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1. Introduction

1.1. In the late 1970s, Alperin [A] defined an invariant called the complexity
of a module as a way to relate the modules with the complexes and resolutions
that they admit. Several years later, Carlson [Cal,Ca2] defined affine algebraic
varieties corresponding to modules over group algebras. These varieties are
subvarieties of the spectrum of the cohomology ring which was earlier described
by Quillen [Q]. They are known in present day language as support varieties. It
was discovered early on that the complexity of a module is equal to the dimension
of the support variety of the module. Geometric methods involving support
varieties have played a fundamental role in understanding the interplay between
the modular representation theory and cohomology for finite groups. Despite
substantial progress in this direction, there have been few explicit computations
of support varieties for important classes of modules over certain groups.

The goal of this paper is to introduce methods and techniques for computing
support varieties for modules over the symmetric grayp In the process,
we will provide explicit computations of support varieties for certain classes
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of modules. The paper is organized as follows. After setting up the notation in
Section 1, we provide a definition of complexity and relative support varieties in
Section 2. It will be advantageous to work with relative support varieties to relate
the (ordinary) support varieties of different families of modules for the symmetric
group. We also present some fundamental results on relative support varieties
that will be used throughout the paper. In Section 3, the complexity and support
varieties for the permutation and Young modules are determined. The varieties for
these modules can be described by looking at the image of the restriction map on
the variety of the trivial module over certain Young subgroups. The computation
of the varieties for the Young modules are used in Section 4 to relate the varieties
of the direct sums of irreducible modules and direct sums of Specht modules. For
any module in a block for the symmetric group, we are able then to give a precise
description of where the support of the module must be located. Later on in the
section, we prove a formula which relates the computation of the support variety
of a module to computing relative support varieties via branching over Young
subgroups. The final section (Section 5) is devoted to computing the complexity
and support varieties for a certain class of simple modules for the symmetric group
called the completely splittable modules.

1.2. Notation Let k be an algebraically closed field of characterigtic- 0. For
any finite groupG, let kG denote the group algebra 6f. Mod(kG) will denote
the category of alkG-modules, and ma@G) will be the category of finite-
dimensionalk G-modules. IfH is a subgroup of5, denotedH < G, andN is
a kH-module then IeWTg = kG ®ry N be the induced module. On the other
hand, if M is akG-module then the restriction df to kH will be denoted by
Mly.

Let d be a fixed positive integer ang; be the symmetric group o letters.
We write A = d for a composition ofl anda + d for a partition ofd. Fori =d,
let X, be the corresponding Young subgroup 3§, and M* = kT?A’ be the
corresponding permutation module by

Other families of modules for the symmetric group can be constructed in
the following way. LetS(n, d) be the finite-dimensional associati¥ealgebra
Endx, (V®), whereV is the natural representation of the general linear group
GL, (k). This algebrais often referred to as the Schur algebra. It is well known that
the category of modules fdf(n, d) is equivalent to the category of polynomial
representations for Glk) of homogeneous degrée (See [Gr].)

Now suppose that > d. Then there exists an idempoten& S(n,d) such
thateS(n, d)e = kX ;. The Schur functorfF is the covariant exact functor from
modS(n,d)) to modkX,;) defined on objects byF(M) = eM. The simple
S(n,d)-modules are in bijective correspondence with partitiong/ poand are
denotedL(A) where L(1) has “highest weight., in the sense that can be
identified with a dominant polynomial weight of Gl&).
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A partition (A1, A2, ..., Ay) is calledp-restrictedif A; — 1,11 < p—1foralli.
Let Aresbe the set of alp-restricted partitions. The partitionis p-regular if its
transpose.’ is p-restricted, and we denote the sepefegular partitions byl reg.
It is well known thatF (L (1)) is non-zero if and only i € Aresand

{F(LO)): & € Ares)

is a complete set of simpkeX;-modules up to isomorphism. SBf, = F(L()))
for A € Ares
The simplek X;-modules are also indexed byteq by setting:

D*=D; ®sgn foranyi € Areg

For eachi - d, let HO() = ind§ A be the induced module (see [Ja]) where
G = GL, (k) and B is the Borel subgroup, and Iéi()») be the injective hull of
L) in Mod(S(n,d)). SetS* = F(HO%)) and Y* = F(I()»)). The modules
{S*: A+ d)} are called the Specht modules and the{¥ét A - 4} are the Young
modules. The indecomposable summands of the permutation madtilesnsist
of certain Young modules and every Young module appears as a direct summand
of some permutation module.

The composition factors of these modules behave well with respeet the
usual dominance order on partitions. The Young modules all have filtrations by
Specht modules and

s =D"+ Y a,D", (1.1.1)
HU>A

Yh=8"+> b, (1.1.2)
U>A

where the equalities in Egs. (1.2.1) and (1.2.2) are of composition factors, and the
term D* in Eq. (1.2.1) occurs only whene Areg.

EachA - d has a well-defineQa-coreX Fd — pw, wherew is called the
weightof A. The Nakayama rule says the blockskdf,; are indexed by-cores
of partitions ofd. The Specht module$* and S* are in the same block if and
only if % = 7, and similarly for the simple and Young modules. Thus the weight
w is an invariant of the block. Fox - d, let B, denote the block witt§* € ;.
Thus, S € B, if and only if X = /. This will be abbreviated by saying € B;.
In Section 5 we will also need the equivalent statement of the Nakayama rule in
terms of residue contents of the Young diagrams. For details see [JK].

2. Complexity and support varieties

2.1. Let {d,}»>0 be a sequence of non-negative integers. The rate of growth
r(d,) of this sequence is the smallest non-negative inted@rwhich there exists
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a positive real numbef such that/, < C -n~1forall n > 1. If no suchd exists,
setr(d,) = 0.
Let M € modkG) and let

o> P> P> Ph—>M—>0

be the minimal projective resolution 1. Thecomplexityes (M) of M is defined
asr(dimy P,) [A, Section 4].

2.2. Let G be afinite group. Set

H?(G,k) if chark #2,
H*(G,k) if chark=2.

The algebraH (G, k) is a commutative subalgebra of the cohomology ring
H*(G,k) and Evens [E1] proved that it is finitely generated. S&f =
Maxsped (G, k). The setVi is an affine homogeneous variety and is often
referred to as theariety of the groupG.

Given N, N’ € modkG), define therelative support varietyVg (N, N’') as
follows. The cup product gives ExtN, N') the structure of anH(G,k)-
module [E2, p. 94]. Let/ (N, N') be the annihilator ideal i (G, k) for this
action on Ext, (N, N'). Set Vg(N, N') equal to the closed subvariety 6%
defined byJg (N, N'). The (ordinary) support varietyVg(N) is obtained by
settingVs (N) = Vg (N, N). The support varieties of modules are closed, conical
subvarieties oV;.

H(G,k):{

2.3. We now list some basic properties involving the notion of complexity and
support varieties. Details can be found in [Ben2, Section 5.7].

23.1. If N emodkG) thencg(N) =dimVg(N) = r(dim; EXtg, (N, N)).

232. If NemodkG) and{S; |i =1,2,...,m} is a complete set of non-
isomorphic simple modules féG then

w0 = (o (1)) = (omet (5.1))

i=1 i=1
Moreover,

V6(N) = VG(N,@S,‘) = V(;(@S,’,N).
i=1 i=1

2.3.3. If N1, N2 e modkG) thenVg (N1 @ N2) = Vg (N1) U Vg (N2).

2.3.4. If N1, No e modkG) thenVg (N1 ® N2) = Vg (N1) N Vg (N2).
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2.35. Let0— N1 — N2 — N3 — 0be a short exact sequencemodkG) and
let M e modkG). If X3 is the symmetric group on three letters and X3, then

() V6(No(1)) € V6(No(2) U Vi (No3)-
(i) Vo(No(1y, M) € VG(Ny(2), M) U VG(Ng(3), M).

2.3.6. For any N € modkG), we haveVs(N) C | Vs (Si), where the union
runs over the set of composition factdsof N.

23.7. For N,N' e modkG), Vg(N,N') C Vg(N)NVg(N').

2.4. Let H be a subgroup of;. The inclusion map fronH into G induces a
restriction mapges:H*(G, k) — H*(H, k) on cohomology. This is turn induces
a map of varieties resy : Vu — Vi with several nice properties:

24.1. The mapres; n is a finite map onto its image and maps closed sets
to closed sets. Consequently, W is a closed subset ofy then dimw =
dimress g (W).

242. If K<L Gthenregs gk =res.Lores. k.

The following proposition states how relative support varieties behave under
induction for finite groups. This is a generalization of a result that can be found in
[E2, Proposition 8.2.4].

2.4.3. Proposition. Let G be a finite group andd < G. If M € modkG) and
N e modkH) then

@) Vo(N1S, M) =ress u(Vu (N, M| y));
(b) V6(N1%) =ress, u(Vu(N));
(©) cc(N1§) =cu(N).

Proof. (a) Letres:H*(G, k) — H*(H, k) be as above. The isomorphism given
by Frobenius reciprocity
Ext; (N 15, M) = Ext; (N, M 1)

implies thatz € J(N19, M) if and only if some power offég¢) lies in
J(N, M| y) (see [E2, Proposition 8.2.1]). Hence,

Vo (N1G. M) =ress 1 (Vi (N, M| p)).
(b) SetM = N1%. Then by part (a),

Vo (N1G) = Ve (N5, N1G) =ress u (Vi (N, (N15) 1))
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SinceN is a direct summand c(fNTf,nH, it follows that
Vi(N) = Vi(N,N) S Va (N, (N1§) L n).
But, by 2.3.7Vu(N, (N1$)| ) € Vu(N). Therefore,

reso.rr (Vi (N. (N1§) 4 ) =res.u (Va (N)).

(c) This follows immediately from part (b). O

The next proposition will be used throughout this paper. The proof relies on
facts from Section 2.2 and Proposition 2.4.3.

2.4.4. Proposition. Let G be a finite group andd < G with M € modkG) and
N € modkH). Suppose that

(i) M|N1G;
(i) N MLy

ThenVg (M) =ress. u(Vu (N)). Moreovercg (M) = cu(N).

Proof. From (i) and 2.3.3, we havé; (M) C VG(NTf,). By Proposition 2.4.3(b),
we haveVG(NTg) =res g(Va(N)), thusVg (M) C ress. u (Vi (N)). On the
other hand, from (ii) and 2.3.3, we haVg (N) C Vg (M| y). It follows that

ress,n (Ve (N)) Cress.u(Va(My)) € Va(M).

Hence,Vg (M) =res, u(Vu(N)). The statement about the complexity follows
immediately from 2.4.1 by taking dimensions

3. Permutation and Young modules

3.1. In this section we will use properties of complexity and support varieties
plus the theory of Young vertices to give a simple formula for the complexities
of the modulegY*} and{M*}. This is accomplished by first determining their
support varieties as images of the mapses, applied toVx, (k) for a particular
Young subgrou®,. The support varietys (k) of the trivial module is explicitly
given by the Quillen Stratification Theorem, which we describe briefly now.

For E an elementary abeliap-group, H*(E, k) is a polynomial ring [Benl,
Section 3.5]. The varietWr is a vector space of dimension= rank(E).
According to [Ben2, Proposition 5.6.1],

Vo =Vok) = | J ress (Ve (k) (3.1.1)
E<G



428 D.J. Hemmer, D.K. Nakano / Journal of Algebra 254 (2002) 422—-440

where the union is taken over all elementary abelian subgruplsG. Thus, if
rp(G) is the maximal rank of an elementary abeljaisubgroup ofG then
cg (k) =dim(Vg (k) =rp(G). (3.1.2)
The decomposition in (3.1.1) can be refined further in the following way. Define
Vi = VE\ U res g Ve
E'<E

SO be is Vg with hyperplanes defined ovét, removed [Benl, p. 173]. Let
Vg g =ress (V). Thenthe variety/ (k) is the disjoint union of locally closed

subvarietiesVéﬁE, one for each conjugacy class of elementary abelian subgroups
E <G.

3.2. We first recall the following well-known fact.
3.2.1. Thep-rank of X; is [d/p] where[ ] is the greatest integer function.

We can now determine the complexity and support varieties for the permuta-
tion modulesM*.

3.2.2. Proposition. Let A = (A1, ..., As) =d and M* be a permutation module
for X;. Then

@) Vs, (M*) =ress, 5, (Vs, (k));
(b) cx,(M*) =" _1[xi/pl.

Proof. Part (a) follows immediately from Proposition 2.4.3(b) sif¢é = kTg.
Part (b) follows from part (a) and 3.2.1 since xgs;, preserves dimension and
dim(Vy, (k)) is determined by Eq. (3.1.2).0

3.3. To describe the complexity and support varieties of Young modules we
will need the theory of Young vertices due to Grabmeier [G]. We remark that a
lower bound for the complexity of the Young modules was given in [EN] and used

to determine the representation type of the blocks for the Hecke algebra of type A.
Notice that any.  d has a unique-adic expansion of the form

s
X:ZX(,‘)pi (331)
i=0
wherei;y € Ares Define the partition

o(A) = ((ps)bs’ (ps—l)bs—l, . (1)170) (3.3.2)
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wherei - b;. Then X, is called theYoung vertexf Y* andY” is atrivial
source modulein analogy with the usual theory of vertices and sources. In
particulark | (Y%ZM) and X, is the minimal Young subgroup such thit

is a summand o#”*) . Notice that:
3.3.1. Thep-rank of the Young vertex is,(X,;)) = > i_gibi.

If & is not p-restricted then one can successively strip horizontalgihoboks
from X to obtain ap-restricted partition. The following theorem demonstrates that
the complexity of the Young modulg* can be obtained combinatorially as the
number of such hooks removed.

3.3.2. Theorem. Let A - d with Y* the corresponding Young module &y and
p(A) asin Eq.(3.3.2) Then

@) Vs, (YY) =ress, 5, Vs, k)
(b) cx, (Y = Y3 _gibi.

Proof. Part (a) follows from Proposition 2.4.4 by settidg =k, H = X,
and G = X;. In order to prove (b) take the dimension on both sides of (a) and
recall from 2.4.1thatreg »,,, preserves dimension. Butthe ditW¥sx,, (k)) =
rp(Xyp)) is given by 3.3.1. O

We remark that this theorem agrees with the well-known fact tatis
projective exactly wher is p-restricted. Furthermore, from Theorem 3.3.2(b)
it is easy to see that for a blodk of weightw, there are Young modules i\ of
every possible complexit§0, 1, ..., w}.

Recall that a module is callederiodic if it admits a periodic projective
resolution. Non-projective periodic modules are exactly those with complexity
one [E2, 8.4.4]. Thus Theorem 3.3.2 immediately yields:

3.3.3. Corollary. A non-projective Young modulé is periodic if and only if\ is
of the form(u1 + p, u2, ..., us) where(ui, uo, ..., uy) is p-restricted.

Proof. The complexity is one exactly when theadic expansion of. has the
formu+ Q)p. O

3.4. In the next section we will see the support varieties for modules in a block
all sitinsideVy, (Y*) for Y* having a distinguished Young vertex. To do this we
now observe that the set of Young vertices for Young modules in a block have
nice ordering properties. First a lemma:
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34.1. Lemma. Letd = Zfzoc,'pf be the uniquep-adic expansion ofl, so
0<¢; < p. Supposd =) ;_,a;p' is another expansion, with< g;. Then

2(1110’17(11’(172)(12 bbbbb (pz)(-z).

.....

Proof. It is clear that}";_qc;p’ < p'*! for any 0< ¢ < z. This immediately
implies that

Z Z
Zaipi chipi Ve 0<t <z (3.4.1)
i=t i=t

From Eq. (3.4.1) it is clear that the Young subgroups embed as desired.

Now supposeB), is a block ofk X4 with weightw and p-corepi -d — pw.
Let) :_;cip' be thep-adic expansion opw. Define
p = ,O(U)) = ((pz)cz’ (pz—l)Cz—1’ ey pcl, 1d—pw) Fd. (342)

Let & = (1, it2, ...). Notice thatX, is the Young vertex forY’* where
w= (i1 + pw, 2, ...). For every othen € B, we haveu >> A and the Young
vertex ofY* is of the form

T = ((pz)az’ (pzfl)azﬂ, o pal, lao)

whereap > d — pw andd = Y ;_qa; p'. Thus
Z .
pw=(ao— (d — pw)) + > aip'
i=1

is an expansion gbw and Lemma 3.4.1 immediately implies:
3.4.2. Proposition. Let € B,, and letY* have a Young verteX,,;,. Letp be as
in Eg.(3.4.2) Then

2pG) Z Xp-

Thus the Young vertices for the Young modules in a block are all contained in

a unique maximal vertex’,, which is the vertex for the Young modute**(»®),

In the next section we use this to give a precise description of where the support
varieties for modules in the block are located.

4. Support varietiesand branching

4.1. We begin by showing that the relative support varieties for the direct sum
of simple, Specht and Young modules are indeed equal.
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4.1.1. Theorem. Let M € mod(k X;). The following varieties are equal

(a) VZ}](M);

(0) Vz,(Drene D M);
(©) Vs, (D;1q St M);
(d) Vz, (@, Y M).

Proof. (a)= (b). From (2.3.2), we havés, (M) = Vz,(B;c 1., 0" M)-

(c) <€ (a), (d)< (a). These inclusions follow from (2.3.7).

(b) € (c). This will be proved by using induction on the dominance order of
partitions. SeW = Vy, (D,, , S*, M). Letx be maximal with respect tgl. Then
§* = D* and Vg, (D*, M) € W. Now suppose that for eveny > 7, we know
Vs, (D*, M) € W. We need to show thatx, (D", M) € W. By Eq. (1.2.1) there
exists a short exact sequence of the form

0O->N—->S"—>D"—-0 (4.1.2)

with N having composition factors of the forld* with u > t. Therefore, by
2.3.5(ii)

Vs, (D", M) C Vg, (S°, M) U Vs, (N, M) W.

Thus, Vs, (@repe, D7 M) S W.

(c) C (d). This statement will be proved in a similar fashion as above. Set
X =Vs,(D,.,Y* M). Again letr be maximal with respect te! so Y* = §*
and ng(Y", M) € X. Suppose that for any > 7, Vg, (S*, M) € X. It will
suffice to show thats,(S*, N) € X. By Eq. (1.2.2) there is a short exact
sequence of the form

0—->S"—>Y"—-Z—->0 (4.1.2)

with Z having a Specht filtration with factors of the for§t with w > 7.
Consequently, by 2.3.5(ii)

Vs, (ST, M)C Vs, (Y*, M\)UVs,(Z, M)CX. O

Let StmodkG) be the stable module category [Benl, Section 2.1]. The
argument above shows th@,, , S* anddp,, , Y generate Stmad X,).

4.2. The preceding result along with our computation for the support variety
of Young modules can be used to provide an explicit description for the location
of the support varieties for modules in a blockkd®;.

4.2.1. Corallary. Let B, be a block ofk X; of weightw and letM be a finite-
dimensional module if8,,. Letp be as in Eq(3.4.2) Then
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(a) VZ{] (@AEBM DA) = VZ{] (@AEBM S)\) = VZ{] (@AEB)L Y)»)'
(0) Vz,(D;ep, DY) =ress, 5, (Vs, (k));

(¢) Vs,(M) Cresy, 5,(Vs, (k));

(d) Ccxy M) < w.

Proof. (a) LetN be equalto eithe@, 5, S* or Di.es, Y*.By2.3.6,Vs,(N) C
Vz,(Des, D*). On the other hand, by Theorem 4.1.1 and 2.3.7,

ng< &b DA> Vs, (EB st & DA> =Vy, <N, b DA)

reBy, A-d reBy reBy,
VEd (N)

N

N

(b) From part (a) we havés, (D; 5, DY) =Vy, (Dies, Y*). Furthermore,
by Proposition 3.4.2,

V2d< @ YA) - VEd (Yﬁ+(pw)) = reSEdaEp(VEp (k))
reBy,

(c) This follows from (b) because for ay in B,,,

Vs, (M) C V):(,(@ D*)

reBy,

(d) The dimension oy, (k) = w, so by part (C)cx,(M) < w for any M
inB,. O

4.3. In the representation theory of the symmetric group, one of the funda-
mental questions is how doeg&’;-moduleM decompose on restriction 5, .
Answers to questions of this type are often referred to as “branching rules.”
Kleshchev has proved important results on branching of the sikipjemodules
on restriction tok X;_1 [K1]. The next theorem shows that the computation of
support varieties fok X;-modules can be reduced to looking at how the modules
branch over Young subgrougs, .

4.3.1. Theorem. Let M e modk X;). Then

@ Vs, (M) =, re88,, 5, (Vs, (k, M));
(b) cx, (M) =max,—qf{r(Exty, (k, M))}.

Proof. Part (b) follows immediately from part (a). From Proposition 2.4.3(a) and
2.3.7, we have fok =d:

ress, 5, (Vs, (k, M)) = Vs, (M*, M) C Vs, (M).
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Therefore J,_,ress,, s, (Vs, (k, M)) € Vx,(M). On the other hand, by 2.3.2
and Theorem 4.1.1,

Vs, (M) = vz,,< ¢ o M) =Vs, (@ Y, M).
LEAreg M-d
Now, by 2.3.3 and Proposition 2.4.3(i),

Vs, (EB Y*, M) Vs, <€B M, M) = Vs, (M. 1)

A-d AEed red

N

N

U res;d,gk(vgk(k, M)) O
Aed

4.4. We should remark that one can give an alternate proof of Theorem
4.3.1(b), by using the Schur functdf. This proof will does not rely on the
ordering properties of the Specht and Young modules given in Eqgs. (1.2.1)
and (1.2.2). The functaf admits a right adjoint functog, defined by

G(N) =Homyx, (e(S(n,d)), N) = Homyx, (V& N).

The functorG is a left inverse toF. By using these two functors one can construct
a first-quadrant Grothendieck spectral sequence [DEN, 2.2]:

EIZJ = EXt{?(n,d)(M’ EXtI{Ed (V®d’ N)) = EXt;;;{J (}—(M)’ N)’

where M € Mod(S(n,d)) and N € Mod(kX;). When M = G(N) the spectral
sequence becomes

EIZJ = EXt{S(n,d)(g(N)’ EXtI{Ed (V®d’ N)) = EXt;;;{J (N, N).
Let

Dy= Y Exty, ,(G(N),Ext]; (V® N)).
i+j=n

SinceE is a subquotient ok,
cx,(N) =r(dim Ext} z (N, N)) < r(dimy D,). (4.4.1)
There exists a finite projective resolutidl — G(M) because the Schur algebra
S(n, d) has finite global dimension. Thetidim; P,) = 0. Consequently,
dimy D, < Z dimy Homs(n’d)(P,‘, EXt;d (V®d, N))
i+j=n

< Y (dimy P) @ (dimy Exty, (V7 N)).
i+j=n
It follows that
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r(dime Dy) < r(dimy P,) + r(dimy Extg, (V. N))
= r(dim; Exty;, (V®, N))
< exy(N). (4.4.2)

The statement of Theorem 4.3.1(b) follows from Egs. (4.4.1) and (4.4.2) because
as ak X4-module, V! =, , M*.

5. Completely splittable modules

5.1. We now determine the complexity and support varieties of the completely
splittable modules, defined below:

5.1.1. Definition. A simplek X;-moduleD” is calledcompletely splittablé and
only if the restrictioanzﬂ to any Young subgroug’,, < Xy is semisimple.

WhenD” is completely splittable we will also say thais completely splittable.

It was shown in [H] that almost every completely splittablE,;-module D*

occurs as a direct summand Df%gfl for some completely splittableX;_1-
moduleD*. In this case we will see that

ress, s, 1(Vs,_1(D")) = Vs, (D*). (5.1.1)

This will reduce the problem to determining the support varieties of the minimal
modules, defined in [H]. We will show the minimal modules all have the
maximum possible complexity by proving they have dimension not divisibje by

We begin by recalling the main results of [K2] on completely splittable
modules. For a partitioh = (A1, A2, ..., Ay) define:

h(A):=s and x(A):=i1— Ay +h(A).
Then
5.1.2. [K2] D* is completely splittable if and only jf(1) < p.
It is clear from the definition that restricting a completely splittable module to
X 4—1 will give a direct sum of completely splittablE,;_1-modules. Kleshchev
determined this decomposition. For a removable néad A - d, letis -d — 1
denoter with the nodeA removed. Then

5.1.3. [K2] Let D* be completely splittable. Then

DA»LZ}]—l = @ DAA
where the sum is over all removable nodewith x (A 4) < p.
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5.2. We next recall the definition of minimal modules.

5.2.1. Definition. A completely splittablek X;-module D* is minimal if there
does not existt - d — 1, with D* a completely splittablé >;_1-module, such
thatDM?il = D* @ M whereM has no summand in the same blockZs If

D* is minimal, we also say is minimal.

It turns out that ifD* is completely splittable an®” is not minimal, then we
can obtainu by removing a node fror. That is, there is some removable notle
of A such thatD*4 is completely splittable an®* @ M = D*4 ngil with M in
a different block themD*. Also D*4 | (D* |y, ). In this case Proposition 2.4.4
proves:

5.2.2. Lemma. Let A be not minimal and choose, as above. Then

(@) Vs, (D*) =resy, 5, ,(Vs, ,(D*));
(b) cx,(D*) =cx, (D).

5.3. Lemma 5.2.2 indicates that the problem of computing support varieties
for completely splittable modules reduces to calculating the support variety for
minimal completely splittable modules. To make this precise we need a few more
details from [H].

Recall thatforanodd = (i, j) in the diagram of a partitioh, the p-residueof
the node, denoted rds is defined to bg — i mod p. Then the alternate version
of the Nakayama rule states that B,, if and only if A and « have the same
number of nodes of eaghtresidue 01, ..., p — 1.

Often a completely splittable modul@* can be obtained by induction from
more than one completely splittalide’;_1-module. The next lemma determines
when this happens:

5.3.1. Lemma[H, Lemma 4.2].Let D* be a completely splittableXx,;-module,
and A a removable node df. Then

AAAZd  ~ h
Dty =D'oM
whereM is in a different block thaD*, unless

(i) x(») = p andA is the lowest removable nodexfor
(i) resA is equal to the residue of the lowest addable nodg. of

Since we plan to reduce the calculationof, (D*) to the case wherg is
minimal, the next definition is natural:
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01234560%} 012345
60123456 601234
5 56[012
4506 0]
3
A= (9,8) A= (6,6,5,4)
A= (7,7) A=(5,5,2,2)

Fig. 1. Two examples of minimal 7-cores.

5.3.2. Definition. inen a completely splittablé X;-module D*, the minimal
coreof A, denotedk, is obtained by successively removing nodes fromhich
do not satisfy Lemma 5.3.1, (i) or (ii), until no such nodes can be removed.

It is shown in [H] thati. is well-defined, minimal, and can be easily obtained
from A. Let A = (A1, Ao, ..., As) be completely splittable. To obtain from 2,
simply remove removable nodes, never removing any of residue equal to the
residue of the bottom addable node, and never alloyitgbe > p. This process
will terminate ati..

Two examples are given in Fig. 1, with the minimal core drawn inside the
partition. The residues of all nodes inand the bottom addable node ofare
labeled.

5.4. We now use the minimal cores and Lemma 5.2.2 to formalize the reduction
of determining the complexity and support variety of a completely splittable
module to the minimal case.

5.4.1. Theorem. Let DAA be a completely splittablex,;-module and let. be the
minimal core ofs with A - ¢. Then

(8) Vi, (D*) =ress, 5, (Vx, (DM));
(b) cx,(D*) =cx, (D).

Proof. This follows immediately from Lemmas 5.3.1 and 5.2.2 since we oBtain
by successively removing nodes franthat do not satisfy Lemma 5.3.1. We also
use2.4.2. O

5.5. We must still determine the complexity and support variety of the minimal
modules. We will need a few basic facts about defect groups for blocks and
p-divisibility of the modules in the blocks. First:

55.1. [JK, 6.2.45].Let B be ap-block of thek X; with weightw. Then a defect
group of B is isomorphic to the Sylow-subgroup ofX,,,.
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If the defect group of a block has ordgf, thend is called the defect of the
block. The defect can be determined from the dimensions of the simple modules
in the block, namely:

5.5.2. [I, 15.42].For any groupG where|G| = p“t with (p,t) = 1 and a blockB

with defectd, thenp®~? is the largest power op which divides the dimensions of

all the simple modules in the block, and hence the dimensions of all the modules
in the block.

The aforementioned facts give the following proposition.

5.5.3. Proposition. Let M be an indecomposableX,,,,-module that is not in the
principal block. Therp | dimM.

Proof. Only the principal block ok X, has weightn. Thus, by Lemma 5.5.1,
the other blocks have defect group strictly smaller than gkeylow subgroup
of X,,. As aresultg —d > 0 from Lemma 5.5.2 ang divides the dimension of
M. O

We need a little more information about minimal modules.

5.5.4. Theorem [H, Theorem 3.3]SupposeD” is a completely splittablé >,
module. Thed = mp for some m and” is in the principal block okX,,.

Furthermore:

5.5.5. Lemma[H, Lemma 3.5]Letd = mp. There arep — 1 minimal partitions
of d. They havel, 2, ..., p — 1 parts. The top removable node of the one with i
parts has residug —i.

The minimal partitions forp =5 andn =5, 10, 15 are illustrated in Fig. 2,
with the 5-residues labeled. Notice there is an obvious bijection between minimal
partitions of(m — 1) p and ofmp given by adding a rinp-hook with head in the
first row. This bijection preserves the number of parts and the residue of the top
removable node.

5.6. We now investigate the branching behavior of the minimal modules.
Applying 5.1.3 repeatedly we obtain:

5.6.1. Theorem. For 1<i < p—1andm > 2, let1; be the minimal partition
of mp with i parts and lety; be the minimal partition ofm — 1) p with i parts.
Then

Ai ~ p_2 5:[
D \LZ‘(n;—l)p:(l'_l)D Y
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01234~ [0123401234~—~[012340123401234
0 7 0123M40123
H- 401234
01 3[4
123
34012
Oéﬁ OQEE
3i 3
2 2

Fig. 2. Minimal partitions forp =5 andn =5, 10, 15.

0
4
3

gEs
I

2R
|

whereU is not in the principal block ok X, 1) ,.

Proof. We knowD*wZ(m_l)p is a direct sum of completely splittable modules.
To prove Theorem 5.6.1 we must show that the only minik#{,,_1),-module
which occurs isD*, and that it occurs with the correct multiplicity.

We need to prove the componentbfwz(mfl)p which lies in the principal
block s correct. By 5.1.3 and the Nakayama rule, we must count the number ways
to removep nodes successively froi) so that at each step we have a partition
with x < p, and so that we remove exactly one node of each residue.

It is clear from Fig. 2 that thep nodes which are successively removed must
make up the rim hook with head in the first row. To remove any other spt of
nodes with distinct residues would forgeto be> p at some point. Thus the only

minimal module that occurs in the decompositionfefi| 5 is D*, and

we must prove its multiplicity is(f:lz). By 5.1.3, this multiplicity is the number
of ways to remove the nodes in the rim hook with head in the first row while
maintainingyx < p. Equivalently this is the number of paths fromto A; in the
graphY defined in [K2, Definition 2.2].

The first node removed must be the top removable node since the other
removable node, if there is one, leayes= p + 1 when removed. It is also easy
to determine that the node of residue 0 must be the last one remoyed ifo
stay< p. There will always be(f’:lz) ways to legally remove the remaininpg— 2
nodes. An example should make it clear why this is the case:

012345|6(7
1000 1 23 45|6
9[l0j0 12345
8(9[10
71819
61718

Fig. 3. A5 for mp = 33.
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Figure 3 illustrates the cage=11,m = 3 andi = 6. We must remove the rim
hook with head at1, 8) while maintainingy < 11. The nod&3, 8) of residue 5
must be removed first. The nod®8, 3) of residue 0 must be removed last. The
nodes of residues 4, 3, 2, 1 must be removed in that order. Also the node 7 must
be removed before 8 in order to maintain< 11. So the nodes 6, 7, 8, 9, 10 must
be removed in that order.

We have seen the sequence of residues of removed nodes must begin with 5
and end with 0. Also it must have subsequences 4, 3,2, 1 and 6, 7, 8, 9, 10, but
there are no other restrictions. That is, any sequend8,df ..., 10} that starts
with 5, ends with 0 and has subsequences 4, 3,2, 1 and 6, 7, 8, 9, 10 will give a
legal partition withy < 11 at each step. For example we could remove the nodes
inthe order5, 6,4,7,8,3,2,9,1, 10, 0.

The total number of such sequences is cle@)yWe have a sequence that is
nine terms in length (not counting the first and last which are determined). Once
we place the five numbers 6, 7, 8, 9, 10 the positions of 4, 3, 2, 1 are forced.

In the general situation instead of five numbers 6, 7, 8, 9, 10, we have
numbers corresponding to the last node in each row except that row containing the
top removable node of. And instead of 9 positions we will haye— 2 positions,
so there areéf’:lz) possible paths. This completes the proof

5.7. We can now show thap does not divide the dimension of minimal
modules:

5.7.1. Theorem. Let D* be a minimak X,,,-module. Themnp { dim; D*.

Proof. We prove this by induction om:. For m = 1 the minimal modules
correspond to partitiong — i, 1'). The principal block ok X, is well understood

and dim D=1 = (P72). This implies thap f dim DP~-1).

Now p does not dividg?_Z). But Corollary 5.5.3 implies thap divides the
dimension ofU in Theorem 5.6.1. Hence, the theorem follows from Theorem
5.6.1 by induction. O

5.7.2.Corollary. The complexity of a completely splittaldl&,;-moduleD” is the
weight of the minimal core.

Proof. We know cx,(D*) = 02”11,(D5‘) where A F mp. Since D* is in the

principal block ofk %,,,, % has weightn. But p t dimy D* so its complexity is
equal to thep-rank of X, which ism. O

5.7.3. Corollary. Let D* be completely splittable and- mp. Then

Vs, (DY) =ress, 5, (Vs,, (DY) =ress, 5, (Vs,, ().
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Proof. The first equality is just Theorem 5.4.1(i) and the second follows because
ptdimD*. O
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