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The Lie module and its complexity

Frederick R. Cohen, David J. Hemmer and Daniel K. Nakano

Abstract

The complexity of a module is an important homological invariant that measures the polynomial
rate of growth of its minimal projective resolution. For the symmetric group Σn, the Lie module
Lie(n) has attracted a great deal of interest in recent years. We prove here that the complexity
of Lie(n) in characteristic p is t, where pt is the largest power of p dividing n, thus proving a
conjecture of Erdmann, Lim and Tan. The proof uses work of Arone and Kankaanrinta which
describes the homology H•(Σn, Lie(n)) and earlier work of Hemmer and Nakano on complexity
for modules over Σn that involves restriction to Young subgroups.

1. Introduction

Let G be a finite group and k be an algebraically closed field of characteristic p. In 1977,
Alperin [1] defined the complexity of M , denoted by cG(M), as the rate of growth of the
minimal projective resolution of M . It is, in some sense, a measure of how far M is from being
projective; in particular, M is projective if and only if cG(M) = 0. Alperin’s definition naturally
led to the theory of support variety of modules in addition to the emphasis on homological
and topological methods in representation theory. With such methods one can compute the
complexity of modules without explicitly describing the minimal resolution. For an introduction
to complexity and support varieties we refer the reader to [3].

Let Σn be the symmetric group on n-letters. The representation theory and combinatorics of
the symmetric group via Young tableaux have been well-studied. In [6], Hemmer and Nakano
provided a combinatorial formula for the complexity of Young modules over Σn via the removal
of horizontal p-hooks. They also determined the complexity for completely splittable irreducible
modules. One of their main tools was the development of a formula for cΣn

(M) via branching
to Young subgroups.

The goal of this paper is to compute the complexity of the kΣn module Lie(n), which we
define next. For any commutative ring R and positive integer n, let LieR(x1, x2, . . . , xn) be the
free Lie algebra over R generated by x1, x2, . . . , xn and let LieR(n) be the submodule spanned
by all bracket monomials containing each xi exactly once. Then LieR(n) is a module for the
symmetric group Σn acting by permuting the variables.

We will be interested in Liek(n) := Lie(n). This module arises naturally in topology, for
example as the top degree homology of the configuration space of n points in the plane tensored
by the sign representation. In characteristic zero, there is a beautiful description of its complex
character in terms of tableaux combinatorics, see [9, Chapter 8] for a thorough treatment.
Furthermore, the representation Lie(n) is a direct summand of QΣn. In characteristic p, very
little is known about the module structure of Lie(n) except in special cases, for example small n
or when p2 � n. Over an arbitrary field k, Lie(n) has dimension (n − 1)! and is free over kΣn−1.
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Erdmann, Lim and Tam [4] stated a conjecture for cΣn
(Lie(n)). Our strategy in proving this

conjecture involves first employing the Hemmer–Nakano formula for the complexity of kΣn-
modules via branching to Young subgroups. In Section 2, we provide a homology version of this
result. This lends itself well to applying the calculations due to Arone and Kankaanrinta [2] to
give estimates on the rate of growth of the homology groups in the aforementioned complexity
formula.

The authors acknowledge the hospitality of the Mathematics Institute of Extended Stay
America where a majority of these results were obtained.

2. Complexity: interpretations via cohomology and homology

Throughout the paper G will denote a finite group, k an algebraically closed field and kG the
group algebra for G. All kG-modules considered are finite-dimensional. If M is a kG-module,
then M∗ will denote the dual kG-module.

Let V• = {Vt : t ∈ N} be a sequence of finite-dimensional vector spaces. The rate of growth
of V•, denoted by γ(V•), is the smallest positive integer c such that dim Vt � K · tc−1 for some
constant K and for all t. For example, γ(V•) = 1 if and only if the dimensions of Vt are uniformly
bounded.

We define suspension Σ1V• to be (Σ1V•)t+1 = Vt. In particular, the degree of Σ1Vt is t + 1.
This corresponds algebraically to the behavior of the topological suspension of a space on
the level of homology. One can now easily show that γ(V•) = γ(Σ1V•). Let c = γ(V•) and
e = γ(Σ1V•). Observe that dimVt � K · tc−1 so dim(Σ1V•)t = dim Vt−1 � K · (t − 1)c−1, thus
e � c.

We have dim(Σ1V•)t � Q · te−1 for some positive constant Q. Then

dim Vt � Q · (t + 1)e−1 = Q · te−1 + Q · p(t),

where p(t) is a polynomial of degree e − 2 with strictly positive coefficients. Therefore, there
exists Q′ > 0 such that p(t) � Q′ · te−1, and dimVt � (Q + Q′) · te−1. Consequently, c � e, and
c = e. We have proved the following lemma.

Lemma 2.1. Let V• = {Vt : t ∈ N} be a sequence of finite-dimensional vector spaces. Then
for any i � 0,

γ(V•) = γ(ΣiV•).

Let M be a kG-module and let P• → M be a minimal projective resolution of M . The
complexity of M , denoted by cG(M), is γ(P•). Since kG is a self-injective algebra, cG(M) = 0
if and only if M is a projective kG-module.

We begin by following [5, Section 2.4]. Suppose that P• → M is a minimal projective
resolution and S is a simple kG module. Then the differentials in the complexes defining
Ext and Tor vanish and one gets:

TorkG
n (M,S) = Pn ⊗kG S (2.1)

and

Extn
kG(M,S) = HomkG(Pn, S). (2.2)

Note that in (2.1) one considers Pn as a right kG-module via the usual p · g := g−1p. The
dimension of HomkG(Pn, S) is the number of summands of Pn isomorphic to the projective
cover of S. Using the usual adjoint associativity between Hom and tensor product, it follows
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that

dimk(Pn ⊗kG S) = dimk Homk(Pn ⊗kG S, k)
= dimk HomkG(Pn,Homk(S, k))
= dimk HomkG(Pn, S∗).

Therefore, we obtain the following relationship:

dimk Extn
kG(M,S) = dimk TorkG

n (M,S∗), (2.3)

where S is a simple kG-module and M is an arbitrary kG-module.
Now consider the case of modules over the symmetric group Σn. Let λ = (λ1, λ2, . . . , λl) � n

be a composition of n. The associated Young subgroup is Σλ
∼= Σλ1 × Σλ2 × · · · × Σλl

. We
apply the results of [6], which let one interpret the complexity of a kΣn module in terms of its
homology or cohomology on restriction to Young subgroups.

Theorem 2.2. Let M be a kΣn-module. The following are equivalent:

(a) cΣn
(M);

(b) maxλ�n{γ(H•(Σλ,M))};
(c) maxλ�n{γ(H•(Σλ,M))}.

Proof. The statement that (a) is equivalent to (b) is [6, Theorem 4.3.1]. To prove that (b)
is equivalent to (c), first observe that for n � 0,

dim Hn(Σλ,M) = dim Extn
kΣλ

(k,M)
= dim Extn

kΣλ
(M∗, k)

= dim TorkΣλ
n (M∗, k)

= dim Hn(Σλ,M∗).

In order to complete the proof, use the fact that cΣλ
(M) = cΣλ

(M∗) (cf. [3, Proposition 5.7.3]).

3. The computation of cΣn
(Lie(n))

We first reduce the computation of the complexity of the Lie module Lie(n) to the computation
of γ(H•(Σpr , Lie(pr))) for all r � t, where pt is the largest power of p dividing n. This will be
accomplished by using the work in [2] in conjunction with Theorem 2.2(c).

Let λ = (λ1, λ2, . . . , λl) � n and set λ̂ = gcd(λ1, λ2, . . . , λl). Moreover, let j(λ) be the largest
integer such that pj(λ) divides λ̂. According to [2, p. 4],

H•(Σλ1 × Σλ2 × · · · × Σλl
, Lie(n)) ∼=

j(λ)⊕

r=0

H•(Σpr , Lie(pr))⊕Cr , (3.1)

where Cr � 1 depends only on p, λ and n. In particular, the value of the various Cr does not
change the rate of growth. We can conclude that

γ(H•(Σλ1 × Σλ2 × · · · × Σλl
, Lie(n))) = max

0�r�j(λ)
γ(H•(Σpr , Lie(pr))). (3.2)

Finally, one can apply Theorem 2.2 with (3.2) to deduce the following result.

Theorem 3.1. Let t be the largest positive integer such that pt | n. Then

cΣn
(Lie(n)) = max

0�r�t
γ(H•(Σpr , Lie(pr))).
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Let

Mr = H•(Σpr , Lie(pr)) = TorkΣpr

• (k, Lie(pr)).

Arone and Kankaanrinta gives a basis for the (r + 1)st suspension Σ1+rMr in terms of
‘completely inadmissible Dyer–Lashof words of length r’. Their results are summarized in
Theorem 3.2.

Theorem 3.2 [2, Theorem 3.2]. The following elements constitute a basis for Σ1+rMr:
if p > 2

{βε1Qs1 · · ·βεrQsru | sr � 1, sj > psj+1 − εj+1 ∀1 � j < r},
if p = 2

{Qs1 · · ·Qsru | sr � 1, sj > 2sj+1 ∀1 � j < r}.
Here u is of dimension 1, the Qsj s are Dyer–Lashof operations and the βs are the homology

Bocksteins. Thus Qs increases dimension by s if p = 2 and by 2s(p − 1) if p > 2, and β decreases
dimension by 1.

As a special case, we remark that the basis element Qs1Qs2 · · ·Qsru lies in degree
2(p− 1)(s1 + s2 + · · · + sr) for p odd and (s1 + s2 + · · · + sr) for p = 2.

Remark 3.3. The operations in Theorem 3.2 are not required to satisfy the Adem relations.
For example, Q4Q1(u) vanishes by the Adem relations but is non-zero in the current setting
of the homology.

The results above are now employed to compute γ(H•(Σpr , Lie(pr))). We would like to thank
Nick Kuhn for acquainting us with the long history of the Lie module in the topology literature.
For example, work on this Poincare series of H•(Σpr , Lie(pr)) dates back to Mitchell and Priddy
[8], and also can be found in more recent work of Kuhn [7].

Theorem 3.4. For all r � 0, γ(H•(Σpr , Lie(pr))) = r.

Proof. As observed in Lemma 2.1, the rate of growth does not change by taking suspensions
so it suffices to look at the rate of growth of Σ1+rMr, where a basis is given in Theorem 3.2.

We first prove that γ(H•(Σpr , Lie(pr))) � r. We do this by embedding the basis of
Hm(Σpr , Lie(pr)), for each m, in a sequence of larger vector spaces that have rate of growth r.

For p = 2, using Theorem 3.2, we see that the number of basis elements is at most the number
of monomials of degree m in the various Qs. This is bounded by the number of compositions
of m of the form μ = (s1, s2, . . . , sr) � m. The number of such compositions has rate of growth
r, because it coincides with the Krull dimension of the polynomial ring in r variables.

For p odd the number of basis elements in degree m is bounded by the number of monomials
of degree m in the ring:

Λ(e1, . . . , er) ⊗ k[x1, x2, . . . , xr]. (3.3)

The exterior algebra generators in (3.3) have degree −1 and correspond to the Bocksteins while
the polynomial generators have degree 2(p − 1) and correspond to the Qs. It is clear that taking
the tensor product with the finite-dimensional algebra Λ(e1, . . . , er) does not change the rate
of growth, nor does shifting the generators xi from degree 1 to degree 2(p − 1). So the rate of
growth is again bounded above by r, the Krull dimension of the polynomial ring. Therefore,
in the p odd case, one also has γ(H•(Σpr , Lie(pr))) � r.
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Next we show that γ(H•(Σpr , Lie(pr))) � r by constructing a sufficiently large number of
basis vectors in each dimension. Fix p and r and let x ∈ N. Define

i = 2(p − 1)(pr−1 + 2pr−2 + 3pr−3 + · · · + (r − 1)p + r − 1)x. (3.4)

One can describe a subset of the basis for Hi(Σpr , Lie(pr)) that has xr−1 elements. Since
i = Cx, where C is a constant, depending only on p and r, this will prove that
γ(H•(Σpr , Lie(pr)) � r as desired.

We proceed by constructing xr−1 distinct basis elements that all contribute to degree i. We
do not use any of the basis elements containing Bocksteins, so the construction is the same for
p = 2 and p odd. In either case, each sj must satisfy sr � 1 and sj > psj+1 for 1 � j < r. Let
s1, s2, . . . , sr be defined as follows. First choose sr so that

1 � sr � x.

Now we need sr−1 > psr, so choose sr−1 such that

px + 1 � sr−1 � px + x.

Proceed in this way for sr−2, sr−3, . . . , s2:

p2x + px + 1 � sr−2 � p2x + px + x,

p3x + p2x + px + 1 � sr−3 � p3x + p2x + px + x,

...

pr−2x + pr−3x + · · · + px + 1 � s2 � pr−2x + pr−3x + · · · + px + x

Observe that there were x choices for each of sr, sr−1, . . . , s2. Finally, choose

s1 := (pr−1x + pr−2x + · · · + px + x) + (x − sr) + (px + x − sr−1)

+ (p2x + px + x − sr−2) + · · · + (pr−2x + pr−3x + · · · + px + x − s2). (3.5)

Observe that s1 > ps2 so {s1, s2, . . . , sr} is an allowable sequence. From (3.5), it is clear that

s1 + s2 + · · · + sr = (pr−1 + 2pr−2 + 3pr−3 + · · · + (r − 1)p + (r − 1))x. (3.6)

Since there were x choices for each of s2, s3, s4, . . . , sr and then s1 is determined, so we have
xr−1 distinct basis elements. From (3.6) and the remark after Theorem 3.2, for p odd these
basis elements all occur in degree i and for p = 2 they occur in degree i/2. In either case, i is
just a linear function of x and the dimension of Hi is at least xr−1, giving the result.

By combining Theorems 3.1 and 3.4, the complexity of Lie(n) can be computed for any n.
This proves the Erdmann–Lim–Tan Conjecture [4].

Corollary 3.5. For all n ∈ N, cΣn
(Lie(n)) = t, where pt | n and pt+1 � n.
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