Math 620 Midterm Exam \#2- March 30, 2012

1. (20 points) Suppose $f(x) \in K[x]$ is irreducible in $K[x]$ and L is a field extension of K of finite degree relatively prime to the degree of $f(x)$. Prove that $f(x)$ remains irreducible in $L[x]$.
2. (20 points) Suppose the degree $[F(\alpha): F]$ is odd. Prove that $F(\alpha)=F\left(\alpha^{2}\right)$.
3. (20 points) Determine the splitting field and its degree over \mathbb{Q} for $x^{4}+x^{2}+1$.
4. (30 points) Prove that $\mathbb{Q}(\sqrt{2+\sqrt{2}})$ is a Galois extension of \mathbb{Q} and compute the Galois group. Illustrate the Galois correspondence.
5. (10 points) Suppose $[K: F]=2$ have characteristic zero. Prove that K is a Galois extension of F.
