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1. Introduction

1.1. In the late 1970s, Alperin [A] defined an invariant called the complexity
of a module as a way to relate the modules with the complexes and resolutions
that they admit. Several years later, Carlson [Ca1,Ca2] defined affine algebraic
varieties corresponding to modules over group algebras. These varieties are
subvarieties of the spectrum of the cohomology ring which was earlier described
by Quillen [Q]. They are known in present day language as support varieties. It
was discovered early on that the complexity of a module is equal to the dimension
of the support variety of the module. Geometric methods involving support
varieties have played a fundamental role in understanding the interplay between
the modular representation theory and cohomology for finite groups. Despite
substantial progress in this direction, there have been few explicit computations
of support varieties for important classes of modules over certain groups.

The goal of this paper is to introduce methods and techniques for computing
support varieties for modules over the symmetric groupΣd . In the process,
we will provide explicit computations of support varieties for certain classes
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of modules. The paper is organized as follows. After setting up the notation in
Section 1, we provide a definition of complexity and relative support varieties in
Section 2. It will be advantageous to work with relative support varieties to relate
the (ordinary) support varieties of different families of modules for the symmetric
group. We also present some fundamental results on relative support varieties
that will be used throughout the paper. In Section 3, the complexity and support
varieties for the permutation and Young modules are determined. The varieties for
these modules can be described by looking at the image of the restriction map on
the variety of the trivial module over certain Young subgroups. The computation
of the varieties for the Young modules are used in Section 4 to relate the varieties
of the direct sums of irreducible modules and direct sums of Specht modules. For
any module in a block for the symmetric group, we are able then to give a precise
description of where the support of the module must be located. Later on in the
section, we prove a formula which relates the computation of the support variety
of a module to computing relative support varieties via branching over Young
subgroups. The final section (Section 5) is devoted to computing the complexity
and support varieties for a certain class of simple modules for the symmetric group
called the completely splittable modules.

1.2. Notation. Let k be an algebraically closed field of characteristicp > 0. For
any finite groupG, let kG denote the group algebra ofG. Mod(kG) will denote
the category of allkG-modules, and mod(kG) will be the category of finite-
dimensionalkG-modules. IfH is a subgroup ofG, denotedH � G, andN is
a kH -module then letN↑G

H = kG ⊗kH N be the induced module. On the other
hand, ifM is a kG-module then the restriction ofM to kH will be denoted by
M↓H .

Let d be a fixed positive integer andΣd be the symmetric group ond letters.
We writeλ |= d for a composition ofd andλ � d for a partition ofd . Forλ |= d ,
let Σλ be the corresponding Young subgroup ofΣd , andMλ ∼= k↑Σd

Σλ
be the

corresponding permutation module forΣd .
Other families of modules for the symmetric group can be constructed in

the following way. LetS(n, d) be the finite-dimensional associativek-algebra
EndkΣd (V

⊗d ), whereV is the natural representation of the general linear group
GLn(k). This algebra is often referred to as the Schur algebra. It is well known that
the category of modules forS(n, d) is equivalent to the category of polynomial
representations for GLn(k) of homogeneous degreed . (See [Gr].)

Now suppose thatn � d . Then there exists an idempotente ∈ S(n, d) such
that eS(n, d)e ∼= kΣd . The Schur functorF is the covariant exact functor from
mod(S(n, d)) to mod(kΣd) defined on objects byF(M) = eM. The simple
S(n, d)-modules are in bijective correspondence with partitions ofd , and are
denotedL(λ) whereL(λ) has “highest weight”λ, in the sense thatλ can be
identified with a dominant polynomial weight of GLn(k).
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A partition(λ1, λ2, . . . , λs) is calledp-restrictedif λi −λi+1 � p−1 for all i.
Let Λres be the set of allp-restricted partitions. The partitionλ is p-regular if its
transposeλ′ is p-restricted, and we denote the set ofp-regular partitions byΛreg.
It is well known thatF(L(λ)) is non-zero if and only ifλ ∈ Λres and{

F
(
L(λ)

)
: λ ∈ Λres

}
is a complete set of simplekΣd -modules up to isomorphism. SetDλ = F(L(λ))

for λ ∈ Λres.
The simplekΣd -modules are also indexed byΛreg by setting:

Dλ ∼= Dλ′ ⊗ sgn for anyλ ∈ Λreg.

For eachλ � d , let H 0(λ) = indG
B λ be the induced module (see [Ja]) where

G = GLn(k) andB is the Borel subgroup, and letI (λ) be the injective hull of
L(λ) in Mod(S(n, d)). SetSλ = F(H 0(λ)) and Yλ = F(I (λ)). The modules
{Sλ: λ � d} are called the Specht modules and the set{Yλ: λ � d} are the Young
modules. The indecomposable summands of the permutation modulesMλ consist
of certain Young modules and every Young module appears as a direct summand
of some permutation module.

The composition factors of these modules behave well with respect to�, the
usual dominance order on partitions. The Young modules all have filtrations by
Specht modules and

Sλ = Dλ +
∑
µ✄λ

aµD
µ, (1.1.1)

Yλ = Sλ +
∑
µ✄λ

bµS
µ, (1.1.2)

where the equalities in Eqs. (1.2.1) and (1.2.2) are of composition factors, and the
termDλ in Eq. (1.2.1) occurs only whenλ ∈ Λreg.

Eachλ � d has a well-definedp-core λ̃ � d − pw, wherew is called the
weightof λ. The Nakayama rule says the blocks ofkΣd are indexed byp-cores
of partitions ofd . The Specht modulesSλ andSµ are in the same block if and
only if λ̃ = µ̃, and similarly for the simple and Young modules. Thus the weight
w is an invariant of the block. Forλ � d , let Bλ denote the block withSλ ∈ Bλ.
Thus,Sµ ∈ Bλ if and only if λ̃ = µ̃. This will be abbreviated by sayingµ ∈ Bλ.
In Section 5 we will also need the equivalent statement of the Nakayama rule in
terms of residue contents of the Young diagrams. For details see [JK].

2. Complexity and support varieties

2.1. Let {dn}n�0 be a sequence of non-negative integers. The rate of growth
r(d•) of this sequence is the smallest non-negative integerc for which there exists
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a positive real numberC such thatdn � C ·nc−1 for all n � 1. If no suchd exists,
setr(d•) = ∞.

Let M ∈ mod(kG) and let

· · · → P2 → P1 → P0 → M → 0

be the minimal projective resolution ofM. ThecomplexitycG(M) of M is defined
asr(dimk P•) [A, Section 4].

2.2. Let G be a finite group. Set

H(G,k)=
{
H 2•(G, k) if chark �= 2,
H •(G, k) if chark = 2.

The algebraH(G,k) is a commutative subalgebra of the cohomology ring
H •(G, k) and Evens [E1] proved that it is finitely generated. SetVG =
MaxspecH(G,k). The setVG is an affine homogeneous variety and is often
referred to as thevarietyof the groupG.

Given N,N ′ ∈ mod(kG), define therelative support varietyVG(N,N ′) as
follows. The cup product gives Ext•

G(N,N ′) the structure of anH(G,k)-
module [E2, p. 94]. LetJ (N,N ′) be the annihilator ideal inH(G,k) for this
action on Ext•G(N,N ′). Set VG(N,N ′) equal to the closed subvariety ofVG

defined byJG(N,N ′). The (ordinary) support varietyVG(N) is obtained by
settingVG(N) = VG(N,N). The support varieties of modules are closed, conical
subvarieties ofVG.

2.3. We now list some basic properties involving the notion of complexity and
support varieties. Details can be found in [Ben2, Section 5.7].

2.3.1. If N ∈ mod(kG) thencG(N) = dimVG(N) = r(dimk Ext•G(N,N)).

2.3.2. If N ∈ mod(kG) and {Si | i = 1,2, . . . ,m} is a complete set of non-
isomorphic simple modules forkG then

cG(N) = r

(
dimk Ext•G

(
N,

m⊕
i=1

Si

))
= r

(
dimk Ext•G

(
m⊕
i=1

Si,N

))
.

Moreover,

VG(N) = VG

(
N,

m⊕
i=1

Si

)
= VG

(
m⊕
i=1

Si,N

)
.

2.3.3. If N1,N2 ∈ mod(kG) thenVG(N1 ⊕ N2) = VG(N1)∪ VG(N2).

2.3.4. If N1,N2 ∈ mod(kG) thenVG(N1 ⊗ N2) = VG(N1)∩ VG(N2).
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2.3.5. Let 0→ N1 → N2 → N3 → 0 be a short exact sequence inmod(kG) and
let M ∈ mod(kG). If Σ3 is the symmetric group on three letters andσ ∈ Σ3, then

(i) VG(Nσ(1)) ⊆ VG(Nσ(2))∪ VG(Nσ(3)).
(ii) VG(Nσ(1),M) ⊆ VG(Nσ(2),M)∪ VG(Nσ(3),M).

2.3.6. For any N ∈ mod(kG), we haveVG(N) ⊆ ⋃
VG(Si), where the union

runs over the set of composition factorsSi of N .

2.3.7. For N,N ′ ∈ mod(kG), VG(N,N ′) ⊆ VG(N) ∩ VG(N ′).

2.4. Let H be a subgroup ofG. The inclusion map fromH into G induces a
restriction map̂res :H •(G, k) → H •(H, k) on cohomology. This is turn induces
a map of varieties resG,H :VH → VG with several nice properties:

2.4.1. The mapresG,H is a finite map onto its image and maps closed sets
to closed sets. Consequently, ifW is a closed subset ofVH then dimW =
dimresG,H (W).

2.4.2. If K � L � G thenresG,K = resG,L ◦ resL,K .

The following proposition states how relative support varieties behave under
induction for finite groups. This is a generalization of a result that can be found in
[E2, Proposition 8.2.4].

2.4.3. Proposition. Let G be a finite group andH � G. If M ∈ mod(kG) and
N ∈ mod(kH) then

(a) VG(N↑G
H ,M) = resG,H(VH (N,M↓H));

(b) VG(N↑G
H ) = resG,H(VH (N));

(c) cG(N↑G
H ) = cH (N).

Proof. (a) Let r̂es :H •(G, k) → H •(H, k) be as above. The isomorphism given
by Frobenius reciprocity

Ext•G
(
N↑G

H ,M
)∼= Ext•H(N,M↓H)

implies that ζ ∈ J (N↑G
H ,M) if and only if some power ofr̂es(ζ ) lies in

J (N,M↓H) (see [E2, Proposition 8.2.1]). Hence,

VG

(
N↑G

H ,M
)= resG,H

(
VH(N,M↓H )

)
.

(b) SetM = N↑G
H . Then by part (a),

VG

(
N↑G

H

)= VG

(
N↑G

H ,N↑G
H

)= resG,H

(
VH

(
N,
(
N↑G

H

)↓H

))
.
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SinceN is a direct summand of(N↑G
H )↓H , it follows that

VH(N) = VH(N,N) ⊆ VH

(
N,
(
N↑G

H

)↓H

)
.

But, by 2.3.7,VH(N, (N↑G
H )↓H) ⊆ VH(N). Therefore,

resG,H

(
VH

(
N,
(
N↑G

H

)↓H

))= resG,H

(
VH (N)

)
.

(c) This follows immediately from part (b).✷
The next proposition will be used throughout this paper. The proof relies on

facts from Section 2.2 and Proposition 2.4.3.

2.4.4. Proposition. Let G be a finite group andH � G with M ∈ mod(kG) and
N ∈ mod(kH). Suppose that

(i) M | N↑G
H ;

(ii) N | M↓H .

ThenVG(M) = resG,H(VH (N)). Moreover,cG(M) = cH (N).

Proof. From (i) and 2.3.3, we haveVG(M) ⊆ VG(N↑G
H ). By Proposition 2.4.3(b),

we haveVG(N↑G
H ) = resG,H(VH (N)), thusVG(M) ⊆ resG,H (VH (N)). On the

other hand, from (ii) and 2.3.3, we haveVH(N) ⊆ VH(M↓H ). It follows that

resG,H

(
VH(N)

)⊆ resG,H

(
VH(M↓H)

)⊆ VG(M).

Hence,VG(M) = resG,H (VH (N)). The statement about the complexity follows
immediately from 2.4.1 by taking dimensions.✷

3. Permutation and Young modules

3.1. In this section we will use properties of complexity and support varieties
plus the theory of Young vertices to give a simple formula for the complexities
of the modules{Yλ} and{Mλ}. This is accomplished by first determining their
support varieties as images of the map resΣd,Σρ applied toVΣρ(k) for a particular
Young subgroupΣρ . The support varietyVG(k) of the trivial module is explicitly
given by the Quillen Stratification Theorem, which we describe briefly now.

For E an elementary abelianp-group,H •(E, k) is a polynomial ring [Ben1,
Section 3.5]. The varietyVE is a vector space of dimensionr = rank(E).
According to [Ben2, Proposition 5.6.1],

VG = VG(k) =
⋃
E�G

resG,E

(
VE(k)

)
(3.1.1)
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where the union is taken over all elementary abelian subgroupsE of G. Thus, if
rp(G) is the maximal rank of an elementary abelianp-subgroup ofG then

cG(k) = dim
(
VG(k)

)= rp(G). (3.1.2)

The decomposition in (3.1.1) can be refined further in the following way. Define

V +
E = VE

∖ ⋃
E′<E

resE,E′ VE′

so V +
E is VE with hyperplanes defined overFp removed [Ben1, p. 173]. Let

V+
G,E = resG,E(V

+
E ). Then the varietyVG(k) is the disjoint union of locally closed

subvarietiesV +
G,E , one for each conjugacy class of elementary abelian subgroups

E � G.

3.2. We first recall the following well-known fact.

3.2.1. Thep-rank ofΣd is [d/p] where[ ] is the greatest integer function.

We can now determine the complexity and support varieties for the permuta-
tion modulesMλ.

3.2.2. Proposition. Let λ = (λ1, . . . , λs) |= d andMλ be a permutation module
for Σd . Then

(a) VΣd (M
λ) = resΣd,Σλ(VΣλ(k));

(b) cΣd (M
λ) =∑s

i=1[λi/p].

Proof. Part (a) follows immediately from Proposition 2.4.3(b) sinceMλ ∼= k↑Σd

Σλ
.

Part (b) follows from part (a) and 3.2.1 since resΣd,Σλ preserves dimension and
dim(VΣλ(k)) is determined by Eq. (3.1.2).✷

3.3. To describe the complexity and support varieties of Young modules we
will need the theory of Young vertices due to Grabmeier [G]. We remark that a
lower bound for the complexity of the Young modules was given in [EN] and used
to determine the representation type of the blocks for the Hecke algebra of type A.

Notice that anyλ � d has a uniquep-adic expansion of the form

λ =
s∑

i=0

λ(i)p
i (3.3.1)

whereλ(i) ∈ Λres. Define the partition

ρ(λ) = ((
ps
)bs

,
(
ps−1)bs−1, . . . , (1)b0

)
(3.3.2)
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whereλ(i) � bi . ThenΣρ(λ) is called theYoung vertexof Yλ andYλ is a trivial
source module, in analogy with the usual theory of vertices and sources. In
particulark | (Y λ↓Σρ(λ)

) andΣρ(λ) is the minimal Young subgroup such thatYλ

is a summand ofMρ(λ). Notice that:

3.3.1. Thep-rank of the Young vertex isrp(Σρ(λ)) =∑s
i=0 ibi .

If λ is notp-restricted then one can successively strip horizontal rimp-hooks
fromλ to obtain ap-restricted partition. The following theorem demonstrates that
the complexity of the Young moduleYλ can be obtained combinatorially as the
number of such hooks removed.

3.3.2. Theorem. Letλ � d with Yλ the corresponding Young module forΣd and
ρ(λ) as in Eq.(3.3.2). Then

(a) VΣd (Y
λ) = resΣd,Σρ(λ)

(VΣρ(λ)
(k));

(b) cΣd (Y
λ) =∑s

i=0 ibi .

Proof. Part (a) follows from Proposition 2.4.4 by settingN = k, H = Σρ(λ)

andG = Σd . In order to prove (b) take the dimension on both sides of (a) and
recall from 2.4.1 that resΣd,Σρ(λ)

preserves dimension. But the dimk(VΣρ(λ)
(k)) =

rp(Σλ(ρ)) is given by 3.3.1. ✷
We remark that this theorem agrees with the well-known fact thatYλ is

projective exactly whenλ is p-restricted. Furthermore, from Theorem 3.3.2(b)
it is easy to see that for a blockB of weightw, there are Young modules inB of
every possible complexity{0,1, . . . ,w}.

Recall that a module is calledperiodic if it admits a periodic projective
resolution. Non-projective periodic modules are exactly those with complexity
one [E2, 8.4.4]. Thus Theorem 3.3.2 immediately yields:

3.3.3. Corollary. A non-projective Young moduleYλ is periodic if and only ifλ is
of the form(µ1 + p,µ2, . . . ,µs) where(µ1,µ2, . . . ,µs) is p-restricted.

Proof. The complexity is one exactly when thep-adic expansion ofλ has the
form µ+ (1)p. ✷

3.4. In the next section we will see the support varieties for modules in a block
all sit insideVΣd (Y

λ) for Yλ having a distinguished Young vertex. To do this we
now observe that the set of Young vertices for Young modules in a block have
nice ordering properties. First a lemma:
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3.4.1. Lemma. Let d = ∑z
i=0 cip

i be the uniquep-adic expansion ofd , so
0 � ci < p. Supposed =∑z

i=0 aip
i is another expansion, with0� ai . Then

Σ(1a0,pa1,(p2)a2,...,(pz)az ) � Σ(1c0,pc1,(p2)c2,...,(pz)cz ).

Proof. It is clear that
∑t

i=0 cip
i < pi+1 for any 0� t � z. This immediately

implies that

z∑
i=t

aip
i �

z∑
i=t

cip
i ∀t : 0 � t � z. (3.4.1)

From Eq. (3.4.1) it is clear that the Young subgroups embed as desired.✷
Now supposeBµ is a block ofkΣd with weightw andp-coreµ̃ � d − pw.

Let
∑z

i=1 cip
i be thep-adic expansion ofpw. Define

ρ := ρ(w) = ((
pz
)cz , (pz−1)cz−1, . . . , pc1,1d−pw

) � d. (3.4.2)

Let µ̃ = (µ̃1, µ̃2, . . .). Notice thatΣρ is the Young vertex forYµ where
µ = (µ̃1 + pw, µ̃2, . . .). For every otherλ ∈ Bµ, we haveµ ✄ λ and the Young
vertex ofYλ is of the form

τ = ((
pz
)az , (pz−1)az−1, . . . , pa1,1a0

)
wherea0 � d − pw andd =∑z

i=0 aip
i . Thus

pw = (
a0 − (d − pw)

)+
z∑

i=1

aip
i

is an expansion ofpw and Lemma 3.4.1 immediately implies:

3.4.2. Proposition. Letλ ∈ Bµ and letYλ have a Young vertexΣρ(λ). Letρ be as
in Eq. (3.4.2). Then

Σρ(λ) � Σρ.

Thus the Young vertices for the Young modules in a block are all contained in
a unique maximal vertexΣρ , which is the vertex for the Young moduleY µ̃+(pw).
In the next section we use this to give a precise description of where the support
varieties for modules in the block are located.

4. Support varieties and branching

4.1. We begin by showing that the relative support varieties for the direct sum
of simple, Specht and Young modules are indeed equal.
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4.1.1. Theorem. LetM ∈ mod(kΣd). The following varieties are equal:

(a) VΣd (M);
(b) VΣd (

⊕
λ∈Λreg

Dλ,M);

(c) VΣd (
⊕

λ�d S
λ,M);

(d) VΣd (
⊕

λ�d Y
λ,M).

Proof. (a)= (b). From (2.3.2), we haveVΣd (M) = VΣd (
⊕

λ∈Λreg
Dλ,M).

(c) ⊆ (a), (d)⊆ (a). These inclusions follow from (2.3.7).
(b) ⊆ (c). This will be proved by using induction on the dominance order of

partitions. SetW = VΣd (
⊕

λ�d S
λ,M). Letλ be maximal with respect to✂. Then

Sλ = Dλ andVΣd (D
λ,M) ⊆ W . Now suppose that for everyµ ✄ τ , we know

VΣd (D
µ,M) ⊆ W . We need to show thatVΣd (D

τ ,M) ⊆ W . By Eq. (1.2.1) there
exists a short exact sequence of the form

0→ N → Sτ → Dτ → 0 (4.1.1)

with N having composition factors of the formDµ with µ ✄ τ . Therefore, by
2.3.5(ii)

VΣd

(
Dτ ,M

)⊆ VΣd

(
Sτ ,M

)∪ VΣd (N,M) ⊆ W.

Thus,VΣd (
⊕

τ∈Λreg
Dτ ,M) ⊆ W .

(c) ⊆ (d). This statement will be proved in a similar fashion as above. Set
X = VΣd (

⊕
λ�d Y

λ,M). Again letλ be maximal with respect to✂ soYλ = Sλ

andVΣd (Y
λ,M) ⊆ X. Suppose that for anyµ ✄ τ , VΣd (S

µ,M) ⊆ X. It will
suffice to show thatVΣd (S

τ ,N) ⊆ X. By Eq. (1.2.2) there is a short exact
sequence of the form

0→ Sτ → Y τ → Z → 0 (4.1.2)

with Z having a Specht filtration with factors of the formSµ with µ ✄ τ .
Consequently, by 2.3.5(ii)

VΣd (S
τ ,M) ⊆ VΣd (Y

λ,M)∪ VΣd (Z,M) ⊆ X. ✷
Let Stmod(kG) be the stable module category [Ben1, Section 2.1]. The

argument above shows that
⊕

λ�d S
λ and

⊕
λ�d Y

λ generate Stmod(kΣd).

4.2. The preceding result along with our computation for the support variety
of Young modules can be used to provide an explicit description for the location
of the support varieties for modules in a block ofkΣd .

4.2.1. Corollary. Let Bµ be a block ofkΣd of weightw and letM be a finite-
dimensional module inBµ. Letρ be as in Eq.(3.4.2). Then



432 D.J. Hemmer, D.K. Nakano / Journal of Algebra 254 (2002) 422–440

(a) VΣd (
⊕

λ∈Bµ
Dλ) = VΣd (

⊕
λ∈Bµ

Sλ) = VΣd (
⊕

λ∈Bµ
Y λ);

(b) VΣd (
⊕

λ∈Bµ
Dλ) = resΣd,Σρ (VΣρ (k));

(c) VΣd (M) ⊆ resΣd,Σρ (VΣρ (k));
(d) cΣd (M) � w.

Proof. (a) LetN be equal to either
⊕

λ∈Bµ
Sλ or

⊕
λ∈Bµ

Y λ. By 2.3.6,VΣd (N) ⊆
VΣd (

⊕
λ∈Bµ

Dλ). On the other hand, by Theorem 4.1.1 and 2.3.7,

VΣd

( ⊕
λ∈Bµ

Dλ

)
⊆ VΣd

(⊕
λ�d

Sλ,
⊕
λ∈Bµ

Dλ

)
= VΣd

(
N,

⊕
λ∈Bµ

Dλ

)
⊆ VΣd (N).

(b) From part (a) we haveVΣd (
⊕

λ∈Bµ
Dλ) = VΣd (

⊕
λ∈Bµ

Y λ). Furthermore,
by Proposition 3.4.2,

VΣd

( ⊕
λ∈Bµ

Y λ

)
= VΣd

(
Y µ̃+(pw)

)= resΣd ,Σρ

(
VΣρ (k)

)
.

(c) This follows from (b) because for anyM in Bµ,

VΣd (M) ⊆ VΣd

(⊕
λ∈Bµ

Dλ

)
.

(d) The dimension ofVΣρ (k) = w, so by part (c)cΣd (M) � w for any M

in Bµ. ✷
4.3. In the representation theory of the symmetric group, one of the funda-

mental questions is how does akΣd -moduleM decompose on restriction toΣλ.
Answers to questions of this type are often referred to as “branching rules.”
Kleshchev has proved important results on branching of the simplekΣd modules
on restriction tokΣd−1 [K1]. The next theorem shows that the computation of
support varieties forkΣd -modules can be reduced to looking at how the modules
branch over Young subgroupsΣλ.

4.3.1. Theorem. LetM ∈ mod(kΣd). Then

(a) VΣd (M) =⋃
λ|=d resΣd,Σλ(VΣλ(k,M));

(b) cΣd (M) = maxλ|=d {r(Ext•Σλ
(k,M))}.

Proof. Part (b) follows immediately from part (a). From Proposition 2.4.3(a) and
2.3.7, we have forλ |= d :

resΣd,Σλ

(
VΣλ(k,M)

)= VΣd

(
Mλ,M

)⊆ VΣd (M).
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Therefore,
⋃

λ|=d resΣd,Σλ(VΣλ(k,M)) ⊆ VΣd (M). On the other hand, by 2.3.2
and Theorem 4.1.1,

VΣd (M) = VΣd

( ⊕
λ∈Λreg

Dλ,M

)
= VΣd

(⊕
λ�d

Y λ,M

)
.

Now, by 2.3.3 and Proposition 2.4.3(i),

VΣd

(⊕
λ�d

Y λ,M

)
⊆ VΣd

(⊕
λ|=d

Mλ,M

)
=
⋃
λ|=d

VΣd

(
Mλ,M

)
⊆
⋃
λ|=d

resΣd,Σλ

(
VΣλ(k,M)

)
. ✷

4.4. We should remark that one can give an alternate proof of Theorem
4.3.1(b), by using the Schur functorF . This proof will does not rely on the
ordering properties of the Specht and Young modules given in Eqs. (1.2.1)
and (1.2.2). The functorF admits a right adjoint functor,G, defined by

G(N) = HomkΣd

(
e
(
S(n, d)

)
,N
)= HomkΣd

(
V ⊗d ,N

)
.

The functorG is a left inverse toF . By using these two functors one can construct
a first-quadrant Grothendieck spectral sequence [DEN, 2.2]:

E
i,j
2 = ExtiS(n,d)

(
M,ExtjkΣd

(
V ⊗d ,N

))⇒ Exti+j
kΣd

(
F(M),N

)
,

whereM ∈ Mod(S(n, d)) andN ∈ Mod(kΣd). WhenM = G(N) the spectral
sequence becomes

E
i,j

2 = ExtiS(n,d)
(
G(N),ExtjkΣd

(
V⊗d ,N

))⇒ Exti+j
kΣd

(N,N).

Let

Dn =
∑

i+j=n

ExtiS(n,d)
(
G(N),ExtjkΣd

(
V ⊗d ,N

))
.

SinceE∞ is a subquotient ofE2,

cΣd (N) = r
(
dimk Ext•kΣd

(N,N)
)
� r(dimk D•). (4.4.1)

There exists a finite projective resolutionP• → G(M) because the Schur algebra
S(n, d) has finite global dimension. Thenr(dimk P•) = 0. Consequently,

dimk Dn �
∑

i+j=n

dimk HomS(n,d)

(
Pi,ExtjΣd

(
V ⊗d ,N

))
�

∑
i+j=n

(dimk Pi)⊗k

(
dimk ExtjΣd

(
V ⊗d ,N

))
.

It follows that
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r(dimk D•) � r(dimk P•)+ r
(
dimk Ext•Σd

(
V⊗d ,N

))
= r

(
dimk Ext•Σd

(
V ⊗d ,N

))
� cΣd (N). (4.4.2)

The statement of Theorem 4.3.1(b) follows from Eqs. (4.4.1) and (4.4.2) because
as akΣd -module,V⊗d =⊕

λ|=d M
λ.

5. Completely splittable modules

5.1. We now determine the complexity and support varieties of the completely
splittable modules, defined below:

5.1.1. Definition. A simplekΣd -moduleDλ is calledcompletely splittableif and
only if the restrictionDλ↓Σµ

to any Young subgroupΣµ � Σd is semisimple.

WhenDλ is completely splittable we will also say thatλ is completely splittable.

It was shown in [H] that almost every completely splittablekΣd -moduleDλ

occurs as a direct summand ofDµ↑Σd

Σd−1
for some completely splittablekΣd−1-

moduleDµ. In this case we will see that

resΣd,Σd−1

(
VΣd−1

(
Dµ

))= VΣd

(
Dλ
)
. (5.1.1)

This will reduce the problem to determining the support varieties of the minimal
modules, defined in [H]. We will show the minimal modules all have the
maximum possible complexity by proving they have dimension not divisible byp.

We begin by recalling the main results of [K2] on completely splittable
modules. For a partitionλ = (λ1, λ2, . . . , λs) define:

h(λ) := s and χ(λ) := λ1 − λs + h(λ).

Then

5.1.2. [K2] Dλ is completely splittable if and only ifχ(λ) � p.

It is clear from the definition that restricting a completely splittable module to
Σd−1 will give a direct sum of completely splittableΣd−1-modules. Kleshchev
determined this decomposition. For a removable nodeA of λ � d , let λA � d − 1
denoteλ with the nodeA removed. Then

5.1.3. [K2] LetDλ be completely splittable. Then

Dλ↓Σd−1
=
⊕

DλA

where the sum is over all removable nodesA with χ(λA) � p.
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5.2. We next recall the definition of minimal modules.

5.2.1. Definition. A completely splittablekΣd -moduleDλ is minimal if there
does not existµ � d − 1, with Dµ a completely splittablekΣd−1-module, such
thatDµ↑Σd

Σd−1
∼= Dλ ⊕ M whereM has no summand in the same block asDλ. If

Dλ is minimal, we also sayλ is minimal.

It turns out that ifDλ is completely splittable andDλ is not minimal, then we
can obtainµ by removing a node fromλ. That is, there is some removable nodeA

of λ such thatDλA is completely splittable andDλ ⊕ M ∼= DλA↑Σd

Σd−1
with M in

a different block thenDλ. Also DλA | (Dλ↓Σd−1
). In this case Proposition 2.4.4

proves:

5.2.2. Lemma. Letλ be not minimal and chooseλA as above. Then

(a) VΣd (D
λ) = resΣd,Σd−1(VΣd−1(D

λA));
(b) cΣd (D

λ) = cΣd−1(D
λA).

5.3. Lemma 5.2.2 indicates that the problem of computing support varieties
for completely splittable modules reduces to calculating the support variety for
minimal completely splittable modules. To make this precise we need a few more
details from [H].

Recall that for a nodeA = (i, j) in the diagram of a partitionλ, thep-residueof
the node, denoted resA, is defined to bej − i modp. Then the alternate version
of the Nakayama rule states thatλ ∈ Bµ if and only if λ andµ have the same
number of nodes of eachp-residue 0,1, . . . , p − 1.

Often a completely splittable moduleDλ can be obtained by induction from
more than one completely splittablekΣd−1-module. The next lemma determines
when this happens:

5.3.1. Lemma [H, Lemma 4.2].Let Dλ be a completely splittablekΣd -module,
andA a removable node ofλ. Then

DλA↑Σd

Σd−1
∼= Dλ ⊕M

whereM is in a different block thanDλ, unless

(i) χ(λ) = p andA is the lowest removable node ofλ, or
(ii) resA is equal to the residue of the lowest addable node ofλ.

Since we plan to reduce the calculation ofVΣd (D
λ) to the case whereλ is

minimal, the next definition is natural:
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Fig. 1. Two examples of minimal 7-cores.

5.3.2. Definition. Given a completely splittablekΣd -moduleDλ, the minimal
coreof λ, denoted̂λ, is obtained by successively removing nodes fromλ which
do not satisfy Lemma 5.3.1, (i) or (ii), until no such nodes can be removed.

It is shown in [H] thatλ̂ is well-defined, minimal, and can be easily obtained
from λ. Let λ = (λ1, λ2, . . . , λs) be completely splittable. To obtain̂λ from λ,
simply remove removable nodes, never removing any of residue equal to the
residue of the bottom addable node, and never allowingχ to be>p. This process
will terminate atλ̂.

Two examples are given in Fig. 1, with the minimal core drawn inside the
partition. The residues of all nodes inλ and the bottom addable node ofλ are
labeled.

5.4. We now use the minimal cores and Lemma 5.2.2 to formalize the reduction
of determining the complexity and support variety of a completely splittable
module to the minimal case.

5.4.1. Theorem. LetDλ be a completely splittablekΣd -module and let̂λ be the
minimal core ofλ with λ̂ � t . Then

(a) VΣd (D
λ) = resΣd,Σt (VΣt (D

λ̂));

(b) cΣd (D
λ) = cΣt (D

λ̂).

Proof. This follows immediately from Lemmas 5.3.1 and 5.2.2 since we obtainλ̂

by successively removing nodes fromλ that do not satisfy Lemma 5.3.1. We also
use 2.4.2. ✷

5.5. We must still determine the complexity and support variety of the minimal
modules. We will need a few basic facts about defect groups for blocks and
p-divisibility of the modules in the blocks. First:

5.5.1. [JK, 6.2.45].LetB be ap-block of thekΣd with weightw. Then a defect
group ofB is isomorphic to the Sylowp-subgroup ofΣwp .
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If the defect group of a block has orderpd , thend is called the defect of the
block. The defect can be determined from the dimensions of the simple modules
in the block, namely:

5.5.2. [I, 15.42].For any groupG where|G| = pat with (p, t) = 1 and a blockB
with defectd , thenpa−d is the largest power ofp which divides the dimensions of
all the simple modules in the block, and hence the dimensions of all the modules
in the block.

The aforementioned facts give the following proposition.

5.5.3. Proposition. LetM be an indecomposablekΣmp-module that is not in the
principal block. Thenp | dimM.

Proof. Only the principal block ofkΣmp has weightm. Thus, by Lemma 5.5.1,
the other blocks have defect group strictly smaller than thep-Sylow subgroup
of Σmp . As a result,a − d > 0 from Lemma 5.5.2 andp divides the dimension of
M. ✷

We need a little more information about minimal modules.

5.5.4. Theorem [H, Theorem 3.3].SupposeDλ is a completely splittablekΣd

module. Thend = mp for some m andDλ is in the principal block ofkΣmp .

Furthermore:

5.5.5. Lemma [H, Lemma 3.5].Let d = mp. There arep − 1 minimal partitions
of d . They have1,2, . . . , p − 1 parts. The top removable node of the one with i
parts has residuep − i.

The minimal partitions forp = 5 andn = 5,10,15 are illustrated in Fig. 2,
with the 5-residues labeled. Notice there is an obvious bijection between minimal
partitions of(m − 1)p and ofmp given by adding a rimp-hook with head in the
first row. This bijection preserves the number of parts and the residue of the top
removable node.

5.6. We now investigate the branching behavior of the minimal modules.
Applying 5.1.3 repeatedly we obtain:

5.6.1. Theorem. For 1 � i � p − 1 andm � 2, let λi be the minimal partition
of mp with i parts and let̃λi be the minimal partition of(m − 1)p with i parts.
Then:

Dλi↓Σ(m−1)p
∼=
(
p − 2
i − 1

)
Dλ̃i ⊕ U
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Fig. 2. Minimal partitions forp = 5 andn = 5,10,15.

whereU is not in the principal block ofkΣ(m−1)p.

Proof. We knowDλi↓Σ(m−1)p
is a direct sum of completely splittable modules.

To prove Theorem 5.6.1 we must show that the only minimalkΣ(m−1)p-module

which occurs isDλ̃i , and that it occurs with the correct multiplicity.
We need to prove the component ofDλi↓Σ(m−1)p

which lies in the principal
block is correct. By 5.1.3 and the Nakayama rule, we must count the number ways
to removep nodes successively fromλi so that at each step we have a partition
with χ � p, and so that we remove exactly one node of each residue.

It is clear from Fig. 2 that thep nodes which are successively removed must
make up the rim hook with head in the first row. To remove any other set ofp

nodes with distinct residues would forceχ to be>p at some point. Thus the only
minimal module that occurs in the decomposition ofDλi↓Σ(m−1)p

is Dλ̃i , and

we must prove its multiplicity is
(
p−2
i−1

)
. By 5.1.3, this multiplicity is the number

of ways to remove the nodes in the rim hook with head in the first row while
maintainingχ � p. Equivalently this is the number of paths from̃λi to λi in the
graphY defined in [K2, Definition 2.2].

The first node removed must be the top removable node since the other
removable node, if there is one, leavesχ = p + 1 when removed. It is also easy
to determine that the node of residue 0 must be the last one removed ifχ is to
stay� p. There will always be

(
p−2
i−1

)
ways to legally remove the remainingp− 2

nodes. An example should make it clear why this is the case:

Fig. 3.λ5 for mp = 33.
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Figure 3 illustrates the casep = 11,m = 3 andi = 6. We must remove the rim
hook with head at(1,8) while maintainingχ � 11. The node(3,8) of residue 5
must be removed first. The node(3,3) of residue 0 must be removed last. The
nodes of residues 4, 3, 2, 1 must be removed in that order. Also the node 7 must
be removed before 8 in order to maintainχ � 11. So the nodes 6, 7, 8, 9, 10 must
be removed in that order.

We have seen the sequence of residues of removed nodes must begin with 5
and end with 0. Also it must have subsequences 4, 3, 2, 1 and 6, 7, 8, 9, 10, but
there are no other restrictions. That is, any sequence of{0,1, . . . ,10} that starts
with 5, ends with 0 and has subsequences 4, 3, 2, 1 and 6, 7, 8, 9, 10 will give a
legal partition withχ � 11 at each step. For example we could remove the nodes
in the order 5, 6, 4, 7, 8, 3, 2, 9, 1, 10, 0.

The total number of such sequences is clearly
(9
5

)
. We have a sequence that is

nine terms in length (not counting the first and last which are determined). Once
we place the five numbers 6, 7, 8, 9, 10 the positions of 4, 3, 2, 1 are forced.

In the general situation instead of five numbers 6, 7, 8, 9, 10, we havei − 1
numbers corresponding to the last node in each row except that row containing the
top removable node ofλ. And instead of 9 positions we will havep−2 positions,
so there are

(
p−2
i−1

)
possible paths. This completes the proof.✷

5.7. We can now show thatp does not divide the dimension of minimal
modules:

5.7.1. Theorem. LetDλ be a minimalkΣmp-module. Thenp � dimk D
λ.

Proof. We prove this by induction onm. For m = 1 the minimal modules
correspond to partitions(p− i,1i ). The principal block ofkΣp is well understood

and dimk D
(p−i,1i ) = (

p−2
i

)
. This implies thatp � dimk D

(p−i,1i ).

Now p does not divide
(
p−2
i−1

)
. But Corollary 5.5.3 implies thatp divides the

dimension ofU in Theorem 5.6.1. Hence, the theorem follows from Theorem
5.6.1 by induction. ✷
5.7.2. Corollary. The complexity of a completely splittablekΣd -moduleDλ is the
weight of the minimal corêλ.

Proof. We know cΣd (D
λ) = cΣmp(D

λ̂) where λ̂ � mp. Since Dλ̂ is in the

principal block ofkΣmp , λ̂ has weightm. But p � dimk D
λ̂ so its complexity is

equal to thep-rank ofΣmp , which ism. ✷
5.7.3. Corollary. LetDλ be completely splittable and̂λ � mp. Then

VΣd

(
Dλ
)= resΣd,Σmp

(
VΣmp

(
Dλ̂
))= resΣd,Σmp

(
VΣmp(k)

)
.
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Proof. The first equality is just Theorem 5.4.1(i) and the second follows because

p � dimDλ̂. ✷
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