Review

Let \(\lambda = (\lambda_1, \lambda_2, \lambda_3, \lambda_4) \) \(\vdash \), \(\lambda \neq 0 \). For any \(r \geq 1 \) we can represent \(\lambda \) on an abacus with \(r \) beads.

Then let \(\lambda \vdash d \). Then \(\lambda \) has a well-defined \(p \)-core \(\tilde{\lambda} \vdash d \text{-pw} \), where \(w \) is the \(p \)-weight of \(\lambda \). For \(\lambda, \lambda' \vdash d \), \(\tilde{\lambda} \) and \(\tilde{\lambda}' \) are in the same block iff \(\tilde{\lambda} = \tilde{\lambda}' \).

Recall

1. \(\lambda \) is uniquely determined by its \(p \)-core and \(p \)-quotient, a sequence of partitions \(\lambda_{(0)}, \lambda_{(1)}, \lambda_{(p)} \) of total weight \(w \).

2. The number of \(p \)-irred modules in a block is a function only of \(w \).
 Similarly for \(k \mathbb{Z}_d \).

3. Often use \(WP + E \) beads to represent \(\lambda \).

4. The Sylow \(p \)-subgroup of a block of weight \(w \) is \(\cong \) to a Sylow \(p \)-subgroup of \(\mathbb{Z}_{pw} \).

5. Adding/removing nodes at rim \(p \)-hooks easy to represent on abacus.
Def: Two categories C and D are equivalent if there exist functors $F: C \rightarrow D$ and $L: D \rightarrow C$ such that FL is naturally isomorphic to the identity functor 1_C and similarly $LF\cong 1_D$.

Equivalently: $F: C \rightarrow D$ is an equivalence if for any objects $c, d \in C$, the map $\text{Hom}_C(c, d) \rightarrow \text{Hom}_D(F(c), F(d))$ is a bijection and every object in D is isomorphic to an object of form $F(c)$.

Def: Algebras A_1, A_2 are Morita equivalent if $\text{mod} A_1$ and $\text{mod} A_2$ are equivalent.

Ex: \mathbb{R} and $M_n(\mathbb{R})$, a ring with 1.

Donovan Conjecture: Fix a p-group D. There are only finitely many block algebras, up to Morita equivalence, with defect group $\cong D$.

Thm (Scopes '91): Fix $w \geq 0$. There are only finitely many kG blocks of weight w up to Morita equivalence.

Moreover:
- The number of non equivalent blocks is $\leq \prod_{i=1}^p \left((i-1)(w-1) + 1 \right)$.
- Every Morita type occurs for some Σ_d,
 \[
 d \leq \frac{p^2(p-1)^2(w-1)^2}{4+wp}
 \]
Cartan Matrix

Recall: Decomposition matrix \(D \) has irreducible \(\mathfrak{sl}_2 \) module:

\[
\begin{pmatrix}

\end{pmatrix}
\]

Def: Cartan matrix \(C \) has rows and columns indexed by irreducible \(\mathfrak{sl}_2 \) modules (equiv. indec. proj. modules) and \(\mathfrak{sl}_2 \):

\[
C_{ij} = \text{mult} (P_i, D_j) = \text{Hom} (P_i, P_j) = \text{Hom} (P_i, P_j)^* = C_{ji}
\]

Ex: \(\mathfrak{sl}_3 \), \(p = 3 \)

\[
\begin{pmatrix}
1 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
\end{pmatrix}
\]

\[
P \text{IMs } R \text{ spin } R \text{ spin } C = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}
\]

Then \(C = D^\text{tr} D \).

Rank: Just as decomposition matrices of a block make sense,
so do Cartan matrices of a block.

Rank: Cartan matrix is invariant under Morita Equivalence (up to...
Scores' Idea

Fix a block B with p-core (b_1, b_2, \ldots, b_r) and weight w.
Take an $r+p$-vector B-set and represent on a abacus.

Let $\Gamma_1, \Gamma_2, \ldots, \Gamma_p$ be # of beads on each runner.

Ex: $p=3$, core = $(9, 7, 5, 3, 1^2)$

Weight = 2

$r+p=12$

$$
\begin{array}{cccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
$$

h.l. 1, 3, 5, 8, 11, 14

$p_1 = 2$ $p_2 = 3$ $p_3 = 7$

Thm (Scores)

Suppose for some $i \geq 2$, $\Gamma_i = \Gamma_{i-1} + \kappa$ with $\kappa \geq w$.

Let \overline{B} be block of Σ_{n-k} with core \overline{B}, where \overline{B} has abacus obtained by swapping runners $i-1$ and i.

Then B and \overline{B} are Morita equivalent.
Ex. B block of Ω_{22} w/ core (9,7,5,3,12)

\[\begin{array}{cccc}
0 & 0 & 0 & \\
0 & 0 & \\
\vdots & 0 & \\
0 & 0 & \\
\end{array} \]

block of Ω_{22} w/ core (8,6,4,32)

Repeat!

\[\begin{array}{cccc}
0 & 0 & 0 & \\
0 & 0 & \\
\vdots & 0 & \\
0 & 0 & \\
\end{array} \]

block of Ω_{23} core (7,5,32)

Proof of Theorem. Assume Matita equivalences as above.

Suppose $B_i B_i'$ blocks at weight w at Ω, Ω w/ $N > M$.

Suppose $B_0 = B, B_1, ..., B_w = B$ so each pair Matita equiv as above. Each family has a unique block ancestor of all in block.

Take such a block. Write out its 1st column back lengths.

Since it's a p-core, 1st run col is empty.

Ex. h.w. 1,2,3,5,8,11

\[\begin{array}{cccc}
0 & 0 & 0 & \\
0 & 0 & \\
\vdots & 0 & \\
\end{array} \]

Keep going.

Let Θ_i be # of beads on each runner.

$\Theta = 0$, $\Theta_i \leq \Theta_i + w - 1$.

Moreover, largest 1st col back length is at most $p(w-1)(w-1)$.