Review: Def. $H \leq G$. A kG-module M is relatively H-projective if M/V is H-injective for some H-module V. In this case we always have $M/\text{Im}(f)$.

Given $M \cong kQ$ and an indec. G-module S, such that:
1. $M/S \cong S/\ker f$
2. If M is rel. H-projective then $Q^*H \leq H$ for some Q^*H
3. If S is indec. G-module and M/S thin then $S \cong Q(S)$ for some $Q \in \text{Pic}(Q)$.

Remark. For $g \in \text{Pic}(Q)$ then $Q \cong Q^g \cong \text{Aut}(Q)$, thus this is an example of twisting a module by a group automorphism.

Def. Q is a vertex of M, S is a source.

Properties of Vertices & Sources:

Lemma. Let M be an indec. kG-module with vertex Q, $Q \leq H$. Then there exists an indecomposable kH-module V satisfying any 2 of:
1. $V/\text{Im}(f)$
2. V/V^a
3. V has vertex Q

Remark. Eventually can get all 3 at once.
Let S be a source, so $U(S) = (S^u)^e$. Choose $V(S^u)$ so $U(V) = U(S)$.

Need V to have vertex Q.

Since $V(S^u)$, V is rel Q-projective. Suppose a vertex $R \neq Q$. Then

$\\exists W$ an R-module so $V(W) \Rightarrow U(W) \Rightarrow \text{vertex at } Y \in W$ \neq.

Thus $R = Q$.

Claim: V has vertex Q

Proof: $V(U)$ so $V(S(S^u))$ so $V(S(S^u(U)))$ some S

This V has vertex $R = H(SQ^{-1})$, $ETS R \neq Q$ is not in U.

Now $V(W)$, and $S(Va)$ so $S(W)$, Q.

This S is relatively $Q \cap H^{-1}$ for some $H \not= H$. But S has vertex Q so $Q \cap H^{-1} = Q \Rightarrow Q \subseteq H^{-1}$.

But $R \leq SQ^{-1}$. Thus $|R| = |Q|$ and $Q = H^{-1}$. //
Trivial Intersections and the Stable Category

Assume Syl_p subgroup P is trivial, i.e. PN_P^{-1} is always P or 1. (ex: $1P = p$)

Let $L = N_G(P)$.

Then a 1-1 correspondence between \equiv classes of nonprojective indecomposable $RG \otimes K_L$ modules, such that if $U \equiv mod_R K_L$ corresponds to $V \equiv mod_K L$ then

$$U_L \equiv V \oplus \text{proj}$$

$$V^c \equiv U \oplus \text{proj}$$

Proof: Apply Mackey to an indec V.

$$(V^c)_L \equiv \bigoplus_{s \in \Delta L} (s(V)_L)_{sLs^{-1}}$$

Note PSL

It $s \notin L$ then $P = sP^{-1}$ are unique Sylow's of L and sLs^{-1} so PN_P is Sylow of $N_L(sLs^{-1})$ so $|LsL^{-1}|$ is coprime to p.

Thus $$(V^c)_L \equiv V \oplus \text{Projective}$$

Write $V = U_1 \oplus U_2 \oplus \cdots \oplus U_n$. Since Sylow S_L, then $U_1 \cdots U_n$.

U_1 is not projective, $U_2 \cdots U_n$ are projective. So

$$V^c \equiv U \oplus \text{proj} \quad \text{and} \quad U_L \equiv V \oplus \text{proj}$$

So we have a bijection, does every U arise
For $U \in kG$-mod, U is rel L-projective so U/V for some nonprojective kL-module V. \\

Cor Let U_1, U_2 nonproj indec kG-modules, V_1, V_2 car kL-modules.

There exists non-split $0 \to U_1 \to U \to U_2 \to 0$ if and only if

There exists non-split $0 \to V_1 \to V \to V_2 \to 0$.

It tedious and not enlightening.

Stable Maps

Def Let U_1, U_2 be kG-modules and $f: U_1 \to U_2$ a module homomorphism. Say f factors through a projective \tilde{f} if \tilde{f} is a projective module P such that $f \to f \to \pi P \quad P \quad \pi P \quad U_1 \quad f \to U_2$.

Check: The set of such f is a subspace of $\text{Hom}_{kG}(U_1, U_2)$.

Def $\frac{\text{Hom}_{kG}(U_1, U_2)}{\text{subspace factors through a proj.}}$

Thm Suppose U_1, U_2 are nonproj indec kG-modules corr to V_1, V_2 kL-modules. Then $\frac{\text{Hom}_{kG}(U_1, U_2)}{kG} \cong \frac{\text{Hom}_{kL}(V_1, V_2)}{kL}$.
Proof:

$ETS \overline{\text{Hom}}_{\text{rel}}(V_i, V_j) = \overline{\text{Hom}}_{\text{rel}}(V_i, V_j)$.

But $\text{Hom}_{\text{rel}}(V_i, V_j) = \text{Hom}_{\text{rel}}(V_i, V_j)$, so ETS this preserves property of factoring through a projective.

So suppose $v \in \text{Hom}_{\text{rel}}(V_i, V_j)$ and $a \in \text{Hom}_{\text{rel}}(V_i, V_j)$

$v^a = v \oplus g_0 v \oplus \ldots$

Then v extends V. So if v factors through $\text{proj } P$

then v factors through P, also proj.

Suppose

$\begin{array}{c}
\downarrow \\
U_L
\end{array}$

$\begin{array}{c}
V \\
\downarrow v \\
\oplus a
\end{array}$

$\begin{array}{c}
Q
\end{array}$

A proj kL module.

Check $v^a = Q^a \oplus a u$.

Example: $G = SL(2, p)$, $P = \{ (1, 1) \}$, $L = \{ (a, b) | ab = 1 \}$

Define stable module category $\text{stmod } RG$.

- Schur's Lemma

- Stable equivalence RG-mod $\cong kL$-mod in TI case.