k^{1 / 2}\right)$. It follows from Lemma 6.6.(1) that the three sequences $\left\{m_{k, 1}+1\right\},\left\{m_{k, 2}\right\}$ and $\left\{m_{k, 3}+\right.$ $1\}$ are all $\frac{c k}{1-c}+\mathcal{O}\left(k^{1 / 2}\right)$. Thus from Lemma 6.7 we conclude that the three sequences $\left\{h_{k}\left(m_{k, 1}+\right.\right.$ $1)\},\left\{h_{k}\left(m_{k, 2}\right)\right\}$ and $\left\{h_{k}\left(m_{k, 3}+1\right)\right\}$ are all $\mathcal{O}\left(k^{-3 / 2}\right)$. Therefore $(1-c)^{k}\left|\phi_{k}\right|(c)=\mathcal{O}\left(k^{-3 / 2}\right)$.

We are ready to prove Lemma 6.3.
Proof of Lemma 6.3. Let $k \in \mathbb{N}$. One has

$$
(1-q)^{-(k+1)}=\left(\sum_{j=0}^{\infty} q^{j}\right)^{k+1}=\sum_{m=0}^{\infty} q^{m} \sum_{\substack{j_{1}+\cdots+j_{k+1}=m \\ j_{1}, \ldots, j_{k+1} \geq 0}} 1=\sum_{m=0}^{\infty} q^{m}\binom{m+k}{k}
$$

whence

$$
(c-q)^{3}(1-q)^{-(k+1)}=\phi_{k}(q)
$$

where ϕ_{k} is defined in (6.6). Write ϕ_{k} as $\sum_{m=0}^{\infty} \lambda_{m} x^{m}$ with $\lambda_{m} \in \mathbb{C}$. Then

$$
\begin{aligned}
\left\|r^{k}(c-q)^{3}(1-q)^{-(k+1)}\right\| & =\left\|\sum_{m=0}^{\infty} \lambda_{m} r^{k} q^{m}\right\| \leq \sum_{m=0}^{\infty}\left|\lambda_{m}\right| \cdot\|r\|^{k}\|q\|^{m} \\
& \leq \sum_{m=0}^{\infty}\left|\lambda_{m}\right|(1-c)^{k} c^{m}=(1-c)^{k}\left|\phi_{k}\right|(c)
\end{aligned}
$$

Now the assertion follows from Lemma 6.8.
Lemma 6.3 implies the following proposition.
Proposition 6.9. Let \mathcal{A} be a unital Banach algebra such that $\|a b\| \leq\|a\| \cdot\|b\|$ for all $a, b \in \mathcal{A}$. Let $0<c<1$ and $q, r \in \mathcal{A}$ such that $\|r\| \leq 1-c,\|q\| \leq c$ and $q r=r q$. Then there is some $a \in \mathcal{A}$ such that

$$
\begin{equation*}
a(1-(q+r))=(1-(q+r)) a=(c-q)^{3} \tag{6.9}
\end{equation*}
$$

Proof. Formally, the element a in (6.9) is given by

$$
\begin{aligned}
a & =(c-q)^{3}(1-(q+r))^{-1}=(c-q)^{3}((1-q)-r)^{-1} \\
& =(c-q)^{3}(1-q)^{-1}\left(1-r(1-q)^{-1}\right)^{-1}=(c-q)^{3}(1-q)^{-1} \sum_{k=0}^{\infty} r^{k}(1-q)^{-k} \\
& =\sum_{k=0}^{\infty} r^{k}(c-q)^{3}(1-q)^{-(k+1)}
\end{aligned}
$$

By Lemma 6.3, the last series in this expression for a converges in norm, so that $a \in \mathcal{A}$ is well defined. Since $q r=r q$, one has $q a=a q, r a=a r$, and $(1-q)^{-1} r=r(1-q)^{-1}$. Thus

$$
\begin{aligned}
a(1-(q+r)) & =a(1-q)-a r \\
& =\sum_{k=0}^{\infty} r^{k}(c-q)^{3}(1-q)^{-k}-\sum_{k=0}^{\infty} r^{k+1}(c-q)^{3}(1-q)^{-(k+1)}=(c-q)^{3}
\end{aligned}
$$

and similarly $(1-(q+r)) a=(c-q)^{3}$.
Example 6.10. Let \mathbb{H} be the discrete Heisenberg group with canonical generators u_{1}, u_{2}, u_{3} defined in (5.1), and let $f=4-u_{1}-u_{1}^{-1}-u_{2}-u_{2}^{-1} \in \mathbb{Z} \mathbb{H}$. Then $f=4(1-p)$, where $p=\frac{1}{4}\left(u_{1}+u_{2}+u_{1}^{-1}+u_{2}^{-1}\right) \in \mathbb{Q} H$ can be viewed as a symmetric probability measure on \mathbb{H}. The polynomial $p^{4} \in \mathbb{Q} H$ can again be viewed as a probability measure on \mathbb{H}, and the coefficient $c:=p_{u_{3}}^{4}$ of p^{4} at u_{3} is strictly positive. If we set $q=c \cdot u_{3}$ and $r=p^{4}-q$, then $q r=r q$ and Proposition 6.9 yields an element $a \in \ell^{1}(\mathbb{H}, \mathbb{R})$ such that

$$
a\left(1-p^{4}\right)=a(1-(q+r))=c^{3}\left(1-u_{3}\right)^{3}
$$

Then $b=a\left(1+p+p^{2}+p^{3}\right) / 4 c^{3} \in \ell^{1}(\mathbb{H}, \mathbb{R})$ satisfies that

$$
\begin{equation*}
f b=b f=b f^{*}=4(1-p) b=\left(1-u_{3}\right)^{3} \tag{6.10}
\end{equation*}
$$

It follows that $b \in W_{f}$ and $\eta(b) \in \Delta^{1}\left(X_{f}\right)$ (cf. (2.4) and Proposition 5.3).
We remark in passing that the existence of such a homoclinic point b was conjectured in [12, page 130]; in [12, Theorem 4.1.2] it was shown that there is some $b^{\prime} \in \ell^{1}(\mathbb{H}, \mathbb{R})$ satisfying $b^{\prime} f^{*}=$ $\left(1-u_{3}\right)^{9}$.

Having found a nonzero element of $\Delta^{1}\left(X_{f}\right)$ we claim that $\Delta^{1}\left(X_{f}\right)$ is actually dense in X_{f}. To verify this we give an ad-hoc proof based on [13, Theorem 5.1]: for every $x \in X_{f}$ there exists a $y \in Y_{f}$ with $\eta(y)=x$ (for notation we refer to (2.1)). Then $v:=\bar{\rho}^{f} y \in\{-3, \ldots, 3\}^{\mathbb{H}} \subset$ $\ell^{\infty}(\mathbb{H}, \mathbb{Z})$ (cf. (2.4)) and $\left(\bar{\rho}^{f} \circ \bar{\rho}^{b}\right)(v)=\bar{\rho}^{f b} v=\bar{\rho}^{\left(1-u_{3}\right)^{3}} v \in \ell^{\infty}(\mathbb{H}, \mathbb{Z})$. It follows that $\bar{\rho}^{b} v \in W_{f}$ and $\left(\eta \circ \bar{\rho}^{b}\right)(v)=\left(\eta \circ \bar{\rho}^{b f}\right)(y)=\rho^{b f}(\eta(y))=\rho^{\left(1-u_{3}\right)^{3}} x$ by (6.10). We set $\mathcal{V}=\{-3, \ldots, 3\}^{\mathbb{H}} \subset$ $\ell^{\infty}(\mathbb{H}, \mathbb{Z})$ and conclude that $\left(\eta \circ \bar{\rho}^{b}\right)(\mathcal{V}) \supseteq \rho^{\left(1-u_{3}\right)^{3}}\left(X_{f}\right)$.

We recall that $X_{f}=\widehat{\mathbb{Z} \mathbb{H} /(f)}=(f)^{\perp} \subset \widehat{\mathbb{Z H}}$ (cf. (1.2)). If $\rho^{1-u_{3}}\left(X_{f}\right) \subsetneq X_{f}$ there exists an element $h \in \mathbb{Z} \mathbb{H}$ such that $h \notin(f)$ and $\left\langle h, \rho^{1-u_{3}} x\right\rangle=\left\langle h\left(1-u_{3}\right), x\right\rangle=1$ for every $x \in X_{f}$. Hence $h\left(1-u_{3}\right)=\left(1-u_{3}\right) h \in(f)$, i.e. $\left(1-u_{3}\right) h=g f$ for some $g \in \mathbb{Z} \mathbb{H}$.

We denote by $\left\langle u_{3}\right\rangle$ the subgroup of \mathbb{H} generated by u_{3}, set $\mathbb{H}^{\prime}=\mathbb{H} /\left\langle u_{3}\right\rangle \cong \mathbb{Z}^{2}$, and denote by $\pi: \mathbb{Z} \mathbb{H} \rightarrow \mathbb{Z} \mathbb{H}^{\prime} \cong \mathbb{Z} \mathbb{H} /\left(z_{3}-1\right) \mathbb{Z} \mathbb{H}$ the group ring homomorphism corresponding to the quotient map $\mathbb{H} \rightarrow \mathbb{H}^{\prime}$. As f is not divisible by $1-u_{3}, \pi(f) \neq 0$, but $\pi(g f)=\pi(g) \pi(f)=0$. Since $\mathbb{Z}_{\mathbb{H}^{\prime}} \cong \mathbb{Z} \mathbb{Z}^{2}$ is an integral domain we obtain that $\pi(g)=0$, i.e. that $g=\left(1-u_{3}\right) g^{\prime}$ for some $g^{\prime} \in \mathbb{Z} \mathbb{H}$. Since $\mathbb{Z} \mathbb{H}$ has no nontrivial zero divisors (cf. e.g. [27, Theorem 13.1.11]) we obtain that $h=g^{\prime} f$, contrary to our hypothesis that $h \notin \mathbb{Z} \mathbb{H} f$.

This contradiction implies that $X_{f}=\rho^{1-u_{3}}\left(X_{f}\right)=\rho^{\left(1-u_{3}\right)^{3}}\left(X_{f}\right)=\left(\eta \circ \bar{\rho}^{b}\right)(\mathcal{V})$. Since $\eta \circ$ $\bar{\rho}^{b}: \mathcal{V} \rightarrow X_{f}$ is continuous and $\mathbb{Z H} \cap \mathcal{V}$ is dense in \mathcal{V} (both in the product topology on \mathcal{V}) we conclude that $\left(\eta \circ \bar{\rho}^{b}\right)(\mathbb{Z} \mathbb{H})$ is dense in X_{f}. Finally we note that $\left(\eta \circ \bar{\rho}^{b}\right)(\mathbb{Z} \mathbb{H}) \subset \Delta^{1}\left(X_{f}\right)$, so that $\Delta^{1}\left(X_{f}\right)$ is dense in X_{f}, as promised.

According to Proposition 5.3 this shows that λ_{f} is intrinsically ergodic.
The following corollary of Proposition 6.9 will allow us to extend the argument in Example 6.10 to the much more general setting of Theorem 6.1.

Corollary 6.11. Assume that Γ is infinite and not virtually \mathbb{Z} or \mathbb{Z}^{2}. Let p be a finitely supported symmetric probability measure on Γ such that $\operatorname{supp}(p)$ generates Γ. By a result of Varopoulos (cf. [33], [11, Theorem 2.1], [37, Theorem 3.24]), $\sum_{j=0}^{\infty} p^{j}$ converges in $\|\cdot\|_{\infty}$ to some ω in $C_{0}(\Gamma, \mathbb{R})$. Then $(1-s)^{3} \omega \in \ell^{1}(\Gamma, \mathbb{R})$ for every s in the center of Γ.

Proof. It is easily checked that

$$
\omega(1-p)=1 .
$$

Let $s \neq 1_{\Gamma}$ be a central element of Γ. Then $s \in \operatorname{supp}\left(p^{k}\right) \backslash\left\{1_{\Gamma}\right\}$ for some $k \in \mathbb{N}$. As in Example 6.10 there is some a in $\ell^{1}(\Gamma, \mathbb{R})$ such that

$$
a\left(1-p^{k}\right)=(1-s)^{3} .
$$

Then $b=a \sum_{j=0}^{k-1} p^{j}$ is in $\ell^{1}(\Gamma, \mathbb{R})$ and

$$
b(1-p)=(1-s)^{3} .
$$

Note that $(1-s)^{3} \omega \in C_{0}(\Gamma, \mathbb{R})$ and

$$
(1-s)^{3} \omega(1-p)=(1-s)^{3}=b(1-p) .
$$

It is well known that if $x \in C_{0}(\Gamma, \mathbb{R})$ satisfies $x(1-p)=0$, then $x=0$. Thus

$$
(1-s)^{3} \omega=b \in \ell^{1}(\Gamma, \mathbb{R})
$$

Proof of Theorem 6.1. Since f is well-balanced, one has $f=f_{1_{\Gamma}}(1-p)$ for some symmetric probability measure p on Γ such that $\operatorname{supp}(p)$ generates Γ.

Since Γ is not virtually \mathbb{Z} or $\mathbb{Z}^{2}, \omega=\sum_{j=0}^{\infty} p^{j}$ is in $C_{0}(\Gamma, \mathbb{R})$. Then

$$
\left(f_{1_{\Gamma}}^{-1} \omega\right) f=1
$$

By [1, Theorem 4.1 and Lemma 4.10], the group $\Delta\left(X_{f}\right)$ of homoclinic points of λ_{f} is dense in X_{f} and is the Γ-invariant subgroup of X_{f} generated by $\eta\left(f_{1_{\Gamma}}^{-1} \omega\right)$. Thus it suffices to show that $\eta\left(f_{1_{\Gamma}}^{-1} \omega\right)$ is in the closure of $\Delta^{1}\left(X_{f}\right)$.

By assumption we can find a sequence $\left(s_{n}\right)_{n \geq 1}$ in the center H of Γ such that for any finite subset F of Γ one has $s_{n}, s_{n}^{2}, s_{n}^{3} \notin F$ for all large enough n. Then $\eta\left(\left(1-s_{n}\right)^{3} f_{1_{\Gamma}}^{-1} \omega\right)$ converges to $\eta\left(f_{1_{\Gamma}}^{-1} \omega\right)$ as $n \rightarrow \infty$. By Corollary 6.11 one has $\left(1-s_{n}\right)^{3} f_{1_{\Gamma}}^{-1} \omega \in \ell^{1}(\Gamma, \mathbb{R})$ and hence $\eta((1-$ $\left.\left.s_{n}\right)^{3} f_{1_{\Gamma}}^{-1} \omega\right) \in \Delta^{1}\left(X_{f}\right)$ for each n. Therefore $\eta\left(f_{1_{\Gamma}}^{-1} \omega\right)$ lies in the closure of $\Delta^{1}\left(X_{f}\right)$, as desired.

Remarks 6.12. (1) For $\Gamma=\mathbb{Z}^{d}$ with $d \geq 1$, [24, Corollary 3.4] shows that any atoral polynomial $f \in \mathbb{Z}\left[\mathbb{Z}^{d}\right]$ which is not a unit in $\mathbb{Z}\left[\mathbb{Z}^{d}\right]$ satisfies that $\Delta^{1}\left(X_{f}\right)$ is dense in X_{f} (for the definition of atorality we refer to [24, Definition 2.1 and Proposition 2.2]). In particular, Theorem 6.1 also holds for $\Gamma=\mathbb{Z}^{2}$. Does Theorem 6.1 hold for virtually \mathbb{Z}^{2} ?
(2) For the polynomial $h=2-u_{1}-u_{2} \in \mathbb{Z} \mathbb{H}$ there exists a nonzero element $w \in \ell^{1}(\mathbb{H}, \mathbb{R})$ such that $w h=h w=\left(1-u_{3}\right)^{2}$ (cf. [13, Theorem 4.2]). As in Subsection 5.2.1, the map $\bar{\rho}^{w}: \ell^{\infty}(\mathbb{H}, \mathbb{Z}) \rightarrow \ell^{\infty}(\mathbb{H}, \mathbb{R})$ is continuous in the weak*-topology on closed, bounded subsets of $\ell^{\infty}(\mathbb{H}, \mathbb{Z})$, and the map $\xi:=\eta \circ \bar{\rho}^{w}: \ell^{\infty}(\mathbb{H}, \mathbb{Z}) \rightarrow \mathbb{T}^{\mathbb{H}}$ satisfies that $\xi\left(\{-1,0,1\}^{\mathbb{H}}\right)=X_{h}$ (cf. [13, Theorem 5.1]). It follows that $\xi(\mathbb{Z} \mathbb{H}) \subset \Delta^{1}\left(X_{h}\right)$. Hence $\Delta^{1}\left(X_{h}\right)$ is dense in X_{h} and λ_{h} is intrinsically ergodic.

Is there any way to use an argument similar to Proposition 6.9 to prove the existence of summable homoclinic points for this and other 'asymmetric' elements of $h \in \mathbb{Z} \mathbb{H}$?

References

[1] Lewis Bowen and Hanfeng Li, Harmonic models and spanning forests of residually finite groups, J. Funct. Anal. 263 (2012), no. 7, 1769-1808.
[2] Rufus Bowen, Markov partitions for Axiom A diffeomorphisms, Amer. J. Math. 92 (1970), 725-747.
[3] Tullio Ceccherini-Silberstein, Miel Coornaert, and Hanfeng Li, Expansive actions with specification of sofic groups, strong topological Markov property, and surjunctivity, Preprint (2021).
[4] Nhan-Phu Chung and Hanfeng Li, Homoclinic groups, IE groups, and expansive algebraic actions, Invent. Math. 199 (2015), no. 3, 805-858.
[5] Alexandre I. Danilenko, Entropy theory from the orbital point of view, Monatsh. Math. 134 (2001), no. 2, 121-141.
[6] Christopher Deninger, Fuglede-Kadison determinants and entropy for actions of discrete amenable groups, J. Amer. Math. Soc. 19 (2006), no. 3, 737-758.
[7] \qquad , Determinants on von Neumann algebras, Mahler measures and Ljapunov exponents, J. Reine Angew. Math. 651 (2011), 165-185.
[8] Christopher Deninger and Klaus Schmidt, Expansive algebraic actions of discrete residually finite amenable groups and their entropy, Ergodic Theory Dynam. Systems 27 (2007), no. 3, 769-786.
[9] Manfred Einsiedler and Harald Rindler, Algebraic actions of the discrete Heisenberg group and other non-abelian groups, Aequationes Math. 62 (2001), no. 1-2, 117-135.
[10] Manfred Einsiedler and Klaus Schmidt, Markov partitions and homoclinic points of algebraic \mathbf{Z}^{d}-actions, Tr . Mat. Inst. Steklova 216 (1997), no. Din. Sist. i Smezhnye Vopr., 265-284; English transl., Proc. Steklov Inst. Math. 1(216) (1997), 259-279.
[11] Alex Furman, Random walks on groups and random transformations, Handbook of dynamical systems, Vol. 1A, North-Holland, Amsterdam, 2002, pp. 931-1014.
[12] Martin Göll, Principal algebraic actions of the discrete Heisenberg group, PhD Thesis, University of Leiden (2015), 1-167.
[13] Martin Göll, Klaus Schmidt, and Evgeny Verbitskiy, Algebraic actions of the discrete Heisenberg group: expansiveness and homoclinic points, Indag. Math. (N.S.) 25 (2014), no. 4, 713-744.
[14] Ben Hayes, Fuglede-Kadison determinants and sofic entropy, Geom. Funct. Anal. 26 (2016), no. 2, 520-606.
[15] Richard Kenyon and Anatoly Vershik, Arithmetic construction of sofic partitions of hyperbolic toral automorphisms, Ergodic Theory Dynam. Systems 18 (1998), no. 2, 357-372.
[16] David Kerr and Hanfeng Li, Ergodic theory: Independence and Dichotomies, Springer Monographs in Mathematics, Springer, Cham, 2016.
[17] Stéphane Le Borgne, Un codage sofique des automorphismes hyperboliques du tore, C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), no. 10, 1123-1128 (French, with English and French summaries).
[18] Hanfeng Li, Compact group automorphisms, addition formulas and Fuglede-Kadison determinants, Ann. of Math. (2) 176 (2012), no. 1, 303-347.
[19] Hanfeng Li and Andreas Thom, Entropy, determinants, and L^{2}-torsion, J. Amer. Math. Soc. 27 (2014), no. 1, 239-292.
[20] Douglas A. Lind, Dynamical properties of quasihyperbolic toral automorphisms, Ergodic Theory Dynam. Systems 2 (1982), no. 1, 49-68.
[21] Douglas Lind and Klaus Schmidt, Homoclinic points of algebraic \mathbf{Z}^{d}-actions, J. Amer. Math. Soc. 12 (1999), no. 4, 953-980.
[22] , A survey of algebraic actions of the discrete Heisenberg group, Russian Math. Surveys 70 (2015), no. 4, 657-714.
[23] , New examples of Bernoulli algebraic actions, Ergodic Theory Dynam. Systems 42 (2022), no. 9, 29232934.
[24] Douglas Lind, Klaus Schmidt, and Evgeny Verbitskiy, Homoclinic points, atoral polynomials, and periodic points of algebraic \mathbb{Z}^{d}-actions, Ergodic Theory Dynam. Systems 33 (2013), no. 4, 1060-1081.
[25] Alain Pajor, Sous-espaces l_{1}^{n} des espaces de Banach, Travaux en Cours, vol. 16, Hermann, Paris, 1985 (French). With an Introduction by Gilles Pisier.
[26] Kalyanapuram R. Parthasarathy, Probability measures on metric spaces, Probability and Mathematical Statistics, No. 3, Academic Press, Inc., New York-London, 1967.
[27] Donald S. Passman, The algebraic structure of group rings, Pure and Applied Mathematics, Wiley-Interscience [John Wiley \& Sons], New York-London-Sydney, 1977.
[28] Norbert Sauer, On the density of families of sets, J. Combinatorial Theory Ser. A 13 (1972), 145-147.
[29] Klaus Schmidt, Dynamical systems of algebraic origin, Progress in Mathematics, vol. 128, Birkhäuser Verlag, Basel, 1995.
[30] \qquad , Representations of toral automorphisms, Topology Appl. 205 (2016), 88-116.
[31] Saharon Shelah, A combinatorial problem; stability and order for models and theories in infinitary languages, Pacific J. Math. 41 (1972), 247-261.
[32] Jakov G. Sinaĭ, Construction of Markov partitionings, Funkcional. Anal. i Priložen. 2 (1968), no. 3, 70-80 (Russian).
[33] Nicholas Th. Varopoulos, Long range estimates for Markov chains, Bull. Sci. Math. (2) $\mathbf{1 0 9}$ (1985), no. 3, 225-252 (English, with French summary).
[34] Anatoly M. Vershik, Arithmetic isomorphism of hyperbolic automorphisms of a torus and of sofic shifts, Funktsional. Anal. i Prilozhen. 26 (1992), no. 3, 22-27 (Russian); English transl., Funct. Anal. Appl. 26 (1992), no. 3, 170-173.
[35] Benjamin Weiss, Intrinsically ergodic systems, Bull. Amer. Math. Soc. 76 (1970), 1266-1269.
[36] Wikipedia contributors, Sauer-Shelah lemma. In Wikipedia, The Free Encyclopedia. [accessed 21. October 2021].
[37] Wolfgang Woess, Random walks on infinite graphs and groups, Cambridge Tracts in Mathematics, vol. 138, Cambridge University Press, Cambridge, 2000.

Hanfeng Li: Department of Mathematics, SUNY at Buffalo, NY 14260-2900, USA
Email address: hfli@math.buffalo.edu
Klaus Schmidt: Mathematics Institute, University of Vienna, Oskar-Morgenstern-Platz 1, A-1090 Vienna, Austria

Email address: klaus.schmidt@univie.ac.at

[^0]: ${ }^{1}$ A continuous Γ-action τ on a compact metrizable space Y with compatible metric d is expansive if there exists a $\delta>0$ such that $\sup _{\gamma \in \Gamma} \mathrm{d}\left(\tau^{\gamma} y, \tau^{\gamma} y^{\prime}\right) \geq \delta$ whenever y, y^{\prime} are distinct points in Y.

[^1]: ${ }^{2}$ If τ is a measure-preserving action of a countably infinite group Γ on a standard probability space $\left(Y, \mathcal{B}_{Y}, \mu\right)$, a countable Borel partition \mathcal{C} of Y is a generator for τ if the smallest τ-invariant sigma-algebra $\mathcal{T} \subset \mathcal{B}_{Y}$ containing \mathcal{C} is equal to $\mathcal{B}_{Y}(\bmod \mu)$, i.e. up to μ-null sets.

