Math 620 Midterm Exam #2- March 30, 2012

1. (20 points) Suppose $f(x) \in K[x]$ is irreducible in K[x] and L is a field extension of K of finite degree relatively prime to the degree of f(x). Prove that f(x) remains irreducible in L[x].

2. (20 points) Suppose the degree $[F(\alpha) : F]$ is odd. Prove that $F(\alpha) = F(\alpha^2)$.

3. (20 points) Determine the splitting field and its degree over \mathbb{Q} for $x^4 + x^2 + 1$.

4. (30 points) Prove that $\mathbb{Q}(\sqrt{2+\sqrt{2}})$ is a Galois extension of \mathbb{Q} and compute the Galois group. Illustrate the Galois correspondence.

5. (10 points) Suppose [K : F] = 2 have characteristic zero. Prove that K is a Galois extension of F.