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We prove that certain permutation characters for the symmetric

group Σn decompose in a manner that is independent of n for

large n. This result is a key ingredient in the recent work of

T. Church and B. Farb, who obtain a “representation stability”

theorem for the character of Σn acting on the cohomology

Hp(Pn,C) of the pure braid group Pn .

 2010 Elsevier Inc. All rights reserved.

1. Introduction

Let Σn denote the symmetric group on n letters. For σ ∈ Σn , one can easily describe [3, 4.1.19] the

centralizer Z(σ ) := CΣn (σ ). For certain linear characters ψ of Z(σ ), the induced character Ind
Σn

Z(σ )
ψ

plays an important role in [4], where the authors study the Σn action on the cohomology Hp(Pn,C)

of the pure braid group Pn .

The easiest example is for σ = (1,2) a two-cycle. Here the centralizer is a Young subgroup Σ2 ×

Σn−2 . For the trivial character C, Young’s rule [3, 2.8.5] gives:

Ind
Σn

Z(σ )
C ∼= χ (n) + χ (n−1,1) + χ (n−2,2) (1.1)

provided n > 4.

The decomposition in (1.1) is stable for n > 4. Recently we were asked by Benson Farb if this

stability behavior generalizes to other centralizers and other characters. The purpose of this note is

to demonstrate this is indeed the case by proving a more general result for arbitrary characters of

subgroups H 6 Σa induced up to Σa+b . Although the proof is straightforward, the result does not

seem to have been noticed before.
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Our affirmative answer (Theorem 2.4) was used in the proof of Theorem 4.1 in [2], stated as

Theorem 3.1 below.

2. Proof of the stability result

We work only over the complex numbers, and all the character theory we need can be found

in [3], in particular the parametrization of irreducible CΣn characters by partitions of n.

Definition 2.1. For a partition µ = (µ1,µ2, . . . ,µs) ⊢ n, let µ̃ = (µ1 + 1,µ2, . . . ,µs) ⊢ n + 1.

For λ ⊢ d let χλ denote the irreducible character of Σd corresponding to λ. Recall for λ ⊢ a and

µ ⊢ b the Littlewood–Richardson rule [3, 2.8.13]:

Ind
Σa+b

Σa×Σb

(

χλ
⊠ χµ

)

=
∑

ρ⊢a+b

c
ρ
λ,µχρ

where the Littlewood–Richardson coefficient c
ρ
λ,µ is the number of semistandard tableau of shape ρ/λ

and content µ which yield lattice permutations when we read their entries from right to left and

downwards.

We use only the following special case, known as Pieri’s Rule. To state this result, define a horizon-

tal strip to be a skew shape µ/λ with no two boxes in the same column. Recall that χ (b) is just the

trivial Σb character C. We have:

Proposition 2.2 (Pieri’s Rule). (See [5, 7.15.7].) Let λ ⊢ a. Then

Ind
Σa+b

Σa×Σb

(

χλ
⊠ χ (b)

)

=
∑

µ

χµ (2.1)

summed over all partitions µ such that µ/λ is a horizontal strip of size b.

Next we have the following easy equality:

Lemma 2.3. Suppose λ ⊢ a 6 b and µ ⊢ a + b. Then

c
µ
λ,(b)

= c
µ̃
λ,(b+1)

.

Proof. Just use Proposition 2.2. The coefficient c
ρ
λ,(b+1)

is zero or one. It is one precisely when ρ

is obtained by adding a box to b + 1 distinct columns of the Young diagram of λ (including empty

columns of λ corresponding to boxes added to the first row). Since λ1 6 a 6 b, any such ρ must have

at least one such box added to the first row. So removing a box from the end of the first row gives a

bijection between the diagrams corresponding to c
µ̃
λ,(b+1)

and those corresponding to c
µ
λ,(b)

. 2

For H 6 Σa we consider H × Σb as a subgroup of Σa+b in the natural way, with Σb acting on

{a + 1, . . . ,a + b}. We have:

Theorem 2.4. Suppose H 6 Σa and ψ is a character of H. Suppose further that a 6 b. Let

Ind
Σa+b

H×Σb
(ψ ⊠ C) =

∑

τ⊢a+b

dτχ
τ .

Then

Ind
Σa+b+1

H×Σb+1
(ψ ⊠ C) =

∑

τ⊢a+b

dτχ
τ̃ .
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Proof. Just observe that

Ind
Σa+b

H×Σb
(ψ ⊠ C) = Ind

Σa+b

Σa×Σb

(

Ind
Σa×Σb

H×Σb
(ψ ⊠ C)

)

= Ind
Σa+b

Σa×Σb

(

Ind
Σa

H (ψ) ⊠ C
)

so we can apply Lemma 2.3 to each constituent of the character Ind
Σa

H ψ . 2

3. Application to representation stability

We briefly discuss the application by Church and Farb of the stability Theorem 2.4. Let Pn denote

the pure braid group, the quotient of the full braid group Bn by the symmetric group. Let Xn denote

the set of ordered n-tuples of distinct points in complex n-space Cn , which is a hyperplane comple-

ment with fundamental group Pn . The action of Σn on Xn gives the cohomology groups Hi(Pn;Q)

the structure of an Σn-module. Church and Farb proved:

Theorem 3.1. (See [2, 4.1].) For each fixed i > 0, the sequence of Σn-representations {Hi(Pn;Q)} is uniformly

representation stable.

For details, including the definition of representation stability and the vast number of other set-

tings where similar behavior arises, see the preprint [2].

4. Examples

In this section we give a few examples illustrating Theorem 2.4.

Example 4.1. Let σ = (1,2)(3,4) so CΣ4
(σ ) = 〈(1,2), (1,3)(2,4)〉 ∼= D4 . Recall that CΣn (σ ) ∼=

CΣ4
(σ ) × Σn−4 . Let ψ be the linear character having value 1 on (1,2), −1 on (1,3)(2,4), and 1

on Σn−4 . Then an easy computation with Magma [1] gives (for n > 7):

Ind
Σ4

Z(σ )
ψ = χ (3,1),

Ind
Σ6

Z(σ )
ψ = χ (5,1) + χ (4,2) + χ (4,1,1) + χ (3,3) + χ (3,2,1),

Ind
Σ7

Z(σ )
ψ = χ (6,1) + χ (5,2) + χ (5,1,1) + χ (4,3) + χ (4,2,1) + χ (3,3,1),

Ind
Σn

Z(σ )
ψ = χ (n−1,1) + χ (n−2,2) + χ (n−2,1,1) + χ (n−3,3) + χ (n−3,2,1) + χ (n−4,3,1).

Remark 4.2. If σ ∈ Σa has no fixed points and ψ is the trivial character, then the induced character

does not actually stabilize until a = b. This can be shown by counting double cosets, or applying the

Littlewood–Richardson rule. Specifically the CΣa+b permutation character includes a constituent χµ

where µ is not of the form λ̃ for some χλ in the CΣa+b−1 permutation character. For nontrivial ψ the

stability may occur sooner. For instance in Example 4.1 above, the character multiplicities stabilized

at n = 7 while Theorem 2.4 only guarantees stability for n > 8.

Example 4.3. Let σ = (1,2,3) and observe CΣn (σ ) ∼= 〈σ 〉 × Σn−3 . Let ψ be either linear character of

Z(σ ) that is faithful on 〈σ 〉 and trivial on Σn−3 . Then we computed (for n > 5):

Ind
Σ4

Z(σ )
ψ = χ (3,1) + χ (2,2) + χ (2,1,1),

Ind
Σ5

Z(σ )
ψ = χ (4,1) + χ (3,2) + χ (3,1,1) + χ (2,2,1),

Ind
Σn

Z(σ )
ψ = χ (n−1,1) + χ (n−2,2) + χ (n−2,1,1) + χ (n−3,2,1).

Finally we give a nonlinear example.
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Example 4.4. For our final example let ψ be the two-dimensional irreducible character for D8
∼=

CΣ4
((1,2)(3,4)). Then we computed, for n > 7:

Ind
Σ4

Z(σ )
ψ = χ (3,1,1) + χ (2,1,1),

Ind
Σ6

Z(σ )
ψ = χ (5,1) + χ (3,3) + χ (4,2) + 2 · χ (4,1,1) + χ (3,1,1,1) + 2 · χ (3,2,1) + χ (2,2,1,1),

Ind
Σ7

Z(σ )
ψ = χ (6,1) + χ (4,3) + χ (5,2) + 2 · χ (5,1,1) + χ (4,1,1,1) + 2 · χ (4,2,1)

+ χ (3,2,1,1) + χ (3,3,1),

Ind
Σn

Z(σ )
ψ = χ (n−1,1) + χ (n−3,3) + χ (n−2,2) + 2 · χ (n−2,1,1) + χ (n−3,1,1,1)

+ 2 · χ (n−3,2,1) + χ (n−4,2,1,1) + χ (n−4,3,1).

Left open is the obvious problem of computing these stable values.

Problem 4.5. Given σ ∈ Σa and a linear character ψ of CΣa (σ ), compute the multiplicities in:

Ind
Σ2a

CΣa (σ )×Σa
ψ.

As far as we know Problem 4.5 is unsolved even for ψ the trivial character.
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