Math 819 HW 3- Due Thursday November 12

1. Let $\lambda=(3,2)$ and consider the Specht module S^{λ} for Σ_{5}.
a. Find the dimension of S^{λ}.
b. Determine the basis of standard polytabloids.
c. Determine the matrices for the permutations $(1,2)$ and $(1,2,3,4,5)$ in terms of this basis.
d. Compute the Gram matrix for the usual bilinear form in terms of this basis.
e. Compute the dimension of the simple module D^{λ} in characteristics 2 and 3 by determining the rank of the Gram matrix.
f. Determine the weights of a G-Z basis of S^{λ} using residue sequences.
2. Page $65 \# 3$.
3. Page $70 \# 6$.
4. Page $83 \# 3$
5. Look over Green's Indecomposability Theorem and its proof on page 62.

Math 819 HW 3- Due Thursday November 12

1. Let $\lambda=(3,2)$ and consider the Specht module S^{λ} for Σ_{5}.
a. Find the dimension of S^{λ}.
b. Determine the basis of standard polytabloids.
c. Determine the matrices for the permutations $(1,2)$ and $(1,2,3,4,5)$ in terms of this basis.
d. Compute the Gram matrix for the usual bilinear form in terms of this basis.
e. Compute the dimension of the simple module D^{λ} in characteristics 2 and 3 by determining the rank of the Gram matrix.
f. Determine the weights of a G-Z basis of S^{λ} using residue sequences.
2. Page $65 \# 3$.
3. Page $70 \# 6$.
4. Page $83 \# 3$
5. Look over Green's Indecomposability Theorem and its proof on page 62.
