Recall $P \in \text{Sub}(G)$. Suppose $gPNP = gP \cap NP = \{ e \} \quad \forall g \in G$.

Let $L = N_G(P)$. Then

Then Induction + Restriction induce a 1-1 corresp. map, namely,

RG and RL modules

$V_L = V \oplus \text{Pro} \quad V^c = U \oplus \text{Pro}$

Moreover, induction + restriction induce a stable equivalence.

Green Correspondence - Generalizes above

Notation Fix a p-subgroup Q and choose $N_G(Q) \leq H \leq G$.

\[\chi = \{ x \leq G \mid x \leq Q \land gQg^{-1} \text{ for some } g \in G, g \notin H \} \]

\[\gamma = \{ y \leq G \mid y \leq H \land gQg^{-1} \text{ for some } g \in G, g \notin H \} \]

Note that $\chi \leq \gamma$ and $Q \not\leq \chi$.

Note also each subgroup in χ is proper in Q.

Lemma
Assume: M is an indec RH-module that is rel Q-projective.

1. $M_H^c = M \oplus M'$ where each summand in M' is pro relative to a subgroup in X.

2. Write $M = V \oplus V'$ with V index and M/VH. Then every summand of V' is projective relative to a subgroup in X.

Proof. Choose U indec Q-module with $U^c = M \oplus M_0$.

By Mackey $(U^c)_H = U^c_H \oplus U'$ where U' is rel Y-projective.

Combine \[(M^c)_H \oplus (M_0^c)_H = M \oplus M_0 \oplus U' \]

Cancel M, M_0 to get\[(M^c)_H = \mathbb{M} \oplus M' \] with M'/U' as desired.

2. Let $M^c = V \oplus V'$ with V index, M/VH.

Choose V_i a summand of V' it is rel Q-projective since V is.

Choose $Q_i \leq Q$ a vertex and a source S_i. So

2. Let $M_H^c = V \oplus V'$ with V index, M/VH.

Choose V_i a summand of V' it is rel Q-projective since V is.

Choose $Q_i \leq Q$ a vertex and a source S_i. So

$S_i \mid V_i \downarrow_{Q_i}$. Choose $M, (V_i)_H$ so $S_i \mid M_{(V_i)_H}$

Now M is rel Q-projective

Now $M_1 \downarrow (V_i)_H \downarrow (M^c)_H$ so M_1 is rel Y-proj by 2.

i.e. has vertex $H/\gamma \gamma_Q^{-1}$

Now $S_i \mid M_{(V_i)_H}$ so $S_i \mid (____H^c)^H$ $\Rightarrow S_i$ is rel X proj.

This V_i is rel X proj.
Then

(Green Correspondence)

Suppose \(Q \leq G \) is a p-subgroup and \(Q \trianglelefteq N_G(Q) \leq H \leq G \). Then \(\exists \) a 1-1 correspondence between indecomposable \(kH \)-modules with vertex \(Q \) and indecomposable \(kH \)-modules with vertex \(Q \), given as follows:

1. \(V \) indec \(kQ \)-module w/vertex \(Q \) then \(V^H \) has unique summand \(f(V) \) w/vertex \(Q \). Remaining summands have vertex in \(H \).

2. \(M \) indec \(kH \)-module w/vertex \(Q \) then \(M^Q \) has a unique summand \(g(Q) \) with vertex \(Q \), and other summands have vertices in \(H \).

3. \(f(g(Q)) = M \), \(f(f(V)) = V \)

4. Correspondence preserves being trivial source.

Remark In the TI case \(X = \{ e \} \) by definition, so \(M^Q = g(Q) \oplus \mathbb{Q} e \).

Suppose \(V \) is not just \(\{ e \} \). So we have a TI Sylow \(P \) and

\[e \neq gP^{-1}NH, \ g \in H. \]

Then \(gP^{-1}NH \) is a \(P \)-subgroup of \(H \), hence conjugate into \(P \).

Thus \(\exists x \in H \) with

\[x(gP^{-1}NH)x^{-1} \leq P \]

\[xgP \neq g^{-1}NH \leq P \Rightarrow xgP \neq (xgP) \leq P \]

\[\Rightarrow xg \notin N_G(P) \leq H \]

Thus \(V = \{ e \} \) and \(V^H = \{ \mathbb{Q} e \} \Rightarrow g \notin H \ast f(V) \oplus \mathbb{Q} e \).
1. Given \(V \) in \(kG \)-mod w/ vertex \(Q \), source \(S \) so \(V \leq S \). Let \(S' = M \cap M' \) where \(M \) is indec and \(V \leq M \).

 By Lemma part 1, \((M \leq M')_H = M \oplus \text{rel}_Y \). Want \(V_H = M \cap Y \).

Now \(V \leq (V_H)_H \) so \(V_H \) has a summand with vertex \(Q \). But \(V \leq M \)

and \(Q \neq Y \) so \(M \mid V_H \) and \(M \) has vertex \(Q \), other summands rel \(Y \).

Let \(f(V) = M \).

2. Suppose \(M \) is indec kG-module w/ vertex \(Q \). Always \(M \mid (M')_H \) so choose \(V \) indec, \(V \leq M \) so \(M \mid V_H \).

 By Lemma part 2, \(M' = V \oplus \text{rel}_Y \), so choose \(g(M) = V \).

3. Start with \(V \in kG \)-mod, with source \(S \).

 \(G \rightarrow V \) \quad \text{\(M \) is rel \(Y \) pro} \)

 \(H \rightarrow S \leq M \) \quad \text{This \(V \leq M \), \(V \leq M' \).

 If start with \(M \), \(V \leq M \).

 Choose some \(V \).

 Source is constant.
Green Correspondence Remarks

1. It is ubiquitous in representation theory.

2. There are results comparing $\text{Hom}_k \left(V, V_1 \right)$ and $\text{Hom}_k \left(\left(V \right), \left(V_1 \right) \right)$
 but not directly, i.e. not cut by maps factoring
 though relatively IT-projective modules.

3. Then Suppose U indec kG module w/ vertex Q and M the
 corresponding kH-module.

 1. For a kG-module W, $U \cap W \iff M \cap W$.

 2. $BV(G) \iff U$ indec and $M \cap W \iff W \equiv U$.

 i.e. 2 is a sort of converse, if you "care" the Green car
 then you are the Green car.