Review

1. $H \leq G$, U an H-module. Then $\text{Ind}_H^G U = U^G \cong \bigoplus_{g \in G/H} U_g$

2. $(U^G)^\circ = U^G$

3. $(U \oplus V)^\circ = U^G \oplus V^G$

Mackey Theorem Suppose M is a K-module. Then

$$(M^G)^\circ_H = \bigoplus_{H \leq K} (g(M) \downarrow_{H \leq K})^\circ$$

Remark $g(M)$ is $g \circ M$ is naturally a gK-module, a.k.a. M_g.

Aperin calls this "Transport of structure."

Prop Let $H \leq G$, U a K-module. Then

1. U is a direct summand of a module induced from H (called relatively H-free).
2. Given $V \rightarrow^\psi U \rightarrow^\iota 0$, if ψ splits over H then it splits over G.
3. Given $V \rightarrow^\psi W \rightarrow^\iota 0$ suppose $\exists \psi'$ a K-map from $V \rightarrow W$ such that $\psi = \psi' \circ \iota$. Then $\exists \psi'$ a K-map.

4. $(U^G)^\circ = U \oplus -$ (henceforth write $U / (U^G)^\circ$)

Ref Such modules are called relatively H-projective.

Remark

1. Projective = "relatively free projective."
2. Equivalent notion of relatively H-injective.
Proof 1 \leftrightarrow 2 \leftrightarrow 3 copy similar result for projective modules.

4 \rightarrow 1 trivial.

Claim 2 \rightarrow 4

There is a natural kG-module map $U_{i}^{G} \to U$ given by

$g \cdot u \to gu$

By 2 this splits over H, namely $u \mapsto 1 \otimes u \in U$

By $\bullet 2$ it splits over G so $(U_{i}^{G}) = U \otimes -$.

Then, let $P \in \text{Syl}_{p}(G)$ and $P \leq H \leq G$. Then every kG-module is relatively H-projective.

Proof: Arranging again, we'll prove $\bullet 2$, so suppose

$\xrightarrow{u} U \to 0$

Define

$\tilde{s}(u) = \frac{1}{[G:H]} \sum_{g \in G/H} s(g^{-1}u)$

and check.

Corollary P \leq H \leq G as above, $U \in kG$-mod. Then U is projective iff U_{i} is projective. In particular we can test projectivity on a Sylow.

Proof: U proj \to U_{i} proj already done. Suppose U is proj. By then $U / (U_{i})^{G}$ and $(U_{i})^{G}$ is projective by Corollary. Lemma. \hfill
Let \(U \) be an indecomposable \(kG \)-module.

1. If a \(p \)-subgroup \(Q \leq G \), unique up to conjugacy, such that \(U \) is relatively \(H \)-projective, then \(gQg^{-1} \leq H \) for some \(g \in G \).

2. If an indecomposable \(kG \)-module \(S \) unique up to conjugacy in \(N_G(Q) \), such that \(U/S \).

Def. \(Q \) is called a vertex of \(U \), \(S \) is a source of \(U \).

Rmk.
1. Smaller vertex \(\approx \) closer to projective
2. Suppose \(U/S = \bigoplus g \otimes S \). Check that \(U/\text{Ind}_{gQg^{-1}}^G g(s) \), hence the conjugacy in \(Q \vdash S \).

Proof.
We know \(U \) is rel. Pro. Choose \(Q \) of minimal order so \(U \) is rel. \(Q \)-projective, thus \(U/(U_Q)^c \). The \(S \) some indecomposable summand \(S/U_Q \) such that \(U/S \). Need "uniqueness" of \(Q, S \).

- If \(Q \leq H \) then \(U/(S^+)^c \) so \(U \) is rel. \(H \)-proj.
- As above, \(U \) is also then rel. \(gHg^{-1} \)-projective.

Suppose \(H \leq G \) and \(U \) is rel. \(H \)-proj, so \(U/V \), \(V \) an indec. \(H \)-module.
$S|u_q$ and $u|v^c$ so $S(v^c) < Q$. By Mackey:

\[(v^c)_Q \cong \bigoplus_{s \in Q/\text{Qsh}_c} (s(v)_{Q/\text{Qsh}_c})^Q\]

so $S(s(v)_{Q/\text{Qsh}_c})^Q$, for some s.

However if $Q/\text{Qsh}_c < Q$ this contradicts minimality of $|Q|$.

This $Q \leq \text{Qsh}_c$ as desired.

In the case where $H = Q$, then $Q/\text{Qsh}_c = Q \implies s \in N_G(Q)$. //

Remark

1. Finding vertices and sources of modules is difficult and an active area of research. For instance ∼10 pages in last 5 years, for D_5, S_5^m, only very special cases.

2. A module is trivial source if $u|v^c$, i.e. u is a direct summand of a permutation module. These are very interesting modules!

3. Sample Thm: (Pur) G-p-solvable, then the source is an endopermutation module.
Properties of Vertices & Sources

Lemma

Let U be an indec K-module with vertex Q and $Q \leq H$. Then there exists an indec K-module V satisfying any two of:

1. V/Utt,
2. u/V^c,
3. V has vertex Q.

Eventually we find a V for all 3.

Proof

1.2 Easy! $U/(u^c)$, so choose V/Utt so u/V^c.

2.3 Let S be a source of U so $U/S^c = (S^c)^c$. Choose a summand V/S^c so u/V^c. Need V to also have vertex Q.

Since V/S^c, V is relatively Q projective. Choose a vertex $R \neq Q$.

Then $V/\text{Ind}_R^W \Rightarrow U/W^c \Rightarrow U$ is rel R proj. Thus $R \neq Q$.

1.3 We have source S with S/Utt and U/S^c.

Write $Utt = \Theta$ and choose a summand V/Utt with S/V^c.

Claim V has vertex Q.

By $1/4$,

V/Utt so $V/(S^c)^c$ so $V/\text{some } (S(S)_{H\leq Q})^c$, by Mackey.

Thus V has a vertex $R \leq H/A$ so ETS R and Q are conjugate in H.
Now \(V \) is a module induced \(r^H \) and \(S/V_q \).

So again by Mackey \(S \) is relatively \(\mathfrak{A} \mathfrak{n}rH^{-1} \)
projective for some \(h \in H \).

But \(S \) has vertex \(\mathfrak{A} \) so \(\mathfrak{A} H r H^{-1} = \mathfrak{A} \Rightarrow \mathfrak{A} s h r H^{-1} \)
so

But \(R = s q s^{-1} \) so \(|R| = |q| \) and \(\mathfrak{A} = h r H^{-1} \).