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The Ext1-quiver for completely splittable representations of
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Abstract. Kleshchev has recently [7] classi®ed those modules for the symmetric group which
have semisimple restriction to any Young subgroup. We determine Ext1

K Sd
�D l;D m� where D l

and D m are K Sd -modules of this type, called completely splittable. As a corollary of this and
recent work of Kleshchev and Nakano, we can determine Ext1

GL n�K���L�l�;L�m�� for certain
simple GLn�K�-modules L�l� and L�m�.

1 Introduction

Let Sd denote the symmetric group on d letters. The complex irreducible Sd -modules
correspond bijectively with partitions l of d, and we denote by S l the irreducible
module corresponding to l. We work over an algebraically closed ®eld K of positive
characteristic p > 2. The simple K Sd -modules are indexed by p-regular partitions,
and we denote the corresponding simple module by Dl. These modules can also be
indexed by column p-regular partitions, and for l column p-regular we denote the
corresponding simple module by Dl. For a comprehensive treatment of the theory,
see [4].

For any composition m � �m1; m2; . . . mk� of d there is a standard Young subgroup
de®ned by

Sm � Sm1
� Sm2

� � � � � Smk
< Sd :

We will consider the following class of modules:

De®nition 1.1. An irreducible K Sd -module Dl is called completely splittable if and
only if the restriction Dl#Sm

to any Young subgroup Sm < Sd is semisimple. We will
also say that l is completely splittable.

In [8], Kleshchev and Nakano obtained several results about the cohomology
of completely splittable modules, suggesting that obtaining the Ext1-quiver for these
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modules should be possible. In this paper we apply Kleshchev's branching theorems
to prove the following result:

Theorem 1.2. Let Dl and Dm be completely splittable and in the same p-block of K Sd .
Then

Ext1
K Sd
�D l;Dm� �

K if h11�l�d p; h11�m�d p

h21�l� < p; h21�m� < p

and jh�l� ÿ h�m�j � 1

0 otherwise,

8>><>>:
where h�l� is the height of l and

hij�l1; l2; . . . ; lk� � li � l 0j � 1ÿ i ÿ j

is the �i; j� hook length.

This theorem together with the work of [8] gives a corresponding result for GLn�K�
when nd d. Let L�l� denote the simple, polynomial GLn�K�-module with highest
weight l. Let m denote the Mullineaux map on p-regular partitions de®ned by

D l n sgnGDm�l�:

We have the following result:

Corollary 1.3. Let Dl and D m be completely splittable. Then

Ext1�L�m�l�0�;L�m�m�0�� �
K if h11�l�d p; h11�m�d p

h21�l� < p; h21�m� < p

and jh�l� ÿ h�m�j � 1

0 otherwise.

8><>:
The Ext1 in Corollary 1.3 is taken in the category M�n; d� of polynomial GLn�K�-

modules of homogeneous degree d.

2 Notation and preliminaries

We follow the notation of Kleshchev's excellent survey paper [6]. We write l ` d

for l � �l1; l2; . . . ; lk� a partition of d. Let N � f0; 1; 2; . . .g. We do not distinguish
between l and its Young diagram

l � f�i; j� A N�N j j c lig:

The conjugate partition of l, denoted by l 0, is obtained by interchanging the rows
and columns in the Young diagram for l.
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For l ` d let

ss�l� �
Xs

i�1

ls:

Then we say that l dominates m, and we write lu m, if ss�l�d ss�m� for every s A N.
If l0 m we write l Bm. This is the usual dominance order on partitions.

The removable (resp. addable) nodes are those which can be removed (resp. added)
to the diagram l to produce a diagram for a partition of d ÿ 1 (resp. d � 1). For
a removable node A, we write lA for l with the node A removed, so that lA ` d ÿ 1.
Similarly for lB ` d � 1, where B is an addable node. The p-residue of a node
A � �i; j� is de®ned as res A � j ÿ i �mod p�. The residue content of l is

cont�l� � �c0; c1; . . . ; cpÿ1�

where ca is the number of nodes of l with p-residue a.
The Nakayama conjecture (now a theorem) says that Dl and Dm belong to the

same p-block if and only if cont�l� � cont�m�, and similarly for S l and S m. We de-
note this by l@ m. We assume familiarity with this and the equivalent characteriza-
tion that l@ m if and only if l and m have the same p-core. See [4] for details.

The Nakayama conjecture allows us to de®ne Robinson's a-induction and
a-restriction functors. For a K Sd -module M in a ®xed block corresponding to the
residue content �c0; c1; . . . ; cpÿ1�, and a residue a A Z=pZ, we de®ne Inda M as the
direct summand of Ind M in the block of K Sd�1 corresponding to residue content
�c0; . . . ; ca � 1; ca�1; . . . ; cpÿ1�. We de®ne Resa M similarly. For full details, see [4,
6.3.16].

We need Kleshchev's notion of normal and good nodes. A removable node A of
l is normal if for every addable node B above A with res B � res A, there exists a re-
movable node C�B� strictly between A and B with res C�B� � res A, and C�B�0C�B 0�
for B0B 0. A removable node is called good if it is the lowest among the normal nodes
of a ®xed residue. An addable node B is called good addable if it is good as a removable
node of lB.

We now recall the main results of [7] on completely splittable modules. For a
partition l � �l1; l2; . . . ; lk� de®ne

h�l� :� k and w�l� :� l1 ÿ lk � h�l�:

Theorem 2.1 ([7]). Dl is completely splittable if and only if w�l�c p.

We remark that w�l� is the length of the hook with foot at �k; lk�. We remark
further that Theorem 2.1 holds as well for p � 2, but since there are no non-trivial
completely splittable modules in this case, we can assume that p > 2 for this paper.

It is clear from the de®nition that restricting a completely splittable module to Sdÿ1

will give a direct sum of completely splittable Sdÿ1-modules. Kleshchev determined
this decomposition:
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Theorem 2.2 ([7]). Let Dl be completely splittable. Then

Dl#Sdÿ1
�0DlA ;

where the sum is over all removable nodes A with w�lA�c p.

We will make extensive use of induced modules, and the next several results
describe how some of the simple and Specht modules induce. The ®rst two are easy
applications of the classical branching theorem.

Lemma 2.3. Let fB1;B2; . . . ;Bsg be the addable nodes for l of residue a. Then Inda S l

has a ®ltration with composition factors fS l Bi g.

Proof. This follows from the classical branching theorem [3, 9.3] and the fact that
Inda S l has a ®ltration by Specht modules [3, 17.14].

Lemma 2.3 has an immediate corollary:

Lemma 2.4. S l G Indres A S lA if and only if A is the unique addable node of lA of
residue res A.

Inducing the simple modules is not as easy, but Kleshchev [5], [6] has determined
the head and socle of Ind Dl and a criterion for when the induced module is semi-
simple. We state these results below:

Lemma 2.5 ([5]). Let B be a good addable node for l. Then

soc�Indres B D l�G head�Indres B Dl�GDl B

:

If there is no good addable node of l of residue a then Inda Dl � 0.

Because there is at most one good addable node of each residue, Lemma 2.5 makes
sense. Kleshchev has determined exactly when Ind D l is completely reducible:

Lemma 2.6 ([6]). IndSd�1 Dl is completely reducible if and only if the number of normal

nodes of l is one less than the number of good addable nodes for l, in which case

IndSd�1 Dl G 0
B good addable

Dl B

:

If the Specht module S l is a-induced from Sdÿ1 as in Lemma 2.4, and if Dl is
completely splittable, then D l is also a-induced from Sdÿ1:
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Lemma 2.7. Let w�l�c p. If S l G Indres A S lA , then D l G Indres A DlA .

Proof. Since w�l�c p, lA must be p-regular. Also, there are no removable or add-
able nodes of l of residue res A except A. Thus A is good addable for lA. We apply
Indres A to

0! R! S lA ! DlA ! 0

to obtain

0! Indres A R! S l ! Indres A D lA ! 0:

But �S l : Dl� � 1 and so Lemma 2.5 applied to lA implies the result.

3 Minimal modules

We wish to determine Ext1
K Sd
�Dl;Dm� for completely splittable modules D l and Dm

by using induction and the Eckmann±Shapiro lemma. It is not surprising then that
it is useful to determine which completely splittable modules arise by a-inducing a
completely splittable module from Sdÿ1 to Sd . This motivates the following de®nition:

De®nition 3.1. A completely splittable module Dl is minimal if there does not exist
m ` d ÿ 1, with Dm completely splittable, such that Dl G Inda Dm for some a. If Dl is
minimal, we also say that l is minimal.

Notice that if Dl and Dm are completely splittable and Dl is not minimal, then
there is some removable node A of l such that DlA is completely splittable and
D l G Indres A DlA . In this case

Ext1
K Sd
�D l;Dm�GExt1

K Sd
�Indres A DlA ;Dm�

GExt1
K Sdÿ1

�DlA ;Resres A Dm�: �1�

Now Resres A Dm is either 0 or completely splittable, and so Equation 1 implies that
unless both partitions are minimal we can determine Ext1

K Sd
�D l;Dm� from knowl-

edge of the Ext1-quiver for completely splittable K Sdÿ1-modules. Recall here that the
modules Dl are self-dual so that

Ext1
K Sd
�Dl;Dm�GExt1

K Sd
�Dm;D l�:

Thus our next goal will be to classify the minimal modules and study their extensions.
We begin classifying the minimal modules with the following lemma:

Lemma 3.2. If Dl is minimal then l is either of the form �la1

1 � or �la1

1 ; l
a2

2 �.
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Proof. Suppose that l � �la1

1 ; l
a2

2 ; . . . ; lat

t � is minimal and t > 2. Then the diagram of
l has the form

a

A

bl �
B

c

d

where A and B are the top two of the at least three removable nodes and a, b and c

are the top three of the at least four addable nodes. Note that the residues of a, b, c,
A, and B are all distinct because w�l�c p. Thus at least one of A or B (whichever
has residue not equal to res d) will be the unique addable node of its residue when it
is removed from l. Suppose, for example, that res A0 res d. Since w�lA�c w�lB� �
w�l�c p, we know that DlA is completely splittable. Then Lemmas 2.4 and 2.7 imply
that

Dl G Indres A D lA ;

and so l is not minimal, contradicting our assumption. The same argument works
with DlB if res B0 res d. Thus the assumption that t > 2 contradicts the assumption
that Dl is minimal.

We can now completely classify the minimal modules:

Theorem 3.3. A completely splittable K Sd -module D l is minimal if and only if pjd and

D l is in the principal block B0�K Sd�.

Proof. Let Dl be completely splittable and minimal. By Lemma 3.2, we can assume
that l has at most two distinct parts. Suppose ®rst that l � �la1

1 ; l
a2

2 � for l1 0 l2. We
label the addable and removable nodes of l as follows:

a

l � A

b

B
c

We calculate (congruences are modulo p):
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res A1 l1 ÿ a1

res B1 l2 ÿ a1 ÿ a2

res a1 l1

res b1 l2 ÿ a1

res c1ÿa1 ÿ a2

w�l� � l1 ÿ l2 � a1 � a2:

�2�

Notice that Lemmas 2.4 and 2.7 imply that Dl G Indres A D lA unless res A � res c.
But l is minimal and lA is completely splittable, and so we can assume that res A
� res c. Because w�l�c p we know that res A0 res B, and hence res B0 res c. Using
Lemmas 2.4 and 2.7 again, we conclude that res B � res a (for otherwise D l G
Indres B DlB�.

Setting res B � res a and res A � res c, a simple calculation using Equation 2 shows
that w�l� � p and res b � 0. But res b � 0 if and only if l2 1 a1, and res A � res c if
and only if l1 1ÿa2. Since Dl is minimal it follows that l2 1 a1 and l1 1ÿa1, and
hence

d � a1l1 � a2l2 1ÿa1a2 � a1a2 � 0

so that pjd.
Before proceeding further, we verify that pjd, w�l� � p and res b � 0 are su½cient

conditions for the partition �la1

1 ; l
a2

2 � to be minimal:

Lemma 3.4. Let �la1

1 ; l
a2

2 � ` mp satisfy w�l� � p and res b � 0 (i.e. l2 1 a1). Then l is

minimal.

Proof. First suppose that m � 1, so that l must be a hook. Then DlA GS lA and
D lB GS lB (because lA and lB partition pÿ 1, and K Spÿ1 is semisimple). Then lA

has two addable nodes of residue res A and so Indres A DlA is not simple. Similarly
Indres B DlB is not simple, so that l must be minimal.

Next suppose that m > 1. Then lB is not completely splittable, and so to prove

that l is minimal we must verify that Dl l Indres A DlA .
If l1 ÿ l2 � 1 then lA has one normal node, the top removable, and one good

addable node, A. Thus Indres A D lA G Ind DlA is not simple by Lemmas 2.5 and 2.6.
If l1 ÿ l2 > 1 then lA has two normal nodes, the top two removable, and two

good addable nodes, A and b. The node b has residue 00 res A and Ind0 DlA is
simple by Lemmas 2.4 and 2.7. But Ind DlA is not semisimple by Lemma 2.6, and so
Indres A D lA is not simple. This completes the proof that l is minimal.

The rim hook with foot at B has p nodes and removing it preserves w � p and
preserves res b � 0, and so preserves minimality by Lemma 3.4. Of course, it also
preserves membership in B0. Thus l A B0 by induction.
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Now suppose that l is rectangular, i.e. l � �la1

1 � with a1 < p, and let A be the one
removable node of l. Unless pjl1, the partition lA will have a unique addable node of
residue res A and, as in the previous case, Dl G Indres A D lA . Therefore the minimal-
ity of l implies that pjl1, so that pjd and l A B0. An argument as in Lemma 3.4
con®rms that l � �cpa1� is indeed minimal.

To complete the proof of Theorem 3.3 we must show that a completely splittable
module D l A B0�K Smp�must be minimal. This too follows by induction. The base case
m � 1 is just l � �pÿ r; 1r� for 0c rc pÿ 2. In this case D l is minimal by Lemma
3.4. Suppose then that m>1 and Dl is completely splittable and in B0�K Smp�. Since
w�l�c p and the rim of l must have at least p nodes (for otherwise l is a p-core, so
not in the principal block), there must be a rim p-hook with head at �1; l1�. Strip o¨
this rim hook to get l. Clearly w�l�c p, so that D l is completely splittable and in
B0�K S�mÿ1�p�, and hence is minimal by induction. We leave it to the reader to verify
that there is only one way to add a hook to a minimal partition such that the result
is completely splittable and such that the head of the hook ends up in the ®rst row.
(See for example Figure 1.) Doing so preserves w�l� � p and res b � 0, and hence
produces another minimal partition. So we conclude that l must be minimal, com-
pleting the proof of Theorem 3.3.

We now determine how many minimal modules there are, and some information
we will need to determine the extensions between them.

Lemma 3.5. Let d � pm. There are pÿ 1 minimal partitions of d. They have 1; 2; . . . ;
pÿ 1 parts. The top removable node of the one with i parts has residue pÿ i.

Proof. The result is clear for m � 1: the partitions are just the p-regular hooks. Now
observe that removing the rim p-hook with head �1; l1� or adding a rim p-hook with
foot at �k; lk � 1� gives a bijection between minimal partitions of mp and �m� 1�p
that preserves the number of parts and the residue of the top removable node. The
bijection for p � 5 and n � 5; 10; 15 is illustrated in Figure 1, with the p-residues
labelled.

We will need a few more technical results about minimal partitions before we can
begin determining the Ext1-quiver.

Figure 1. Minimal partitions for p � 5 and n � 5; 10; 15
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Lemma 3.6. Let l Bm be minimal partitions of d � mp with m > 1. Then m 6u lB
A for

any removable node A and addable node B of l.

Proof. First we recall the well known fact [4, 1.4.10] that partitions r Bt are neigh-
bors in the dominance order if and only if t is obtained from r by moving single
node down to the next available location. There are few cases to check, since minimal
partitions have at most two removable nodes and at most three addable nodes. First
note that m > 1 implies that lB

A is never minimal. Let u
a

denote partitions which are
neighbors in the dominance order. The ®rst case is when A is the top removable node
of l. There are two choices for B, and we have illustrated the possible lB

A in Figure 2.
Since the three partitions drawn are all adjacent in the dominance order, and only

l is minimal, there cannot be a minimal partition m with l Bmu lB
A . The other case,

when A is the lower removable node of l is similar.

The ®nal observation that we need about minimal partitions is clear from Figure 1:

Lemma 3.7. The minimal partitions are totally ordered by u and l Bm if and only if l
has fewer parts.

4 Ext1 for minimal modules

Recall from Equation 1 that if we can determine Ext1
K Sd
�D l;Dm� for minimal modules

D l and D m, we should be able to determine it for all completely splittable modules.
We prove the following result:

Theorem 4.1. Let l0 m be minimal partitions of mp and m > 1. Then

Ext1
K S mp
�Dl;Dm� � 0:

Proof. By Lemma 3.7 we can assume that l Bm. Let A be the top removable node
of l. By Lemma 3.5, the top removable node of m has residue di¨erent from res A.
But, since m > 1, removing the bottom removable node of m (if it has two), leaves a
partition with w � p� 1. Thus by Lemma 2.2,

Resres A Dm � 0 �3�

u
a

u
a

Figure 2. Neighbors of l in the dominance order
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We assumed that l is minimal and so Dl l Indres A DlA . However, A is good addable
for lA, and so by Lemma 2.5 we have

Indres A D lA �
Dl

H

Dl

: �4�

Equation 3 together with the Eckmann±Shapiro lemma proves that

Ext1
K Smp
�Indres A DlA ;D m� � 0: �5�

Consider the exact sequence

0! Dl ! Indres A DlA ! Dl

H
! 0:

Apply HomK Smp
�ÿ;Dm� to this to obtain a long exact sequence:

0! Ext1
K S mp

D l

H
; Dm

� �
! Ext1

K Smp
�Indres A DlA ;D m� ! � � � ;

then use (5) to conclude that

Ext1
K S mp

D l

H
;Dm

� �
� 0: �6�

Similarly we apply HomK S mp
�ÿ;Dm� to

0! H ! D l

H
! Dl ! 0

to obtain a long exact sequence and to conclude, by (6), that

Ext1
K S mp
�Dl;Dm�GHomK Smp

�H;Dm�: �7�

But H is a subquotient of Indres A DlA , and so it is a subquotient of Indres A S lA .
However Indres A S lA has a Specht series with factors S l and perhaps S l B

A if res A �
res B, by Lemma 2.3 (where B is the lowest addable node of l). Since a Specht
module S t has a composition factor Dr only if ru t, Lemma 3.6 implies there are no
composition factors Dm in H. Thus HomK S mp

�H;Dm� � 0, and the proof is complete
by Equation 7.

Often a completely splittable module Dl can be obtained by a-induction from more
than one completely splittable K Sdÿ1-module. The next lemma determines when this
happens.
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Lemma 4.2. Let D l be completely splittable, and A a removable node of l. Then

D l G Indres A DlA unless

(i) w�l� � p and A is the lowest removable node of l, or

(ii) res A is equal to the residue of the lowest addable node of l.

Proof. Suppose that we are not in case (i) or case (ii). Since we are not in case (i), A
is not the lowest removable node of l, and so w�lA�c p, and DlA is completely
splittable. Since we are not in case (ii), A is the unique addable node for lA with
residue res A. So Lemmas 2.4 and 2.7 prove that Dl G Indres A D lA .

We remark that if A satis®es (i) or (ii) from Lemma 4.2, then a calculation similar
to the proof of Lemma 3.4 shows that Dl l Indres A D lA .

Since we plan to reduce the calculation of Ext1
K Sd
�Dl;D m� to the case where l and

m are minimal, the next de®niton is natural:

De®nition 4.3. Given Dl completely splittable, the minimal core of l, denoted by l̂, is
obtained by successively removing nodes from l which do not satisfy Lemma 4.2 (i)
or (ii) until no further such nodes can be removed. The remark following Lemma 4.2
implies that l̂ is indeed minimal.

Let l � �l1; l2; . . . ; lk� be completely splittable. It is easy to see from a few

examples that l̂ is well de®ned and easy to determine. Starting with l, simply remove
nodes, never removing any of residue equal to the residue of the bottom addable
node, and never allowing w to be greater than p.

More explicitly, suppose that the bottom addable node of l has residue a. Let �u; v�
be the node of residue a farthest to the right. This node is uniquely determined because
h�l�c pÿ 1. If there is no such node, l̂ is empty. If u � k then l̂ � �vk�. If u < k then
l̂ is the partition with rim consisting of the following nodes:

�1; v�; �2; v�; . . . ; �u; v�; �u; vÿ 1�; �u; vÿ 2�; . . . ; �u; vÿ p� k�;
�u� 1; vÿ p� k�; . . . ; �k; vÿ p� k�; �k; vÿ p� k ÿ 1�; . . . ; �k; 1�:

In particular, note that h�l� � h�l̂� when l̂0q.
Two examples are given in Figure 3, with the node �u; v� in bold, and the minimal

Figure 3. Two examples of minimal 7-cores
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core drawn inside the partition. The residues of all nodes in l and the bottom addable
node of l are labelled.

We now use the minimal cores and Equation 1 to formalize the reduction of
determining Ext1 between two minimal modules to the minimal case:

Theorem 4.4. Let Dl and Dm be completely splittable and in the same block. Then l̂
and m̂ partition the same number r and

Ext1
K Sr
�D l̂;D m̂�GExt1

K Sd
�Dl;D m�:

Proof. We ®rst remark that since l@ m, by Theorem 3.3 either l and m are both
minimal or neither is. So we will assume l and m are not minimal, since otherwise
l̂ � l and m̂ � m.

To prove this claim we will use the abacus notation for partitions and the charac-
terization of blocks by p-cores. See [4] for details. We make a series of observations
about the abacus representations of l and m.

(i). Since l has less than p parts, we will represent it on an abacus with p beads.
We label the runners 0; 1; . . . ; pÿ 1 from left to right.

(ii). Notice that w�l� can be read o¨ the abacus display. It is equal to sÿ t� 1,
where t is the position of the ®rst bead after the ®rst gap and s is the position of the
last bead.

(iii). Since w�l�c p, by (ii), the core of l (also represented with p beads) has at
most two beads on any runner and must have a bead on runner 0.

(iv). l is not minimal, so not in the principal block of K Smp. Thus l does not
have an empty p-core, and so some runner has two beads. Since w�l�c p, if runner i

has no beads, then runners to the right of i have at most one bead by (ii).
Of course, (i)±(iv) hold for m as well. Moreover l@ m, and so the abacus displays

for l and m have the same number of beads on each runner.
Now suppose that the lowest addable node for l has residue i. Then in the abacus

display for l, the ®rst gap occurs on runner i and so (ii) implies that runner i has
at most one bead. Similarly, if the lowest addable node of m has residue j then runner
j has at most one bead.

Consider the abacus diagram for the p-core ~l � ~m. Note that (i) and (iv) imply that
runner pÿ 1 cannot have two beads. We consider separately the case where it has no
beads and where it has one bead.

Case 1. Suppose that runner pÿ 1 has no beads. Let runner k < pÿ 1 be the leftmost
runner with two beads. Then (even if k � 0) both of l and m must have a removable
node of residue k. Furthermore k is not equal to i or j since runners i and j have at
most one bead.

Case 2. Suppose that runner pÿ 1 has one bead. There must be some runner with no
beads, and by (iv) all runners to the right of it have at most one bead. Thus we can
choose a runner k such that runner k has one bead and runner k ÿ 1 has no beads.
Again both l and m must have a removable node of residue k. Since runner k ÿ 1 has
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no beads, the partitions have no addable nodes of residue k so that k is not equal to i

or j. The two cases are illustrated in Figure 4:

In both cases l and m must have a removable node of residue k. Suppose that
w�l� � p and the node of residue k is the bottom removable node for l. Then re-
moving this node will increase w�l� from p to p� 1, and l will have the abacus
con®guration shown in Figure 5.

But the bead con®guration for runners k ÿ 1 and k in the abacus display of l
illustrated in Figure 5 is inconsistent with Figure 4 when l is completely splittable.
In Case 1, runner k has two beads, and so Figure 5 together with (ii) above proves
w�l� > p, contradicting the assumption that l is completely splittable. In Case 2,
runner k ÿ 1 has no beads and so the con®guration shown in Figure 5 cannot occur.
The same applies for m.

Thus we have found removable nodes Al of l and Am of m, both with residue k not
equal to the residue of the bottom addable node of l or m respectively. Moreover
w�lAl

�c p and w�mAm
�c p, so that these nodes are not the lowest removable nodes

for l and m. Thus Al is the unique addable node of lAl
of residue res Al, and similarly

for Am.
Lemma 4.2 implies that

D l G Indk DlAl and D m G Indk DmAm : �8�
We also have

Resk D l GDlAl and Resk Dm GDmAm : �9�
Equations 8 and 9 give us

Ext1
K Sd
�Dl;Dm�GExt1

K Sdÿ1
�DlAl ;DmAm �: �10�

But clearly l̂ � clAl
and m̂ � cmAm

, and so the theorem follows from Equation 10 by
induction.

Figure 4. Possible abacus con®gurations for ~l

Figure 5. Runners k and k ÿ 1 for l
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Before we prove Theorem 1.2, we need to deal with self-extensions and with the
base case of the induction. Self-extensions have been handled previously:

Lemma 4.5. Ext1
K Sd
�Dl;D l� � 0 for Dl completely splittable.

Proof. This was proven in [9] for partitions with less than p parts, and this clearly
holds for l since w�l�c p and l is p-regular.

We have determined Ext1
K Smp
�Dl;D m� � 0 for l and m minimal partitions of mp

with m > 1. The minimal partitions for d � p are exactly the p-regular hooks. So we
need to handle Ext1

K Sp
�Dl;Dm� for l and m hook partitions of p. But this is just the

principal block of K Sp, and the following fact is well known (see e.g. [10]):

Lemma 4.6. Let l � �pÿ r; 1r� and m � �pÿ s; 1s� for 0c rc pÿ 2. Then

Ext1
K Sp
�D l;Dm� � K if jrÿ sj � 1

0 otherwise.

�
We call the two hooks adjacent when jrÿ sj � 1. Thus for completely splittable

modules, Ext1
K Sd
�Dl;Dm� will be zero unless l̂ and m̂ are adjacent hook partitions

of p.
Everything is now in place to prove Theorem 1.2. We know that

Ext1
K Sd
�Dl;Dm� � 0

unless l̂ and m̂ are adjacent hook partitions of p. Let the bottom addable node of l
have residue a. It is not di½cult to see from our description of the minimal core that
l̂ �q exactly when l has no nodes of residue a. This is equivalent to h11�l� < p. For
l̂ to be a hook partition of p we need l to have exactly one node of residue a. This
is equivalent to the condition that h21�l� < p. We know that h�l̂� � h�l� if it is non-
empty, and so the criterion for l̂ and m̂ to be adjacent is that jh�l� ÿ h�m�j � 1. Thus
we have proven Theorem 1.2.

We remark that if d is large relative to p, the conditions on l ` d stated in Theorem
1.2 are incompatible with l being completely splittable. We make this precise in the
following corollary:

Corollary 4.7. Let Dl and Dm be completely splittable K Sd-modules, and suppose that

d > p� p2=4. Then

Ext1
K Sd
�Dl;Dm� � 0:

Proof. We suppose that Ext1
K Sd
�Dl;Dm�0 0 and prove that d c p� p2=4. Theorem

1.2 implies that l̂ and m̂ are adjacent hook partitions of p, so assume that l̂ �
�pÿ r; 1r� where r > 0. Since h�l� � h�l̂�, the lowest addable node of l is the same
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as the lowest addable node of l̂, and has residue pÿ rÿ 1. From our description
(after De®nition 4.3) of how to obtain the minimal core, we see that l has no nodes of
residue pÿ rÿ 1 except for the node �1; pÿ r�. In particular the node �2; pÿ r� 1�
is not in l. This restriction together with the requirement that w�l�c p forces all
nodes of l not in l̂ to be contained in the region marked with �'s in Figure 6, where
we have illustrated the case p � 11 and r � 4.

It is easy to see from Figure 6 that the maximum number of nodes that l can have
is p� �r� 1��pÿ �r� 1��. This expression achieves a maximum value of p� p2=4
when r � p=2. Thus d c p� p2=4 as desired.

5 Application to GLn�K�
We describe here how to prove Corollary 1.3. For a comprehensive discussion of the
background for this section, see [2].

Let M�n; d� denote the polynomial representations of GLn�K� of homogeneous
degree d, for d c n. The simple modules in M�n; d� are indexed by partitions l of d

and denoted by L�l�. The Schur functor F is a covariant, exact functor from M�n; d�
to K Sd -mod such that

F�L�l�� � Dl if l is column p-regular

0 otherwise.

�
�11�

Because Equation 11 is in terms of Dl and Theorem 1.2 is in terms of Dl, we recall
here how the two parametrizations of simple K Sd -modules are related:

Dl GD l 0 n sgnGDm�l 0�

Dl GDl 0 n sgnGD�m�l�� 0 :
�12�

Now F has a right adjoint functor G, and this adjointness sometimes extends to
Ext1, as in the following result:

Theorem 5.1 ([1]).

Ext1
Sd
�Dl;Dm�GExt1

M�n;d ��L�l�;G�Dm��:

This theorem is especially useful for completely splittable modules, as the functor
G behaves well on them:

Figure 6. Possible nodes for l with 11-core �7; 14�
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Theorem 5.2 ([8]). Let Dl be non-trivial and completely splittable. Then

G�Dl� � L�l�:

Theorems 1.2, 5.1, and 5.2 and Equation 12 immediately imply Corollary 1.3.
Although Theorem 5.2 applies only to non-trivial modules, Corollary 1.3 still holds
when D l GDm GK , by the well-known fact that Ext1

M�n;d ��L�l�;L�l�� � 0.
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