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Cohomology of Specht modules for the symmetric group can be
equated in low degrees with corresponding cohomology for the
Borel subgroup B of the general linear group GLd(k), but this has
never been exploited to prove new symmetric group results. Using
work of Doty on the submodule structure of symmetric powers
of the natural GLd(k)-module together with work of Andersen on
cohomology for B and its Frobenius kernels, we prove new results
about Hi(Σd, Sλ). We recover work of James in the case i = 0.
Then we prove two stability theorems, one of which is a “generic
cohomology” result for Specht modules equating cohomology
of S pλ with S p2λ. This is the first theorem we know relating Specht
modules Sλ and S pλ . The second result equates cohomology of Sλ

with Sλ+paμ for large a.
© 2009 Elsevier Inc. All rights reserved.

1. Introduction

1.1. For an algebraic group G and a G-module M , the Frobenius morphism on G lets one define a
new G-module M(1) , the Frobenius twist of M . If G = GLn(k) and L(λ) is an irreducible module then
L(λ)(1) ∼= L(pλ). Thus theorems about G-modules which involve multiplying partitions by p arise quite
naturally and can be explained in terms of the Frobenius map.

In contrast, suppose Sλ is a Specht module for the symmetric group Σd , where λ is a partition
of d, denoted λ � d. Then pλ � pd, so S pλ is a Specht module for an entirely different group, Σpd ,
and there is no evident relation between the two modules. Indeed we know of no theorems involving
both Sλ and S pλ . This paper will prove the first such theorem, although an explanation involving only
the symmetric group eludes us!
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I would like to thank the anonymous referee for an extensive report which vastly improved the
exposition, discovered an error in the proof of Lemma 6.5.4 and provided a correct version.

1.2. Let k be an algebraically closed field of characteristic p � 3. For a partition λ � d let Sλ de-
note the corresponding Specht module for the symmetric group Σd , and let Sλ be its linear dual. In
characteristic two every Specht module is also a dual Specht module, and the problem of calculating
cohomology is quite different and seems more difficult. Proposition 4.1.1 below, which equates sym-
metric group cohomology with that of the general linear group, only holds through degree 2p − 4, so
does not apply even to H1(Σd, Sλ) when p = 2. Thus we will restrict to the odd characteristic case
for this paper.

Much is known about the low degree cohomology groups Hi(Σd, Sλ). In [3] (where again only
odd characteristic is considered), it is shown that this cohomology vanishes in degrees 1 � i � p − 3.

For p = 3 a complete description of the nonzero cohomology was given for i = 1,2 in [3, Theo-
rems 2.4, 4.1].

In contrast little is known about the cohomology Hi(Σd, Sλ) of Specht modules. For i = 0 this
was computed by James [11, Theorem 24.4]. It is at most one-dimensional, and explicit conditions
are given on λ for it to be nonzero, see Theorem 5.1.1 below. In [10] the cohomology Hi(Σd, Sλ) for
0 � i � p − 2 is shown to agree with certain B-cohomology in degree i + (d

2

)
, where B is the Borel

subgroup of GLd(k). However this high degree B-cohomology has not been computed, so no new
symmetric group results were obtained.

In our approach the relevant cohomology for B and its Frobenius kernels can be computed, and so
new results on the cohomology H1(Σd, Sλ) of Specht modules are obtained. We prove some stability
theorems that generalize the results of James for H0(Σd, Sλ) and are inspired by the known results
for two-part partitions. In particular we prove a “generic cohomology” theorem that H1(Σpad, S paλ)

stabilizes for a � 1. There is a corresponding result for algebraic groups where one twists by the
Frobenius automorphism. However for the symmetric group there is no Frobenius automorphism,
and it is quite mysterious why any theorem should relate Specht modules Sλ and S pλ , which are
apparently unrelated modules for two different groups!

2. Notation and preliminaries

2.1. Although our application is to symmetric group representation theory, the actual work will
be done within the general linear group theory. A basic reference for key results and also for our
notation is [12]. For information on the Schur algebra see [9]. We will also draw extensively from the
paper [1] of Andersen.

Recall k is an algebraically closed field of characteristic p � 3 and let G = GLn(k) be the general
linear group. Let B (resp. B+) be the Borel subgroup of lower (resp. upper) triangular matrices and T
the torus of diagonal matrices. Let R denote the root system with respect to T , with associated inner
product 〈−,−〉. Let X(T ) ∼= Zn denote the weight lattice and S = {α1,α2, . . . ,αn−1} a set of simple
roots such that B corresponds to the negative roots. For α ∈ S the corresponding coroot is α∨ and
the corresponding reflection on X(T ) is sα . Let ρ denote half the sum of the positive roots.

The set of dominant weights is X(T )+ = {λ ∈ X(T ) | 〈α∨, λ〉 � 0 for all α ∈ S}. Let � denote the
ordering on X(T ) given by λ � μ if and only if μ − λ is a linear combination of positive roots with
nonnegative coefficients. The set of pr -restricted weights is denoted Xr(T ) = {λ ∈ X(T ) | 0 � 〈α∨, λ〉 <

pr for all α ∈ S}.
For a module M and a simple module S , the composition multiplicity of S in M will be denoted

[M : S]. For a GLn(k)-module M , the module M(r) will denote the rth Frobenius twist of M . The rth
Frobenius kernel of B is denoted Br , see [12] for definitions. We will sometimes use the fact that
B/Br is isomorphic to B and the modules can be identified using the rth power of the Frobenius
twist.

2.2. The Schur algebra S(n,d) is the finite-dimensional associative k-algebra EndkΣd (V ⊗d) where
V ∼= kn is the natural representation of G . Excellent references for representation theory of the Schur
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algebra are the books [9] and [14]. The category M(n,d) of polynomial G-modules of a fixed degree
d � 0 is equivalent to the category of modules for S(n,d).

Simple S(n,d)-modules are in bijective correspondence with the set Λ+(n,d) of partitions of d
with at most n parts, and are denoted by L(λ). Note that one can also identify Λ+(n,d) as the set of
dominant polynomial weights of G of degree d. For λ ∈ Λ+(n,d), let H0(λ) = indG

B λ be the induced
module and let V (λ) be the Weyl module. Often we will write H0(d) rather than H0((d,0, . . . ,0))

and similarly L(d). Note we are using λ here to denote the one-dimensional B-module of weight λ.
For λ,μ ∈ Λ+(n,d) let � denote the usual dominance order [14, Definition 1.4.2].

2.3. We recall two results about Ext groups for GLn(k)-modules. The first is that for two S(n,d)-
modules M, N , the Exti groups are the same whether we work in the category of all rational G-
modules or of S(n,d)-modules. The second is that for n > d the category of modules for S(n,d) is
equivalent to that of S(d,d), where the equivalence “preserves” L(λ), H0(λ) and V (λ) for λ � d. (Al-
though the modules certainly have different dimensions, for example V (1,1,1) is a one-dimensional
S(3,3)-module but a four-dimensional S(4,3)-module.) Both results are special cases of a more gen-
eral result regarding truncated categories (cf. [12, Chapter A]).

Proposition 2.3.1. (See [12, A.10, A.18].) Let M and N be S(n,d)-modules, and hence also G-modules. Then
for all i � 0

Exti
S(n,d)(M, N) ∼= Exti

G(M, N).

The next proposition will let us equate Σd cohomology with that of GLn(k) for various n � d.

Proposition 2.3.2. (See [9, 6.5g].) Suppose n > d. Then there is an idempotent e ∈ S(n,d) such that
eS(n,d)e ∼= S(d,d) and the functor taking M to eM is an equivalence of categories from mod-S(n,d) to mod-
S(d,d) mapping L(λ) to L(λ) and similarly for H0(λ) and V (λ).

3. B-cohomology and spectral sequences

3.1. As we will see in the next section, low degree Specht module cohomology can be equated with
certain B-cohomology, and it is in the setting of B-cohomology that our work will be done. In this
section we collect the results on B and Br -cohomology that we will need, and recall two important
spectral sequences that we will use. The first describes extensions between B modules that have been
twisted. The second relates cohomology for B and Br .

First we recall that L(λ) has simple head as a B-module and, if λ ∈ Xr(T ), also as a Br -module.

Proposition 3.1.1. Let λ ∈ X(T )+ and ν ∈ X(T ). Then:

(a) HomB
(
L(λ), ν

) ∼=
{

k if λ = ν

0 otherwise,

(b) HomBr

(
L(λ), ν

) ∼=
{

prν1 if ν = λ + prν1

0 otherwise,

where the isomorphism in (b) is as B-modules.

Proof. Part (a) follows from Frobenius reciprocity (Proposition 4.1.3(a) below) and the fact [12, II.2.3]
that H0(λ) has simple socle L(λ). Part (b) is Eq. (3.1) in [1]. �

Calculating higher degree cohomology for B or Br is a difficult problem and a subject of active
research. Fortunately we need only a few results in degree one. The first part of the following is
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immediate from Lemma 2.2 in [4], where a much stronger result is proven. We denote by Str the rth
Steinberg module L((pr − 1)ρ).

Proposition 3.1.2. Let λ ∈ X(T )+ and ν ∈ X(T ). Then:

(a) If λ � μ then Ext1
B(L(λ),μ) = 0.

(b) [12, II.12.1] H1(Br,k) = 0.

(c) [1, Proposition 3.2] Suppose further that λ,ν ∈ Xr(T ). Then the weights of Ext1
Br

(L(λ), ν), as a B-
module, are contained in the set

{
prξ

∣∣ λ − ν + prξ − (
pr − 1

)
ρ is a weight in Str

}
.

3.2. We will make use of two spectral sequences, both of which are first quadrant spectral se-
quences of the form E∗,∗

2 converging to Ext∗ .

The first is a spectral sequence that we will apply to compare Ext∗B(M1, M2) with Ext∗B(M(r)
1 , M(r)

2 ).

Proposition 3.2.1. (See [12, I.6.10, II.10.14].) Let M1, M2 be B-modules and Br be the rth Frobenius kernel.
There is a first quadrant spectral sequence:

Ei, j
2 = Exti

B

(
M1, M2 ⊗ H j(Br,k)(−r)) ⇒ Exti+ j

B

(
M(r)

1 , M(r)
2

)
. (3.2.1)

The second is the Lyndon–Hochschild–Serre spectral sequence.

Proposition 3.2.2. (See [12, I.6.6(1)].) Let H denote either G or B. Let E and V be H-modules and M be an
H/Hr -module. Then there is a first quadrant spectral sequence:

Ei, j
2 = Exti

H/Hr

(
M,Ext j

Hr
(E, V )

) ⇒ Exti+ j
H (M ⊗ E, V ). (3.2.2)

We will make use only of a few elementary properties, described below, of these spectral se-
quences, so the reader does not need extensive familiarity with them. Specifically we need:

Proposition 3.2.3. Suppose E∗,∗
2 converging to E∗ is one of (3.2.1) or (3.2.2).

(a) There is a five-term exact sequence:

0 → E1,0
2 → E1 → E0,1

2 → E2,0
2 → E2. (3.2.3)

(b) Suppose Ei, j
2 = 0 for all i + j = n. Then En = 0.

(c) E0,0
2

∼= E0.

4. Specht module cohomology and symmetric powers

4.1. Although we will be studying symmetric group cohomology, we first transfer the problem to
the general linear group. We recall below the result that allows this. For additional such results and
explanations of how they are obtained using the Schur functor and the higher derived functors of its
adjoint, see [13]. We use only the following.

Proposition 4.1.1. (See [13, Corollary 6.3(b)(iii)].) For 0 � i � 2p − 4 we have

Hi(Σd, Sλ
) ∼= Exti

GLd(k)

(
H0(d), H0(λ)

)
.
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Remark 4.1.2. Proposition 4.1.1 is stated in [13] for 0 � i � 2p − 3 but actually only holds up to
i = 2p − 4, cf. [10, 2.4] for an explanation.

We will actually do our computations using B-cohomology, so the following is crucial, where part
(b) is immediate from part (a) and Propositions 2.3.2 and 4.1.1.

Proposition 4.1.3.

(a) [12, 4.7a] Let V be a G-module and λ � d. Then for all i � 0:

Exti
G

(
V , H0(λ)

) ∼= Exti
B(V , λ).

(b) If 0 � i � 2p − 4 and G = GLn(k) for n � d then

Hi(Σd, Sλ
) ∼= Exti

B

(
H0(d), λ

)
.

4.2. Structure of symmetric powers

Proposition 4.1.3(b) suggests one must understand H0(d) in order to compute low degree Specht
module cohomology. The module H0(d) is isomorphic to the dth symmetric power of the natural
module V ∼= kn . In [7], Doty gave a complete description of the composition factors and submodule
lattice of H0(d), which we recall below.

Let

B(d) :=
{
β = (β1, β2, . . . , βn)

∣∣∣ βi � 0 and
∑

βi = d
}
.

Then H0(d) has a basis of weight vectors indexed naturally by B(d) [7, 2.1]. For β ∈ B(d), associate a
sequence of nonnegative integers ci(β) as follows. First write each βi out in base p. Then add them
base p to get d. For i � 1, let ci(β) be the number that is “carried” to the top of the pi column during
the addition. For example if p = 3 and β = (5,5,2) then the addition 5 + 5 + 2 = 12 base three looks
like:

1 2

1 2

1 2

+ 0 2

1 1 0

so c(β) = (2,1). Doty calls this the carry pattern of β .
Let C(d) be the set of all carry patterns which occur for some β ∈ B(d). Define a partial order on

C(d) by declaring (c1, c2, . . . , cm) � (c′
1, c′

2, . . . , c′
m) if ci � c′

i for all i. Given a subset B ⊆ C(d), let T B

be the subspace of H0(d) spanned by all β with c(β) ∈ B . We can now state Doty’s result:

Theorem 4.2.1. (See [6].) The correspondence B → T B defines a lattice isomorphism between the lattice of
ideals in the poset C(d) and the lattice of submodules of H0(d). In particular the composition factors of H0(d)

are in one-to-one correspondence with the subspaces Tc , for c ∈ C(d). If L(λ) corresponds to Tc then λ is the
maximal partition in Λ+(n,d) with carry pattern c.

Given λ ∈ Λ+(n,d), it is not difficult to determine if [H0(d) : L(λ)] �= 0. The next lemma is an easy
exercise working with carry patterns.
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Lemma 4.2.2. Let λ = (λ1, λ2, . . . , λn) ∈ Λ+(n,d). Define numbers aij with 0 � aij < p by λi = ∑
aij p j .

Then:

(a) [H0(d) : L(λ)] �= 0 if and only if ai j �= p − 1 implies alj = 0 for all l > i.
(b) [H0(pd) : L(pλ)] = [H0(d) : L(λ)].

We will later use a strengthened version of Lemma 4.2.2(b), namely that H0(d)(1) is a submodule
of H0(pd) in a particularly nice way, cf. Proposition 6.4.1.

5. Previously known Specht module cohomology

5.1. Computing HomΣd (k, Sλ)

The degree zero cohomology H0(Σd, Sλ) ∼= HomΣd (k, Sλ) was determined by James. For an integer
t let lp(t) be the least nonnegative integer satisfying t < plp(t) . James proved:

Theorem 5.1.1. (See [11, 24.4].) The cohomology H0(Σd, Sλ) is zero unless λi ≡ −1 mod plp(λi+1) for all i, in
which case it is one-dimensional.

Remark 5.1.2. James’ result is proved entirely using symmetric group theory, applying the famous
kernel intersection theorem. We observe that Doty’s description of H0(d) allows one to calculate
precisely when HomB(H0(d), λ) is nonzero, and thus rederive James’ result in an entirely different
way. The space of homomorphisms can only be nonzero for λ � d with [H0(d) : L(λ)] = 1, so we must
determine for each L(λ) a constituent of H0(d), if there is a nonzero B-module homomorphism from
H0(d) to λ. There is such a map precisely when there does not exist a μ � λ such that [H0(d) :
L(μ)] = 1 and c(μ) > c(λ). This can easily be seen to be equivalent to the condition in Theorem 5.1.1.
Since the result is already known, we leave the details to the reader. One must show that given such
λ and μ (i.e. μ � λ and c(μ) > c(λ)) the λ weight vector always lies in the B-submodule generated
by the μ weight vector, so there is no homomorphism in this case. Doty’s paper explicitly describes
the B action, so this can be done.

Example 5.1.3. In characteristic five, [H0(25) : L(20,5)] = 1 but H0(Σ25, S(20,5)) = 0. This is because
(24,1) � (20,5) and c(24,1) = (1,1) > (1,0) = c(20,5). The (20,5) weight vector lies in the B-
submodule generated by the (24,1) weight vector, and so HomB(H0(25), (20,5)) = 0.

5.2. Two-part partitions

The other known example of H1(Σd, Sλ) is for λ = (λ1, λ2) a two-part partition, where the an-
swer can be deduced from work of Erdmann [8] on Ext1 between Weyl modules for SL2(k), as
we describe below. Also in the SL2(k) case, there are recursive formulas in [15] for computing
Exti

SL2(k)
(H0(d), H0(λ)) for all i, which gives information about Specht module cohomology, in de-

grees at most 2p − 4, via Proposition 4.1.1.
For r > 0 write r = ∑

i�0 ri pi with 0 � ri � p − 1. For 0 � a � p − 1 define a so that 0 � a � p − 1
and a + a ≡ p − 1 (mod p). Erdmann defined [8, p. 456] a collection of integers Ψp(r) by

Ψp(r) =
{

u−1∑
i=0

ri pi + pu+a: ru �= p − 1, a � 1, u � 0

}
∪

{
u∑

i=0

ri pi: ru �= p − 1, u � 0

}
. (5.2.1)

From Lemma 3.2.1 in [10] we deduce H1(Σd, S(λ1,λ2)) is at most one-dimensional, and it is nonzero
precisely when λ2 ∈ Ψp(λ1 −λ2). The conditions on λ for this to occur were stated incorrectly in [10],
so we correct it here.
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First suppose λ2 lies in the second set in the description (5.2.1) of Ψp(λ1 − λ2). So we have:

λ1 − λ2 = r0 + r1 p + r2 p2 + · · ·
λ2 = r0 + r1 p + · · · + ru pu

λ1 = p − 1 + (p − 1)p + (p − 1)p2 + · · · + (p − 1)pu + ru+1 pu+1 + · · · (5.2.2)

where ru �= 0.
Recall from Theorem 5.1.1 that H0(Σd, S(λ1,λ2)) �= 0, precisely when λ1 ≡ −1 mod plp(λ2) . Eq. (5.2.2)

demonstrates that lp(λ2) = u + 1 and λ1 ≡ −1 mod pu+1. Thus we have the exactly James’ criterion
and obtain Proposition 5.2.1(a) below.

Next we consider when λ2 lies in the first subset in (5.2.1). In this case we will have, for some
u � 0 and a � 1:

λ1 − λ2 = r0 + r1 p + r2 p2 + · · · + ru−1 pu−1 + ru pu + · · ·
λ2 = r0 + r1 p + · · · + ru−1 pu−1 + 0pu + pu+a

λ1 = p − 1 + (p − 1)p + (p − 1)p2 + · · · + (p − 1)pu−1 + ru pu + · · · (5.2.3)

where ru �= p − 1. In (5.2.3), u is minimal such that λ1 ≡ −1 mod pu but not ≡ −1 mod pu+1. This
proves the second part of:

Proposition 5.2.1. Let λ = (λ1, λ2) � d with λ2 �= 0. Then H1(Σd, Sλ) is zero except in the two cases below,
when it is one-dimensional:

(i) If HomΣd (k, Sλ) �= 0 or
(ii) If λ1 ≡ −1 mod pu but λ1 �≡ −1 mod pu+1 for some u � 0 such that λ2 = c + pb for c < pu and b > u.

Example 5.2.2. In characteristic five, H1(Σ54, S(29,25)) ∼= k. Here choose u = 1,a = 2, c = 0 in part (ii)
above.

Example 5.2.3. In characteristic p suppose a,b > 0 and pa � pb . Then choosing u = 0 we get
H1(Σd, S(pa,pb)) �= 0.

Case (i) in Proposition 5.2.1 is a special case of a more general result conjectured in [10], which
can be proved using a suggestion of Andersen.

Proposition 5.2.4 (Andersen). Suppose H0(Σd, Sλ) �= 0 and λ �= (d). Then H1(Σd, Sλ) �= 0.

Proof. This follows from the universal coefficient theorem. The key observation is that the Specht
module is defined over the integers, but when λ �= (d) then HomZ(Z, Sλ

Z
) = 0. �

5.3. The following corollary is immediate from Proposition 5.2.1, and is the motivation for the
generalizations proved in the next two sections.

Corollary 5.3.1. Let λ = (λ1, λ2) � d < pa. Then

(a) H1(Σpd, S pλ) ∼= H1(Σp2d, S p2λ).

(b) H1(Σd, Sλ) ∼= H1(Σd+pa , S(λ1+pa,λ2)).
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6. Generic cohomology for Specht modules?

6.1. For any G-module M there is a series of injections:

Hi(G, M) → Hi(G, M(1)
) → Hi(G, M(2)

) → ·· · . (6.1.1)

This sequence is known [4] to stabilize, and the limit is called the generic cohomology of M . For
example we get injections Hi(G, L(λ)) → Hi(G, L(pλ)) → Hi(G, L(p2λ)). It is natural then to have
theorems for G which involve multiplying a partition by p, as this reflects what happens to the
weights after a Frobenius twist.

For the symmetric group, we know of no theorems involving multiplying a partition by p. There
is nothing that seems to play the role of the Frobenius twist. Moreover, the modules Sλ and S pλ are
not even modules for the same symmetric group. However, for two-part partitions we observed in
Corollary 5.3.1 that H1(Σpd, S pμ) ∼= H1(Σp2d, S p2μ). In this section we generalize this stability result
to arbitrary partitions, and show there is a generic cohomology for Specht modules in degree one.
The main result is an isomorphism H1(Σpd, S pλ) ∼= H1(Σp2d, S p2λ).

6.2. Relating cohomology and Frobenius twists

We can use the spectral sequence (3.2.1) in our first step towards relating cohomology of Sλ

and S pλ .

Lemma 6.2.1. Let μ � d. Then

Ext1
B

(
H0(d)(1), pμ

) ∼= Ext1
B

(
H0(d),μ

)
.

Proof. Take r = 1 and consider the five-term exact sequence (3.2.3) for the spectral sequence (3.2.1).
Choosing M1 = H0(d) and M2 = μ, we obtain:

0 → Ext1
B

(
H0(d),μ

) → Ext1
B

(
H0(d)(1), pμ

) → HomB
(

H0(d), H1(B1,k)(−1) ⊗ μ
) → ·· · .

Recall from Proposition 3.1.2(b) that H1(B1,k) = 0, so we have the desired isomorphism. �
Lemma 6.2.1 can be interpreted as the immediate stabilization of (6.1.1) when M = μ ⊗ H0(d)∗ .

Remark 6.2.2. If the left side in Lemma 6.2.1 had H0(pd) instead of H0(d)(1) we would have an
isomorphism between H1(Σd, Sλ) and H1(Σpd, S pλ), however this is false in general.

Next we prove a technical lemma:

Lemma 6.2.3. Suppose λ � p2d such that λ �= pτ for any τ � pd. Suppose further that [H0(p2d) : L(λ)] �= 0
and that μ � d with λ � p2μ. Then:

〈
λ − p2μ,α∨

i

〉
� p2

for some i.

Proof. Let λ = (λ1, λ2, . . . , λn) and denote the p-adic expansion of λi by λi = ai,0 + ai,1 p + · · · . Since
p � λ1 by Lemma 4.2.2(a), we must have λ1 > p2μ1. Since λ and p2μ both partition p2d, there must
be some i � 1 with λi � p2μi and λi+1 < p2μi+1. So let:
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λi = ai,0 + ai,1 p + p2t

λi+1 = ai+1,0 + ai+1,1 p + p2s.

Our assumptions on λ and p2μ imply that t � p2μi and s < p2μi+1. By Lemma 4.2.2(a) we have
ai,l � ai+1,l for all l. Thus:

〈
λ − p2μ,α∨

i

〉 = (
λi − p2μi

) − (
λi+1 − p2μi+1

)
= ai,0 + ai,1 p + p2(t − p2μi

) − ai+1,0 − ai+1,1 p − p2(s − p2μi+1
)

� p2(t − p2μi
) − p2(s − p2μi+1

)
� p2. �

Corollary 6.2.4. Let λ and p2μ be as in Lemma 6.2.3 above. Then λ − p2μ − (p − 1)ρ is not a weight in the
Steinberg module St1 = L((p − 1)ρ).

Proof. Let γ = λ − p2μ − (p − 1)ρ and choose i as in Lemma 6.2.3. Then

〈
(p − 1)ρ − γ ,α∨

i

〉 = 〈
2(p − 1)ρ − (

λ − p2μ
)
,α∨

i

〉
= 2p − 2 − 〈(

λ − p2μ
)
,α∨

i

〉
� 2p − 2 − p2 by Lemma 6.2.3

= −p2 + 2p − 2 < 0.

Thus (p − 1)ρ � γ so γ is not a weight in St1. �
Remark 6.2.5. We observe that Corollary 6.2.4 requires p2μ and the corresponding statement for pμ
is false. For example if p = 5, λ = (9,1) and 5μ = (5,5) then λ− 5μ− 4ρ is a weight in the Steinberg
module. This is why our stability theorem requires comparing pμ and p2μ.

6.3. Corollary 6.2.4 lets us prove a key vanishing result for B-cohomology, which we state next.

Proposition 6.3.1. Let λ � p2d with [H0(p2d) : L(λ)] �= 0. Suppose λ is not of the form pτ and let μ � d.
Then:

Ext1
B

(
L(λ), p2μ

) = 0.

Proof. We can assume that λ > p2μ without loss by Proposition 3.1.2(a). Write λ = λ(0) + pτ with
0 �= λ(0) ∈ X1(T ) and, using the Steinberg tensor product theorem, we have:

Ext1
B

(
L(λ), p2μ

) ∼= Ext1
B

(
L(λ(0)) ⊗ L(pτ ) ⊗ (−p2μ

)
,k

)
.

Now consider the spectral sequence (3.2.2) with B1 � B . Set M = L(pτ ) ⊗ −p2μ, E = L(λ(0)) and
V = k to obtain:

Ei, j
2 = Exti

B/B

(
L(pτ ) ⊗ (−p2μ

)
,Ext j

B

(
L(λ(0)),k

)) ⇒ Exti+ j
B

(
L(λ), p2μ

)
. (6.3.1)
1 1
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By Proposition 3.1.1(b), we know HomB1 (L(λ(0)),k) = 0, and thus the E1,0
2 term in (6.3.1) is zero.

Now consider the E0,1
2 term. For any ξ ∈ X(T ) we have:

HomB/B1

(
L(τ )(1) ⊗ (−p2μ

)
, pξ

) ∼= HomB
(
L(τ ) ⊗ (−pμ), ξ

) ∼= HomB
(
L(τ ), ξ + pμ

)
which, by Proposition 3.1.1(a), is zero unless τ = ξ + pμ.

Applying this to the E0,1
2 term in (6.3.1), we see that E0,1

2 is zero unless pξ = pτ − p2μ is a
weight in Ext1

B1
(L(λ(0)),k). By Proposition 3.1.2(c), this can only occur if λ(0) + pτ − p2μ − (p − 1)ρ

is a weight in St1. But this is ruled out by Corollary 6.2.4. Thus the E0,1
2 term vanishes as well, and

so Ext1
B(L(λ), p2μ) = 0 by Proposition 3.2.3(b). �

6.4. Twisted symmetric powers

Our next observation is that the twisted symmetric power H0(d)(1) embeds nicely in H0(pd) with
cokernel containing no simple modules of the form L(pτ ).

Proposition 6.4.1. There is a short exact sequence

0 → H0(d)(1) → H0(pd) → Q → 0 (6.4.1)

where for all τ � d, [Q : L(pτ )] = 0.

Proof. Apply HomG(−, H0(pd)) to the sequence 0 → L(pd) → H0(d)(1) → U → 0 to obtain:

0 → HomG
(

H0(d)(1), H0(pd)
) → k → Ext1

G

(
U , H0(pd)

)
.

But Ext1
G(U , H0(pd)) = 0 since (pd) is not dominated by any weight in U (see [12, II.4.14]). Thus

HomG(H0(d)(1), H0(pd)) ∼= k and by comparing socles we see the map must be an injection. The
statement about Q is immediate by Lemma 4.2.2(b) since H0(pd) is multiplicity free. �

Now consider (6.4.1) with pd and p2d, and suppose p2μ � p2d. Applying HomB(−, p2μ) to (6.4.1)
we obtain:

· · · → Ext1
B

(
Q , p2μ

) → Ext1
B

(
H0(p2d

)
, p2μ

) → Ext1
B

(
H0(pd)(1), p2μ

)
→ Ext2

B

(
Q , p2μ

) → ·· · . (6.4.2)

We will show, in Lemma 6.4.2 and Proposition 6.5.5 below that the first and last term in (6.4.2)
are zero.

Lemma 6.4.2. Let Q be as in (6.4.2). Then Ext1
B(Q , p2μ) = 0.

Proof. Let [Q : L(λ)] �= 0. By Proposition 6.4.1 we know λ is not of the form pτ . The result then
follows by Proposition 6.3.1. �
6.5. Analyzing Ext2

B(Q , p2μ)

Next we prove the analogue of Proposition 6.3.1 for Ext2
B(L(λ), p2μ), which will require even more

intricate spectral sequence calculations. Let λ = λ(0) + pτ with 0 �= λ(0) ∈ X1(T ) as before and consider
the spectral sequence (6.3.1). We will prove Ext2

B(L(λ), p2μ) is zero by showing the terms E0,2
2 , E1,1

2

and E2,0
2 all vanish, and applying Proposition 3.2.3(b).
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Lemma 6.5.1. The E2,0
2 term in (6.3.1) is zero.

Proof. This is immediate since λ(0) �= 0 implies HomB1 (L(λ(0)),k) = 0 by Proposition 3.1.1(b). �
To show the E1,1

2 term is zero we extend an argument of Andersen’s. For ε ∈ X1(T ) he defined
[1, p. 495] R(ε) by the exact sequence

0 → ε → St1 ⊗ [
(p − 1)ρ + ε

] → R(ε) → 0. (6.5.1)

We will use this to prove:

Lemma 6.5.2. The E0,2
2 term in (6.3.1) is zero.

Proof. The E0,2
2 term is:

HomB/B1

(
L(pτ ) ⊗ (−p2μ

)
,Ext2

B1

(
L(λ(0)),k

))
. (6.5.2)

We will show this term is zero by showing that Ext2
B1

(L(λ(0)),k) = 0 cannot have pτ − p2μ as a
weight.

Apply HomB1 (L(λ(0)),−) to (6.5.1) with ε = 0. Using the fact that St1 is injective we obtain:

Ext2
B1

(
L(λ(0)),k

) ∼= Ext1
B1

(
L(λ(0)), R(0)

)
.

Suppose σ is a weight in R(0), so ν := σ − (p − 1)ρ ∈ St1. If Ext1
B1

(L(λ(0)), σ ) has a weight pτ − p2μ
in it, then by Proposition 3.1.2(c) we must have

λ(0) − σ + pτ − p2μ − (p − 1)ρ ∈ St1.

Then adding ν ∈ St1 we must obtain a weight in St1 ⊗ St1. Thus

ω := λ − p2μ − 2(p − 1)ρ ∈ St1 ⊗ St1.

The module St1 ⊗ St1 has highest weight 2(p − 1)ρ . But choosing i as in Lemma 6.2.3, we have:

〈
2(p − 1)ρ − ω,α∨

i

〉 = 〈
4(p − 1)ρ − (

λ − p2μ
)
,α∨

i

〉
= 4p − 4 − 〈

λ − p2μ,α∨
i

〉
� 4p − 4 − p2

= −p2 + 4p − 4 < 0.

Thus ω cannot be a weight in St1 ⊗ St1, so pτ − p2μ is not a weight in Ext1
B1

(L(λ(0)),k), which shows
that (6.5.2) is zero, as desired. �

Before tackling the E1,1
2 term we prove a preliminary lemma:

Lemma 6.5.3. Let ζ ∈ X(T ) and suppose λ(0) + pζ − (p − 1)ρ ∈ St1 . Then 0 � 〈ζ,α∨〉 � 1 for all α ∈ S.

Proof. Since λ(0) ∈ X1(T ) we know 0 � 〈λ(0),α
∨〉 < p. We also know the weights in St1 lie between

−(p − 1)ρ and (p − 1)ρ . Now just check the corresponding inequalities for 〈ζ,α∨〉. �
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Lemma 6.5.4. The E1,1
2 term:

E1,1
2 = Ext1

B/B1

(
L(pτ ) ⊗ (−p2μ

)
,Ext1

B1

(
L(λ(0),k)

))
in (6.3.1) is zero.

Proof. Actually we will show more, namely that

Ext1
B/B1

(
L(pτ ) ⊗ (−p2μ

)
, pζ

) = 0 (6.5.3)

for every weight pζ in Ext1
B1

(L(λ(0),k)). So let pζ be a weight in Ext1
B1

(L(λ(0)),k) and consider

Ext1
B/B1

(
L(pτ ) ⊗ (−p2μ

)
, pζ

) ∼= Ext1
B

(
L(τ ), ζ + pμ

)
(6.5.4)

which we must prove vanishes. Set τ = τ(0) + pγ with τ(0) ∈ X1(T ) and apply the spectral sequence
(3.2.2):

Ei, j
2 = Exti

B/B1

(
L(pγ ) ⊗ (−pμ),Ext j

B1

(
L(τ(0)), ζ

)) ⇒ Exti+ j
B

(
L(τ ), ζ + pμ

)
. (6.5.5)

To prove (6.5.4) is zero, it is sufficient to show both the E1,0
2 and E0,1

2 terms are zero in (6.5.5) and
apply Proposition 3.2.3(b). Recall that μ � d. The assumption that λ(0) �= 0 implies that τ � m < pd

and so γ � c < d. Notice from Proposition 3.1.1 that E1,0
2 is immediately zero unless τ(0) = ζ in which

case it is

Ext1
B/B1

(
L(pγ ), pμ

) ∼= Ext1
B

(
L(γ ),μ

)
.

This is also zero since γ � μ, since γ is a partition of a smaller integer than μ is. Thus we have

shown E1,0
2 = 0 in (6.5.5).

Finally consider Ext1
B1

(L(τ(0)), ζ ) in the E0,1
2 term:

E0,1
2 = HomB/B1

(
L(pγ ) ⊗ −pμ,Ext1

B1

(
L(τ(0)), ζ

))
of (6.5.5). If it is nonzero then pχ := pγ − pμ is a weight of Ext1

B1
(L(τ(0), ζ )) where

γ = χ + μ. (6.5.6)

Then

τ(0) − ζ + pχ − (p − 1)ρ ∈ St1 (6.5.7)

by Proposition 6.3.1(c). Thus for any α ∈ S:

−(p − 1) �
〈
τ(0) − ζ + pχ − (p − 1)ρ,α∨〉

� p − 1

which yields:

0 �
〈
τ(0) − ζ,α∨〉 + p

〈
χ,α∨〉

� 2(p − 1).
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But τ(0) ∈ X1(T ) so 0 � 〈τ(0),α
∨〉 � p − 1. We obtain:

−(p − 1) � −〈
ζ,α∨〉 + p

〈
χ,α∨〉

� 2(p − 1).

Dividing by p and rearranging gives:

−1 + 1

p
+ 1

p

〈
ζ,α∨〉

�
〈
χ,α∨〉

� 2 − 2

p
+ 1

p

〈
ζ,α∨〉

. (6.5.8)

Since we are assuming pζ is a weight in Ext1
B1

(L(λ(0)),k), then λ(0) + pζ − (p − 1)ρ ∈ St1 by [1,
Proposition 3.2]. So by Lemma 6.5.3, we have 0 � 〈ζ,α∨〉 � 1. Plugging this into (6.5.8) we get:

−1 + 1

p
�

〈
χ,α∨〉

� 2 − 1

p

but χ is integral so

0 �
〈
χ,α∨〉

� 1

and χ is dominant. Since χ is dominant, μ � d and λ � c < d, we have a contradiction to (6.5.6). Thus
Ext1

B1
(L(τ(0)), ζ ) = 0 and the E0,1

2 term vanishes as well. �
Lemmas 6.5.1, 6.5.2 and 6.5.4 let us apply Proposition 3.2.3(b) and obtain:

Proposition 6.5.5. Let Q be as in (6.4.2). Then Ext2
B(Q , p2μ) = 0.

Applying Lemma 6.4.2 and Proposition 6.5.5 to Eq. (6.4.2) gives:

Lemma 6.5.6. Let μ � d. Then:

Ext1
B

(
H0(p2d

)
, p2μ

) ∼= Ext1
B

(
H0(pd)(1), p2μ

)
. (6.5.9)

We can now obtain the main result of this section:

Theorem 6.5.7. Let λ � d. Then there is an isomorphism:

H1(Σpd, S pλ
) ∼= H1(Σp2d, S p2λ

)
.

Proof. We have

H1(Σp2d, S p2λ
) ∼= Ext1

B

(
H0(p2d

)
, H0(p2λ

))
by Proposition 4.1.1(b)

∼= Ext1
B

(
H0(pd)(1), p2μ

)
by (6.5.9)

∼= Ext1
B

(
H0(pd), pμ

)
by Lemma 6.2.1

∼= H1(Σpd, S pλ
)
,

where the second to last isomorphism is using Propositions 2.3.1 and 2.3.2 to get from the group
GLp2d(k) to GLpd(k). �

We immediately obtain a “generic cohomology” result.
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Theorem 6.5.8. Let λ � d. Then for any c � 1 we have

H1(Σpcd, S pcλ
) ∼= H1(Σpc+1d, S pc+1λ

)
.

Remark 6.5.9. A corresponding result for H0(Σd, Sλ) follows from Theorem 5.1.1 since H0(Σpd, S pλ) =
0 unless λ = (d). For H1 the generic cohomology can definitely be nonzero, see Example 5.2.3 for
instance.

7. A second stability result

7.1. In this section we prove a stability result for Specht module cohomology involving adding a
large power of p to the first part of the partition. This will generalize Corollary 5.3.1(b) for two-part
partitions. The previous section used the fact that H0(d)(1) sits nicely as a submodule in H0(pd). In
this section we exploit the fact that H0(d) ⊗ L(1)(r) sits nicely inside H0(d + pr) for large r. For this
section choose r so that pr > d and let n = d + pr . We wish to analyze the GLn(k)-module H0(d) ⊗
L(pr) = H0(d) ⊗ L(1)(r) .

Lemma 7.1.1. The module H0(d) ⊗ L(1)(r) has simple socle isomorphic to L(d + pr).

Proof. Its constituents are all of the form L(λ) ⊗ L(1)(r) where [H0(d) : L(λ)] = 1. From (3.2.2) and
Proposition 3.2.3(c), we have:

HomG
(
L(λ) ⊗ L(1)(r), H0(d) ⊗ L(1)(r)

)
∼= HomG/Gr

(
L(1)(r),HomGr

(
L(λ), H0(d) ⊗ L(1)(r)

))
. (7.1.1)

Since d < pr , constituents of H0(d) are of the form L(μ),μ ∈ Xr(T ). So

HomGr

(
L(λ), H0(d)

) ∼= HomG
(
L(λ), H0(d)

)
which is zero unless λ = (d). Thus the homomorphism space in (7.1.1) is nonzero precisely when
λ = (d) and the statement about the socle follows. �
Lemma 7.1.2. There is an injection:

0 → H0(d) ⊗ L(1)(r) → H0(d + pr).
Proof. Equivalently that there is a surjection from V (d+ pr) onto V (d)⊗ L(1)(r) . Note that [12, Lemma
I.2.13] implies

HomG
(

V
(
d + pr), V (d) ⊗ L(1)(r)

) ∼= HomB+
(
d + pr, V (d) ⊗ L(1)(r)

)
which is one-dimensional. However both modules have isomorphic simple heads and are multiplicity
free, so the map must be onto. �

For notational simplicity, if λ = (λ1, λ2, . . . , λn) � d let λ + pr denote (λ1 + pr, λ2, . . . , λn). Next we
consider the cokernel of the map in Lemma 7.1.2.

Lemma 7.1.3. There is a short exact sequence

0 → H0(d) ⊗ L(1)(r) → H0(d + pr) → U → 0 (7.1.2)

where if [U : L(μ)] �= 0 then μ1 < pr . In particular μ � λ + pr .
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Proof. The sequence comes from Lemma 7.1.2. Now suppose [H0(d + pr) : L(μ)] �= 0 and μ1 � pr .
Then the p-adic expansion of μ1 is μ1 = pr + cr−1 pr−1 + · · · + c0. Since d < pr then μ � d + pr < 2pr

so μ2 < pr . However μ is supposed to be maximal with its carry pattern, since L(μ) is a composition
factor of H0(d + pr). This cannot happen unless μ1 −μ2 � pr . Thus μ is of the form μ̃+ pr . Clearly μ̃
is also maximal among partitions of d with its carry pattern, so [H0(d) : L(μ̃)] �= 0. Thus L(μ) occurs
in H0(d) ⊗ L(1)(r) and, since H0(d + pr) is multiplicity free, not in U . �

From [12, II.4.14] we immediately obtain:

Lemma 7.1.4. Let U be as in (7.1.2). Then Exti
G(U , H0(λ + pr)) = 0 for all i.

Applying HomG(−, H0(λ + pr)) to (7.1.2) and using Lemma 7.1.4, we obtain:

Lemma 7.1.5.

Ext1
G

(
H0(d + pr), H0(λ + pr)) ∼= Ext1

G

(
H0(d) ⊗ L(1)(r), H0(λ + pr)).

By Lemma 7.1.5 and Proposition 4.1.3, we know that

H1(Σd+pr , Sλ+pr ) ∼= Ext1
B

(
H0(λ) ⊗ L(1)(r), λ + pr).

The module L(1) is just the natural representation V , i.e. column vectors with the natural G ac-
tion. Restricted to B , the lower triangular matrices, this module is clearly uniserial with simple socle
(0,0, . . . ,0,1) and simple head (1,0, . . . ,0). As a module for B , L(1)(r) is still uniserial and we can
write:

0 → Q → L(1)(r) → (
pr,0, . . . ,0

) → 0. (7.1.3)

Lemma 7.1.6. Let Q be as in (7.1.3). Then

Ext1
B

(
H0(d) ⊗ Q , λ + pr) = 0.

Proof. Consider τ = (0,0, . . . ,0, pr,0 . . .) a weight in Q . Since pr > d and λ � d, it is clear that λ +
pr − τ is not dominant, nor is it of the form sα.σ for α ∈ S and σ ∈ X+(T ). The result follows from
[1, Proposition 2.3]. �

We can now obtain a result which will imply the stability theorem.

Theorem 7.1.7.

Ext1
B

(
H0(d) ⊗ L(1)(r), λ + pr) ∼= Ext1

B

(
H0(d), λ

)
.

Proof. Take (7.1.3) and tensor it by H0(d) then apply HomB(−, λ + pr) to obtain

· · · → HomB
(

H0(d) ⊗ Q , λ + pr) → Ext1
B

(
H0(d) ⊗ (

pr,0, . . . ,0
)
, λ + pr)

→ Ext1
B

(
H0(d) ⊗ L(1)(r), λ + pr) → Ext1

B

(
H0(d) ⊗ Q , λ + pr) → ·· · . (7.1.4)

The left-hand term in (7.1.4) is zero just by considering weight spaces. The right-hand term is zero
by Lemma 7.1.6, so we have the result. �

We can now obtain the main result of this section.
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Theorem 7.1.8. Let λ � d and pr > d. Then:

H1(Σd, Sλ
) = H1(Σd+pr , Sλ+pr )

.

Proof. We have:

H1(Σd, Sλ
) ∼= Ext1

B

(
H0(d), λ

)
by Proposition 4.1.1

∼= Ext1
B

(
H0(d) ⊗ L(1)(r), λ + pr) by Theorem 7.1.8

∼= Ext1
B

(
H0(d + pr), λ + pr) by Lemma 7.1.5 and Frobenius reciprocity

∼= H1(Σd+pr , Sλ+pr )
. �

8. Open problems and future directions

8.1. We suspect these results are the tip of a large iceberg of “generic cohomology” type theorems
for the symmetric group. In a recent paper [5] of the author with Cohen and Nakano we proved
generic cohomology results for Young modules Y λ , specifically that for each i � 0, the cohomology
groups

Hi(Σpad, Y paλ
)

stabilize for a large enough (depending on i).
One question is whether our stability result can be explicitly realized, i.e.

Problem 8.1.1. Given an element 0 → S pλ → M → k → 0 in H1(Σpd, S pλ), can one explicitly construct

an extension of S p2λ by k realizing the isomorphism in Theorem 6.5.8.

Another obvious question is whether there is generic cohomology in all degrees. With our evidence
from degrees zero and one we conjecture:

Conjecture 8.1.2. Fix i > 0. There is constant c(i) such that for any d with λ � d and any a � c(i) that

Hi(Σpad, S paλ
) ∼= Hi(Σpa+1d, S pa+1λ

)
.

So c(0) = c(1) = 1. One obstacle to generalizing our proof is that Proposition 4.1.1(ii) only holds
through degree 2p − 4. There is certainly evidence that for larger i one must “twist” more times
before stability for Hi begins. For example we have the following analogue of Lemma 6.2.1.

Proposition 8.1.3. Let μ � d. Then

Ext2
B

(
H0(d)(1), pμ

) ∼= Ext2
B

(
H0(d)(2), p2μ

)
.

Proof. Consider the spectral sequence (3.2.1) for the case r = 1, M1 = H0(d)(1) and M2 = pμ. The
E2,0

2 term is Ext2
B(H0(d)(2), p2μ), which we must show is equal to Ext2

B(H0(d)(1), pμ). The E1,1
2 term

is zero, as H1(B1,k) = 0 as mentioned in the proof of Lemma 6.2.1. The E0,2
2 term is

E0,2
2

∼= HomB
(

H0(d)(1), pμ ⊗ H2(B1,k)(−1)
)
.
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The cohomology H2(B1,k) was computed in [2, Theorem 5.3]. From this calculation one can see that
the weights in H2(B1,k)(−1) are all of the form −α for α ∈ S , in particular they are not of the form
pσ . But every weight in H0(d)(1) ⊗ (−pμ) is of this form, so the E0,2

2 term is zero.
Finally observe that:

E0,1
2 = HomB

(
H0(d)(1), pμ ⊗ H1(B1,k)(−1)

) = 0

by Proposition 3.1.2(b). Thus the differential joining E0,1
2 to E2,0

2 is zero, so

E2,0∞ = E2,0
2 = Ext2

B

(
H0(d)(1), pμ

)
as desired. �
Remark 8.1.4. The additional twist going from Lemma 6.2.1 to Proposition 8.1.3 is indeed necessary.
Without it, in the proof above the E0,2

2 term may be nonzero. For example if p = 5 and μ = (50,25)

then HomB(H0(75),μ⊗(−α1)) �= 0. Further, observe that Proposition 8.1.3 required information about
degree two B1-cohomology. This certainly suggests further calculations of Hi(Br,k) may be of use in
studying Specht module cohomology.

8.2. It would be nice to have a proof of Proposition 5.2.4 using our approach, or perhaps more
generally for any composition factor L(λ) in H0(d). We conjecture:

Conjecture 8.2.1. Suppose [H0(d) : L(λ)] �= 0 for λ �= (d). Then H1(Σd, Sλ) �= 0.

Note that Conjecture 8.2.1 is a strengthening of Proposition 5.2.4. More generally the problem of
computing H1 is still open.

Problem 8.2.2. For which λ � d is H1(Σd, Sλ) nonzero? Is it at most one-dimensional?

There is another type of “stability” which occurs, at least for H0(Σd, Sλ). Namely the following is
an easy consequence of Theorem 5.1.1:

Lemma 8.2.3. Suppose λ = (λ1, λ2, . . . , λs) � d and suppose a ≡ −1 mod plp(λ1) . Then

H0(Σd, Sλ
) ∼= H0(Σd+a, S(a,λ1,λ2,...,λs)

)
. (8.2.5)

This leads to the following

Problem 8.2.4. Does the isomorphism in (8.2.5) hold for Hi for any other i > 0?

8.3. Finally we ask for stronger results like that of Theorem 7.1.8.

Problem 8.3.1. Let λ � d and μ � c. Can one find more results that relate the cohomology Hi(Σd, Sλ)

and Hi(Σd+cpr , Sλ+prμ)?
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