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Abstract

Let Σd be the symmetric group. For 1< m < d let Fm be the functor which takes aΣd -
moduleU to the space of fixed pointsUΣm , which is naturally a module forΣd−m. This functor
was previously used by the author to study cohomology of the symmetric group, but little is
known about it. This paper initiates a study ofFm. First, we relate it to James’ work on ro
and column removal and decomposition numbers for the Schur algebra. Next, we determ
image of dual Specht modules, permutation and twisted permutation modules, and some
and twisted Young modules underFm. In particular,Fm acts as first row removal on dual Spec
modulesSλ with λ1 = m and as first column removal on twisted Young and twisted permuta
modules corresponding to partitions withm parts. Finally, we prove that determiningFm on the
Young modules is equivalent to determining thedecompositionnumbers for the Schur algebra.
 2004 Elsevier Inc. All rights reserved.

1. Notation and preliminaries

We will assume familiarity with the representation theory of the symmetric groupΣd

and of the Schur algebraS(n, d) as found in [3,7,11]. Letk be an algebraically closed fie
of characteristicp > 2. We writeλ � d for λ = (λ1, . . . , λr ) a partition ofd andλ |= d for
a composition ofd . Let Λ+(n, d) denote the set of partitions ofd with at mostn parts and
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let Λ(n,d) denote the set of compositions ofd with at mostn parts. We do not distinguis
betweenλ and its Young diagram:

λ = {
(i, j) ∈ N × N

∣∣ j � λi

}
.

A partition λ is p-regular if there is noi such thatλi = λi+1 = · · · = λi+p−1 �= 0. It is
p-restricted if its conjugate partition, denotedλ′, is p-regular. We write� for the usual
dominance order on partitions. Forλ = (λ1, λ2, . . . , λr ) we writeλ for λ with its first row
removed, i.e.,

λ = (λ2, . . . , λr ) � d − λ1.

We write λ̂ for λ with its first column removed, i.e.,

λ̂ = (λ1 − 1, λ2,−1, . . . , λr − 1) � d − r.

The complex simpleΣd -modules are the Specht modules{Sλ | λ � d}. SimplekΣd -
modules can be indexed byp-restricted partitions or byp-regular partitions. Both{

Dλ := Sλ/rad
(
Sλ

) ∣∣ λ is p-regular
}

and
{
Dλ = soc

(
Sλ

) ∣∣ λ is p-restricted
}

are complete sets of nonisomorphic simplekΣd -modules. The two indexings are relat
by Dλ ∼= Dλ′ ⊗ sgn, where sgn is the one-dimensional signature representation. We rec
that

Sλ ⊗ sgn∼= Sλ′ , (1.1)

whereSµ denotes the dual of the Specht moduleSµ.
We will also consider the Young modules{Yλ | λ � d}, the permutation module

{Mλ | λ ∈ Λ(n,d)}, and their twisted versions obtained by tensoring with sgn. Ifλ is
p-restricted, thenYλ is the projective cover ofDλ. All these modules, and theS(n, d)-
modules below, are described in [11].

Let V = kn be the natural module for the general linear groupGLn(k). ThenV ⊗d is
a GLn(k) -module with the diagonal action and akΣd -module by place permutation. Th
Schur algebraS(n, d) is defined by

S(n, d) := EndkΣd

(
V ⊗d

)
.

The actions ofGLn(k) and Σd commute, so we get a mapGLn(k) → S(n, d). This
map identifies the category mod-S(n, d) with the category of homogeneous polynom
representations ofGLn(k) of degreed .

For λ ∈ Λ+(n, d) we denote the irreducibleS(n, d)-module with highest weightλ
by L(λ). We also write∆(λ) and ∇(λ) (sometimes writtenV (λ) and H 0(λ)) for the
standard and costandard modules with highest weightλ, respectively.P(λ) will be the
projective cover ofL(λ), I (λ) the injective hull, andT (λ) the corresponding tilting
module. Finally,Sλ(V ) andΛλ(V ) will be the symmetric and exterior powers.
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Let I (n, d) denote the set of alld-tuplesi = (i1, i2, . . . , id) with is ∈ {1,2, . . . , n}. The
symmetric groupΣd acts on the right onI (n, d) by

iπ = (
iπ(1), iπ(2) . . . , iπ(d)

)
.

This action extends to an action onI (n, d) × I (n, d), and we write(i, j) ∼ (k, l) if k = iπ
andl = jπ for someπ ∈ Σd . Let Ω be a set of equivalence class representatives unde∼ .

Recall [3] thatS(n, d) has a basis{ξi,j} indexed byΩ . For i ∈ I (n, d) define the weigh
of i by wt(i) = (λ1, λ2, . . . , λn) ∈ Λ(n,d), whereλs is the number of timess appears ini.
Thenξi,i is an idempotent, usually denotedξλ.

1.1. The Schur and adjoint Schur functor

Henceforth assumen � d . Let ω = (1d) ∈ Λ(n,d) and lete denote the idempoten
ξω ∈ S(n, d). TheneS(n, d)e ∼= kΣd , and the Schur functorF : mod-S(n, d) → mod-kΣd

is defined byF(U) := eU . This is an exact, covariant functor with

F
(∇(λ)

) = Sλ, F
(
∆(λ)

) = Sλ, F
(
L(λ)

) = Dλ or 0,

F
(
P(λ)

) = Yλ, F
(
I (λ)

) = Yλ, F
(
T (λ)

) = Yλ′ ⊗ sgn. (1.2)

The Schur functor admits a right adjoint functorG : mod-kΣd → mod-S(n, d) defined
by

G(N) := HomkΣd

(
V ⊗d ,N

) ∼= HomeS(n,d)e

(
eS(n, d),N

)
.

The two definitions are equivalent sinceeS(n, d)e ∼= kΣd and eS(n, d) ∼= V ⊗d . The
moduleV ⊗d is not injective as akΣd -module. Thus the functorG is only left exact, and
so has higher right derived functors

RiG(N) = ExtikΣd

(
V ⊗d ,N

)
.

We now collect a few results aboutG and R1G. Recall that we are assumingp > 2
throughout:

Proposition 1.1.

(i) [10, 3.2]G(Sλ) ∼= ∆(λ). In particular,G(k) ∼= ∆(d).

(ii) [5, 3.8.2]G(Y λ) ∼= P(λ).
(iii) [10, 6.4] For p > 3, R1G(Sλ) ∼= 0.

1.2. Decomposition numbers, Specht filtrations, and dual Specht filtrations

We collect here material that will be used repeatedly in later sections. For a tho
treatment see Martin’s book [11].
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We say akΣd -moduleU has aSpecht filtrationif it has a filtration with successiv
quotients isomorphic to Specht modules. Similarly, we will sayU has adual Spech
filtration. ForS(n, d)-modules we refer to aWeyl filtration(by ∆(µ)’s) or agood filtration
(by ∇(µ)’s). The multiplicities in a good or Weyl filtration are independent of the choice
filtration. The same holds for Specht and dual Specht filtrations in mod-kΣd whenp > 3
(but not forp = 2 or 3) by work in [5].

The Young modulesYλ are self-dual and are known to have both Specht and dual S
filtrations. If [Yµ : Sλ] denotes the multiplicity ofSλ in a dual Specht filtration ofYµ and
[∆(λ) : L(µ)] denotes a decomposition number forS(n, d), then a well-known reciprocity
theorem [11, p. 118] gives[

∆(λ) : L(µ)
] = [

I (µ) : ∇(λ)
] = [

Yµ : Sλ
] = [

Yµ : Sλ

]
. (1.3)

So knowledge of the decomposition numbers forS(n, d) is equivalent to knowledge o
multiplicities in dual Specht filtrations of Young modules, a fact we will use repeate
later.

The category mod-S(n, d) is a highest weight category. In particular,[∆(λ) : L(λ)] = 1
and[∆(λ) : L(µ)] = 0 unlessλ� µ. This triangular structure in the decomposition matrix
together with reciprocity (1.3), will be very useful to us, since it gives a triangular stru
to the matrix of filtration multiplicities[Yµ : Sλ]. In particular, suppose we know akΣd -
module is a direct sum of Young modules. If we know the multiplicities in a dual Sp
filtration of the module, then we can determine the multiplicities of the Young modu
summands.

The permutation moduleMλ is a direct sum of Young modules

Mλ ∼= Yλ
⊕
µ�λ

KλµYµ.

Thep-Kostka numbersKλµ are not known. However, Young’s rule (see [7, Chapter 1
gives a nice formula for the multiplicities in a Specht or dual Specht filtration ofMλ.
Thus if we know the decomposition numbers forS(n, d), then Young’s rule together wit
reciprocity let us determine thep-Kostka numbers.

2. Relating the fixed-point functor to James’ idempotent

In [4] we proved some theorems on extensions between simple modules fo
symmetric group when the first row or column of the corresponding partitions is rem
The proof used the fixed-point functor, which we now define. Throughout the paper w
considerΣm as the subgroup ofΣd fixing {m+1,m+2, . . . , d} andΣd−m as the subgrou
of Σd fixing {1,2, . . . ,m}. ThenΣd−m commutes withΣm � Σd . So for akΣd -moduleU ,
the space ofΣm-fixed points is aΣd−m-submodule ofU . Thus we can define

Fm : mod-kΣd → mod-kΣd−m



D.J. Hemmer / Journal of Algebra 280 (2004) 295–312 299

this

ce

s for
by

Fm(U) := UΣm ∼= HomkΣm(k,U) ∼= HomkΣd

(
M(m,1d−m),U

)
.

The proofs in [4] were motivated by, but did not really use, James’ work in [8]. In
paper we will first relate James’ paper to the functorFm. It will often be convenient to
think of Fm as first restricting toΣm × Σd−m � Σd , and then taking the largest subspa
on whichΣm acts trivially.

In order to describe James’ work, we need some more notation. Fix 1< m < d and let
I∗(n, d) be the subset ofI (n, d) consisting of thosed-tuples withid−m+1 = id−m+2 =
· · · = id = 1 andik �= 1 for 1� k � d − m. James defined an idempotentη = Σ ξi,i, the
sum being over distinct elementsξi,i with i ∈ I∗(n, d). James also defined

S1 := span
{
ξi,j

∣∣ i, j ∈ I∗(n, d)
} ⊂ S(n, d).

ThenS1 is a subalgebra ofηS(n, d)η, and James proved [8] thatS1 ∼= S(n − 1, d − m).
Thus we have the following (only partly commutative) diagram of functors, whereF and
G are as above whilẽF andG̃ are the corresponding Schur and adjoint Schur functor
the smaller symmetric groupΣd−m. Also we useJ to denote multiplication byη followed
by restriction toS1.

mod-S(n, d)

J

η·

F
mod-kΣd

G

Fmmod-ηS(n, d)η

res

mod-S1

F̃
mod-kΣd−m

G̃

Our first theorem is that James’ functorJ is closely related to the fixed-point functorFm.

Theorem 2.1. LetU ∈ mod-kΣd and let the functors be as in the diagram above. Then

Fm(U) ∼= F̃
(
J

(
G(U)

))
.

Proof. We begin the proof with a well-known lemma:

Lemma 2.2. Recall thatS(n, d) ∼= EndkΣd (V
⊗d ). Then

(i) V ⊗d ∼= ⊕
λ∈Λ(n,d) M

λ askΣd -modules.

(ii) ξi,j ∈ S(n, d) corresponds to an element inHomkΣd (M
λ,Mµ) whereλ = wt(i) and

µ = wt(j).
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(iii) ξλ corresponds to projection ontoMλ.
(iv) η corresponds to projection onto ⊕

λ∈Λ(n,d)
λ1=m

Mλ.

Proof. To see (i), recall thatV ⊗d has standard basis{ei := ei1 ⊗ ei2 ⊗ · · · ⊗ eid |
i ∈ I (n, d)}. Under this identification,Mλ is spanned by the basis vectors{ei | wt(i) = λ}.
Parts (ii) and (iii) are immediate from the description in [3, 2.6a] of the action ofξi,j
onV ⊗d . Part (iv) follows from (iii). �

To prove the theorem, letU ∈ mod-kΣd . Let i = (m + 1,m + 2, . . . , d,1,1, . . . ,1) ∈
I∗(n, d) and letẽ = ξi,i. Thenẽ is an idempotent,̃eS1ẽ ∼= kΣd−m, and the Schur functo
F̃ is multiplication byẽ.

Now G(U) ∼= HomkΣd (V
⊗d ,U) is a leftS(n, d)-module with action obtained from th

right action ofS(n, d) on V ⊗d . Thus the action ofS(n, d) (and hence ofηS(n, d)η and
of S1) is given by precomposing functions. That is iff : V ⊗d → V ⊗d is in S(n, d) and
g : V ⊗d → U is in G(U), thenfg = g ◦ f : V ⊗d → U . So Lemma 2.2(iv) gives

ηG(U) ∼= HomkΣd

( ⊕
λ∈Λ(n,d)

λ1=m

Mλ,U

)
.

But ẽ is projection ontoM(m,1d−m), so we get

ẽηG(U) ∼= HomkΣd

(
M(m,1d−m),U

) ∼=Fm(U). �

3. Some general properties of Fm

In this brief section we collect a few general properties ofFm which will be useful in
determining howFm acts on specific modules. We first remark thatFm has a left adjoint
functorGm : mod-kΣd−m → mod-kΣd given by

Gm(U) := IndΣd

Σm×Σd−m
(k ⊗ U).

The functorGm is exact, butFm is exact only whenm < p, and is left exact in genera
ThusFm has higher right derived functors

RiFm(U) = ExtikΣd

(
M(m,1d−m),U

)
.

A key fact in understandingFm is that R1Fm vanishes on dual Specht module
A closely related fact (that the first higher right derived functor of the adjoint Schur fu
G vanishes on dual Specht modules) played a key role in [5]. Some of the results



D.J. Hemmer / Journal of Algebra 280 (2004) 295–312 301

[5].
tic

ules

t

u,
require the assumptionp > 3. This seems to be similar to what was observed in
Specifically whenp = 3 it is possible forH 1(Σd,Sλ) to be nonzero, and this has a drama
effect on the results.

Proposition 3.1. Letp > 3 andλ � d . ThenR1Fm(Sλ) = 0.

Proof. We have

R1Fm(Sλ) ∼= Ext1kΣd

(
M(m,1d−m), Sλ

) ∼= Ext1kΣd

(
Sλ,M(m,1d−m)

)
.

But the permutation modulesMµ are direct sums of Young modules, and Ext1
kΣd

(Sλ,Yµ)

is always zero whenp > 3 [10, 6.4b], so the result follows.�
Proposition 3.1 is false whenp = 3. For example ifd = 5 andm = 3, then

R1F3
(
S(15)

) ∼= Ext1kΣ3

(
k,ResΣ3

(
S(15)

)) ∼= Ext1kΣ3
(k,sgn) �= 0.

Finally we recall thatFm was used in [4], where its image was determined on the mod
Sλ, Sλ, andDλ if λ1 � m < p, i.e., whenFm is exact. In the case whenm = λ1 < p, the
functorFm “removes the first row” fromSλ, Sλ, andDλ (i.e., mapsSλ to Sλ, etc.). In the
general case considered here (withm arbitrary), we will see thatFm acts as first row or firs
column removal only on the twisted modules, namelySλ ⊗ sgn,Yλ ⊗ sgn, andMλ ⊗ sgn.

4. Fm on dual Specht modules

In this section we show thatFm behaves very nicely on dual Specht modulesSλ. We
will need the notions of semistandardλ-tableaux of typeµ and the basis ofMλ given by
λ-tabloids, which are described in the book [7]. First we need a lemma.

Lemma 4.1. The dimension ofFm(Sλ) is the number of semistandardλ-tableaux of type
(m,1d−m). In particular, if λ1 < m, thenFm(Sλ) = 0.

Proof. Since

Fm(Sµ) ∼= HomkΣd

(
M(m,1d−m), Sλ

) ∼= HomkΣd

(
Sλ,M(m,1d−m)

)
,

the result follows from [7, Theorem 13.13], where a basis for HomkΣd (S
λ,Mµ) is

described for arbitraryλ and µ. In particular, if λ1 < m then there is no such tablea
soFm(Sλ) = 0. �

Thus we must considerFm(Sλ) for λ1 � m. The caseλ1 = m follows from our work in
Section 2 together with work of James:

Theorem 4.2. Letλ1 = m. ThenFm(Sλ) ∼= S .
λ
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Proof. James showed in [8] thatJ (∆(λ)) ∼= ∆(λ). So

Fm(Sλ) ∼= F̃
(
J

(
G(Sλ)

))
by Theorem 2.1

∼= F̃
(
J

(
∆(λ)

))
by Proposition 1.1(i)

∼= F̃
(
∆(λ)

)
∼= Sλ by (1.2). �

In order to describeFm(Sλ) in general, we must discuss skew diagrams and
corresponding skew Specht modules. Supposeλ = (λ1, λ2, . . . , λr ) � d andµ = (µ1,µ2,

. . . ,µs) � t for t < d . Supposeµi � λi for all i (whereµi is interpreted as 0 fori > s).
Then theskew diagramλ\µ is defined as

λ\µ := {
(i, j) ∈ N × N

∣∣ 1 � i � r, µi � j � λi

}
.

To each skew diagram there is associated a skew Specht moduleSλ\µ and its dual, which
we denoteSλ\µ. Their construction can be found in [9], where it is shown thatSλ\µ has a
Specht filtration, and the filtration multiplicities are determined combinatorially. We
not describe the details of the construction here, but we will need the following from
paper of James and Peel.

Proposition 4.3 [9, Theorem 3.1].Let λ � d . When restricted toΣm × Σd−m, the module
Sλ has a chain of submodules with factors isomorphic toSβ ⊗ Sλ\β , where each partition
β of m such thatλ\β exists occurs exactly once. Ifm � λ1 (soλ\(m) exists), the filtration
can be chosen so thatSβ ⊗ Sλ\(m) occurs on the top.

James and Peel constructed a filtration ofSλ, but of course taking duals gives a filtratio
of Sλ by modulesSβ ⊗Sλ\β with S(m) ⊗Sλ\(m) as a submodule. We also need the follow
well-known lemma.

Lemma 4.4 [7, 13.17].

HomΣd (k, Sλ) ∼=
{

k, if λ = (d),
0, otherwise.

(4.1)

We can now determineFm(Sλ) in general.

Theorem 4.5. Letλ � d . Then

Fm(Sλ) ∼=
{

Sλ\(m), if λ1 > m,
Sλ, if λ1 = m,
0, if λ1 < m.

Furthermore, ifp > 3, thenFm takes modules with dual Specht filtrations to modules w
dual Specht filtrations.
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Proof. Only the caseλ1 > m is not handled by Lemma 4.1 or Theorem 4.2. It is clear fr
the description ofFm that one way to getFm(U) is to first restrictU to Σm × Σd−m, and
then take the largest subspace on whichΣm acts trivially, which is aΣd−m-submodule.
But we know the filtration in Proposition 4.3 can be chosen soS(m) ⊗ Sλ\(m) occurs as a
submodule. Lemma 4.4 guarantees that no otherSβ ’s have anyΣm fixed-points, so the firs
part of result is immediate.

The second part follows by induction on the number of dual Specht modules
filtration. We know from the work of James and Peel thatFm(Sλ) ∼= Sλ\(m) has a dua
Specht module filtration. Now supposeU has a dual Specht filtration. Then we have

0 → Sµ → U → N,

whereN has a dual Specht filtration. ApplyingFm gives

0 → Fm(Sµ) → Fm(U) → Fm(N) → R1Fm(Sµ).

However if p > 3, thenR1Fm(Sµ) = 0 by Proposition 3.1(iii), andFm(N) has a dua
Specht filtration by inductive hypothesis, soFm(U) has a dual Specht filtration.�

We close this section with a few observations. First, the statement correspond
Lemma 4.4 is definitely false forSλ. This will explain the much greater difficulty in de
terminingFm(Sλ). Also Fm(Sλ) ∼= HomΣd (M

(m,1d−m), Sλ) has a basis of semistanda
homomorphisms indexed by semistandardλ-tableau of type(m,1d−m). (See [7, Chap
ter 13] for details.) These tableaux are in obvious bijection with the set of standardλ\(m)

tableaux, which index a basis forSλ\(m). In this case the obvious bijection between the t
bases does not extend to akΣd−m-homomorphism.

5. Fm on permutation and twisted permutation modules

In [7, 13.19] James gives a basis for HomΣd (M
λ,Mµ) indexed by row-standardλ-

tableaux of typeµ. So the dimension ofFm(Mµ) is known, and it is not hard to determin
the module structure.

Theorem 5.1.

Fm

(
Mµ

) ∼=
⊕

τ |=d−m
τi�µi∀i

Mτ .

Proof. SinceMµ is a permutation module onµ-tabloids, a basis ofFm(Mµ) is given by
orbit sums ofµ-tabloids under the action ofΣm. It is easy to determine howΣd−m acts on
these orbit sums. In particular, forτ |= d −m, the summandMτ in the theorem has a bas
given by orbit sums of tabloids with exactlyτi elements of{m + 1,m+ 2, . . . , d} in row i.
Is is elementary to check the permutation action on these orbit sums is exactly the
on τ -tabloids. �
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As an example of Theorem 5.1:

F3
(
M321) = M3 ⊕ M210⊕ M201⊕ M120⊕ M021⊕ M111

∼= M3 ⊕ (
M21)⊕4 ⊕ M111.

The analysis ofFm on twisted permutation modules is different. We begin with a lemm

Lemma 5.2.

(i) sgn∼= S(1d).

(ii) HomkΣd

(
S(1d),Mλ

) ∼=
{

k, if λ ∈ Λ(n,d) hasd ones andn − d zeroes,
0, otherwise.

(iii ) ResΣd

Σm

(
Mλ

) ∼=
⊕

τ∈Λ(d,m)
τi�λi

(
Mτ

)⊕dimMλ\τ
.

wheredimMλ\τ is d!/(Π(λi − τi)!).

Proof. Part (i) is well-known and (ii) is immediate from [7, 13.13]. Part (iii) can
seen either from Mackey’s theorem or directly by considering the action ofΣm on λ-tab-
loids. �

We can now determine howFm behaves on twisted permutation modules. In gene
the image is much smaller than on permutation modules. In particular, ifλ hasm parts then

Fm just sendsMλ ⊗ sgn toMλ̂ ⊗ sgn. In general:

Theorem 5.3. For λ � d we have

Fm

(
Mλ ⊗ sgn

) ∼=
⊕

ρ|=d−m
λi−1�ρi�λi

Mρ ⊗ sgn.

In particular, if λ has fewer thanm parts thanFm(Mλ ⊗ sgn) = 0 and if λ has exactlym

parts, thenFm(Mλ ⊗ sgn) ∼= Mλ̂ ⊗ sgn.

Proof.

Fm

(
Mλ ⊗ sgn

) ∼= HomkΣm

(
k,Mλ ⊗ sgn

)
∼= HomkΣm

(
S(1m),Mλ

)
sinceS(1m) ∼= sgn

∼= HomkΣm

(
S(1m),

⊕
τ |=m

(
Mτ

)⊕dimMλ\τ
)

by Lemma 5.1(iii ). (5.1)
τi�λi
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By Lemma 5.2(ii), the onlyτ which contribute to the direct sum in (5.1) are tho
with m ones. For each suchτ , HomkΣd (S

(1d),Mτ ) is one-dimensional. So we get a spa
of dimension equal to that ofMρ , whereρ = λ\τ hasλi − 1 � ρi � λi . Each map in
(5.1) corresponds to a one-dimensional subspace ofMλ on whichΣm acts by the sign
representation, and the action ofΣd−m is just its action onMλ. Then it is just a matter o
checking that the action ofΣd−m on these maps is the same as the action onMρ . We leave
this to the reader.

Whenλ has fewer thanm parts, there is no suchρ, soFm(Mλ ⊗ sgn) = 0. Whenλ has

exactlym parts, then̂λ is the only suchρ andFm(Mλ ⊗ sgn) ∼= Mλ̂ ⊗ sgn. �
It is known thatG(Mλ) ∼= Sλ(V ) andG(Mλ ⊗ sgn) ∼= Λλ(V ). Thus an alternative wa

to prove Theorems 5.1 and 5.3 would be to analyze how James’ idempotent acts
standard bases ofSλ(V ) andΛλ(V ), then apply Theorem 2.1. Combinatorially the analy
is of similar difficulty to our proof.

Since we are discussing semistandard homomorphisms, we will take the oppo
to observe that the tools being used in this paper give a very short proof of a th
originally proved by James via a long combinatorial argument. In [7, Chapter 13], J
constructed a basis for HomΣd (M

λ,Mµ) indexed by row-standardλ-tableaux of typeµ.
He then showed that those maps corresponding to semistandard tableaux, when re
to Sλ ⊆ Mλ, give a basis for HomΣd (S

λ,Mµ). This indirectly shows that every element
HomkΣd (S

λ,Mµ) extends to a map onMλ. James remarked that he knew no direct pr
of this fact, so we give one below whenp > 3.

Proposition 5.4 [7, 13.15].Supposep > 3. Then every element ofHomkΣd (S
λ,Mµ) can

be extended to an element ofHomkΣd (M
λ,Mµ).

Proof. We have

0 → Sλ → Mλ → Q → 0,

whereQ has a Specht filtration. Apply HomkΣd (−,Mµ) to the sequence to get

· · · → HomkΣd

(
Mλ,Mµ

) π→ HomkΣd

(
Sλ,Mµ

) → Ext1kΣd

(
Q,Mµ

) → ·· · . (5.2)

But

dimk Ext1kΣd

(
Q,Mµ

) = dimk Ext1kΣd

(
Mµ,Q∗)

� dimk Ext1kΣd

(
V ⊗d ,Q∗) by Lemma 2.2(i)

= dimkR
1G

(
Q∗)

= 0 by Proposition 1.1(iii),

sinceQ∗ has a dual Specht filtration. Thus the mapπ in (5.2) must be a surjection, and th
proposition follows. �
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6. Fm on Young and twisted Young modules

Having determined how the fixed point functor acts on permutation modules and tw
permutation modules, we now turn to their direct summands, namely the Young mo
Yλ and twisted Young modulesYλ ⊗ sgn. We will see, as in the previous section, that
twisted case is better, in the sense that whenλ hasm parts,Fm acts as first column remov
onYλ ⊗ sgn. No such result holds forFm(Y λ). Indeed, we will show that determining a
theFm(Y λ) is essentially equivalent to determining the decomposition matrix for the S
algebra, a very difficult problem indeed!

We begin with a lemma made easy by the calculations in the previous section.

Lemma 6.1. Fm(Y λ) is a direct sum of Young modules forkΣd−m whileFm(Y λ ⊗ sgn) is
a direct sum of twisted Young modules forkΣd−m.

Proof. SinceYλ is a direct summand ofMλ, this is immediate from Theorems 5.1 and 5

We can determineFm(Y λ ⊗ sgn) precisely in some cases:

Theorem 6.2. Let p > 3. If λ has fewer thanm parts, thenFm(Y λ ⊗ sgn) = 0. If λ has
exactlym parts, then

Fm

(
Yλ ⊗ sgn

) ∼= Y λ̂ ⊗ sgn.

Proof. From Lemma 6.1 we knowFm(Y λ ⊗ sgn) is a direct sum of twisted Youn
modules. Twisted Young modules have filtrations by both Specht and dual Specht mo
and the matrix giving the multiplicities[Yλ : Sµ] is triangular. Thus, if we can prov
Fm(Y λ ⊗ sgn) has a filtration by dual Specht modules with the same multiplicities as in a

dual Specht filtration ofY λ̂ ⊗ sgn, we can conclude that it is indeedY λ̂ ⊗ sgn. So let

Yλ ⊗ sgn= Sλ ⊗ sgn+
∑
µ�λ

aλµ

(
Sµ ⊗ sgn

) = Sλ′ +
∑
µ�λ

aλµSµ′ , (6.1)

where by the “sum” in (6.1), we mean the modules have filtrations with the factors
in the sum. Now, appealing to the second part of Theorem 4.5, it makes sense to apFm

to both sides of (6.1). Notice first that ifλ has fewer thanm parts, thenλ′ and all theµ′’s
in the sum have first row less thanm, so the correspondingSµ′ ’s are annihilated byFm. So
Yλ ⊗ sgn has a filtration by dual Specht modules, all of which are annihilated byFm. Any
such module must be annihilated byFm. So now assumeλ hasm parts. Then applyingFm

to (6.1) gives

Fm

(
Yλ ⊗ sgn

) = Sλ′ +
∑

aλµSµ′ . (6.2)

µ1=m
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Now suppose

Y λ̂ ⊗ sgn= Sλ̂ ⊗ sgn+
∑
τ�λ̂

b
λ̂τ

(
Sτ ⊗ sgn

) = S
λ̂′ +

∑
τ�λ̂

b
λ̂τ

Sτ ′ . (6.3)

Sinceτ � λ̂ andλ̂ has� m parts, thenτ has� m parts. Thus all theτ appearing in (6.3
are of the formµ̂ for someµ � d with µ1 = m. This fact plus the observation thatλ̂′ = λ′
for anyλ lets us rewrite (6.3) as

Y λ̂ ⊗ sgn= S
λ′ +

∑
µ1=m

b
λ̂µ̂

S
µ′ . (6.4)

However by (1.3) theaλµ are decomposition numbers forS(n, d). Specifically,

aλµ = [
∆(µ) : L(λ)

]
.

But James proved in [8] that first column removal preserves decomposition nu
(essentially just by tensoring with the determinant). Thusaλµ = b

λ̂µ̂
, so the sums in (6.2

and (6.4) coincide, as desired.�
We remark that ifλ is p-restricted, then a twisted Young module is also a Yo

module. In particular,Yλ ⊗ sgn∼= Ym(λ) wherem(λ) is the Mullineux map given by
Dλ ⊗ sgn∼= Dm(λ). Thus we have determined howFm behaves on projective Youn
modules. We are not sure whether the theorem holds forp = 3. The problem is tha
applyingFm to “sums” like (6.1) is not justified, sinceR1Fm may be nonzero on dua
Specht modules.

We also remark that Theorems 5.3 and 6.2 give a column removal theorem forp-Kostka
numbers, which is already known.

Theorem 6.3. Letλ, µ � d both havem parts. Then

[
Mµ : Yλ

] = [
Mµ̂ : Y λ̂

]
.

Proof. As we mentioned, the result would follow from Theorems 5.3 and 6.2 since foYλ

a summand ofMµ, λ cannot have more parts thanµ. However, it is easier to recall th
well-known fact that thep-Kostka number[Mµ : Yλ] is the same as the dimension of t
µ-weight space inL(λ), so tensoring with the determinant gives the result.�

The row-removal version of Theorem 6.3 has been conjectured by Henke [6, C
ture 6.3].

We wish now to convince the reader that determining the multiplicities of Youn
modules forΣd−m in Fm(Y λ) is a very difficult problem by showing it is equivalent
knowing the decomposition numbers for the Schur algebra.
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For the base case in the inductive proof of the main theorem of this section, w
need to know[Yλ : S(d)]. Recall from (1.3) that[

Yµ : S(d)

] = [∇(d) : L(µ)
]
.

These numbers are known from work of Doty. Letµ = (µ1,µ2, . . . ,µs) � d. Define a
sequence of nonnegative integersαi(µ) as follows. First write eachµi out in basep. Then
add them all together. Fori � 1, let αi be the number that is “carried” to the top of t
pi column during the addition. For example, letp = 3 andµ = (5,5,2). Then adding
5+ 5+ 2 base three gives

1 2
1 2
1 2

+ 0 2

1 1 0

andα(µ) = (2,1). Doty calls this thecarry patternof µ. Then we have the following
lemma.

Lemma 6.4 [1, Section 2.4].The multiplicity[∇(d) : L(µ)] is either one or zero. It is on
precisely whenµ is maximal among all partitions ofd with the same carry pattern asµ.

As an aside, we point out here that Doty’s work plus the work in [5] allow
determination of which Young modules have a fixed point.

Proposition 6.5. [
Yµ : S(d)

] = dimk HomkΣd

(
k,Yµ

)
.

Proof. We know [Yµ : S(d)] = [∆(d) : L(µ)] (which is known by the previous lemma
But [

∆(d) : L(µ)
] = dimHomS(n,d)

(
P(µ),∆(d)

)
= dimHomS(n,d)

(
P(µ),G(k)

)
by Proposition 1.1(i)

= dimHomkΣd

(
Yµ, k

)
by the adjointness ofG andF . But Yµ is self-dual so the result follows.�

Now we will show that determiningFm(Y λ) is essentially equivalent to determining t
decomposition numbers forS(n, d). Specifically:

Theorem 6.6. Let p > 3. Suppose we know the decomposition numbers forS(n, r) for
r � d . Then we can determineFm(Y λ) for all m and all λ � d . Conversely suppose w
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knowFm(Y λ) for all m and all partitionsλ � r, for r � d . Then we can determine all th
decomposition numbers forS(n, r) for r � d .

Proof. First suppose we know all[∆(λ) : L(µ)], or equivalently by (1.3), suppose w
know all the multiplicities[Yµ : Sλ] in dual Specht filtrations of the Young modules. W
will calculateFm(Y λ) inductively.Y (d) ∼= k soFm(Y (d)) = Y (d−m). Now assume we know
Fm(Y τ ) for all τ � µ, we must determineFm(Yµ).

We know how to writeFm(Mµ) as a direct sum of permutation modules. Howev
Young’s rule [7, Chapter 14] tells us the filtration multiplicities in a Specht filtration of any
permutation module, so we can write

Fm

(
Mµ

) =
∑

λ�d−m

cµλSλ, (6.5)

where by the summation we again mean the module has a dual Specht filtration w
factors in the sum. We also know

Mµ ∼= Yµ
⊕
τ�µ

Kµτ

(
Y τ

)
, (6.6)

where thep-Kostka numbersKµτ can be determined from the decomposition numbers
we have a Specht series ofFm(Mµ). We also knowFm(Y τ ) for all τ � µ. So Eqs. (6.5)
and (6.6) together with knowledge of theFm(Y τ )’s let us calculate the Specht filtratio
multiplicities in Fm(Yµ). But we already know thatFm(Yµ) is a direct sum of Young
modules forkΣd−m, so the decomposition numbers ofS(n, d − m) let us determine
precisely which Young modules.

Conversely suppose we knowFm(Yµ) for all m, and for all µ � r with r � d .
Inductively we can assume we know the decomposition numbers forS(n, r) with r < d ,
and we will obtain the decomposition numbers forS(n, d). That is, we need to get all th
[Yµ : Sλ]. We will proceed inductively onλ. Lemma 6.4 provides the base case of
induction, i.e., give us[Yµ : S(d)]. Now assume we have calculated[Yµ : Sλ] for all µ and
for all λ � τ . We must determine[Yµ : Sτ ]. We will actually simultaneously get[Yµ : Sσ ]
for all σ with σ1 = τ1. Write

Yµ =
∑

ρ1<τ1

aµρSρ +
∑

ρ1=τ1

bµρSρ +
∑

ρ1>τ1

cµρSρ, (6.7)

where we know the{cµρ} by inductive hypothesis. Now applyFτ1 to (6.7) and use Theo
rem 4.5 to get

Fm

(
Yµ

) =
∑

ρ1=τ1

bµρSρ +
∑

ρ1>τ1

cµρ

(
Sρ\(τ1)

)
. (6.8)

The dual Specht filtration multiplicities in the right-hand sum in (6.8) are known s
James and Peel [9] give a dual Specht filtration of theSρ\(τ1). Also by assumption we
can writeFm(Yµ) as a direct sum of Young modules, and we can then write out a
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Specht filtration for it, since we are assuming we know the decomposition numbe
S(n, d − τ1). Equating the multiplicities on both sides of (6.8) lets us solve for all
{bµρ} with ρ1 = τ1 as desired. �

It is elementary to carry out either of the computations described in the proof o
theorem. In Appendix A we present the images ofYλ for d = 10,p = 5 (where all the
decompositionnumbers are known) underF5. It would be interesting to get a more explic
relation between the data in Appendix A and decomposition numbers.

7. Fm on simple modules and Specht modules

DeterminingFm(Dλ) and Fm(Sλ) seems to be very difficult. Indeed, we suspec
although cannot prove, that either or both problem may be as difficult as determ
decomposition numbers, similar to Theorem 6.6. The only thing we can say come
the following lemma:

Lemma 7.1 [2, Lemma 2.3].Let λ be p-restricted. ThenG(Dλ) has simple socle
isomorphic toL(λ).

Thus we have:

Proposition 7.2. Letλ bep-restricted andλ1 = m. Then

(i) Dλ ⊆ soc(Fm(Dλ)).
(ii) If G(Dλ) is simple, thenFm(Dλ) ∼= Dλ.

(iii) [4, 5.5] If m < p, thenFm(Dλ) ∼= Dλ.

Proof. Parts (i) and (ii) are both immediate from Theorem 2.1 since James proved
thatJ (L(λ)) ∼= L(λ). �

We have some evidence thatG(Dλ) is simple about half the time, usually eitherG(Dλ)

or G(Dλ ⊗ sgn) is simple. A case whereG(Dλ) is known to be simple is ifDλ is a
completely splittable module [10].

We cannot say much aboutFm(Sλ) either. In [4] it was shown that ifλ1 = m < p, then
Fm(Sλ) ∼= Sλ. The corresponding statement to Theorem 4.5 is definitely false. That is
if λ1 < m, it is possible forFm(Sλ) to be nonzero. The filtration ofSλ as aΣm × Σd−m

module given in Theorem 4.3 would not have any terms of the formS(m) ⊗Sλ\(m). But this
does not rule outΣm fixed points since nontrivial Specht modulesSβ can still have fixed
points. We renew our conjecture from [4]:

Conjecture 7.3. Fm(Sλ) has a Specht filtration as akΣm-module.

Perhaps a better understanding of the filtration given in Proposition 4.3 would be usef
to attack the conjecture. IfSβ ⊗ Sλ\β occurs in the filtration, it is known whetherSβ has
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a fixed point underΣm. The question is whether this fixed point “drops” to the bottom
the filtration, and whether it takes all ofSλ\β with it, so to speak. This seems to be diffic
to determine.

Another possibility is to considerSλ as a subspace ofMλ. We know precisely a basis fo
Fm(Mλ) as a subspace ofMλ so to determineFm(Sλ) we just need to knowSλ ∩Fm(Mλ).
But Sλ as a subspace ofMλ is given by the kernel intersection theorem of James [7, 17
However, it seems to be very hard to combinatorially determine the subspace ofFm(Mλ)

which lies in the intersection of the kernels.

Appendix A. F5 on Young modules for Σ10

Below are the images of the Young modules forΣ10 under the functorF5 in
characteristicp = 5. Young modules not listed are annihilated by the functor.

F5
(
Y 10) ∼= Y 5, F5

(
Y 541) ∼= (

Y 41)⊕2 ⊕ Y 312
,

F5
(
Y 91) ∼= Y 5 ⊕ Y 41, F5

(
Y 532) ∼= Y 32,

F5
(
Y 82) ∼= Y 41 ⊕ Y 32, F5

(
Y 5312) ∼= (

Y 312)⊕2 ⊕ Y 213
,

F5
(
Y 812) ∼= Y 41 ⊕ Y 312

, F5
(
Y 5221) ∼= Y 221,

F5
(
Y 73) ∼= Y 41 ⊕ Y 32, F5

(
Y 5213) ∼= (

Y 213)⊕2 ⊕ Y 15
,

F5
(
Y 721) ∼= Y 32 ⊕ Y 312 ⊕ Y 221, F5

(
Y 515) ∼= (

Y 15)⊕2
,

F5
(
Y 713) ∼= Y 312 ⊕ Y 213

, F5
(
Y 422) ∼= (

Y 41)⊕2
,

F5
(
Y 64) ∼= (

Y 41)⊕2 ⊕ Y 32, F5
(
Y 432) ∼= Y 32 ⊕ Y 312

,

F5
(
Y 631) ∼= (

Y 32)⊕2 ⊕ (
Y 312)⊕2 ⊕ Y 221, F5

(
Y 4321) ∼= Y 312

,

F5
(
Y 622) ∼= Y 32 ⊕ Y 221, F5

(
Y 42212) ∼= Y 213

,

F5
(
Y 6212) ∼= Y 221 ⊕ Y 213

, F5
(
Y 416) ∼= Y 15

,

F5
(
Y 614) ∼= Y 213 ⊕ Y 15

, F5
(
Y 331) ∼= Y 41,

F5
(
Y 52) ∼= Y 5 ⊕ Y 41, F5

(
Y 3222) ∼= Y 41.
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