Math 620 Midterm Exam \#1- February 27, 2012- SOLUTIONS

1. Short Answer- no work necessary (30 points)

a. Let M be an R module. State the universal property satisfied by the symmetric algebra $\mathcal{S}(M)$ in terms of an adjoint pair of functors.

Let A be a commutative R algebra. Then R-module homomorphisms from M to A correspond to R-algebra homomorphisms from $\mathcal{S}(M)$ to A. The pair of adjoint functors is the functor $\mathcal{S}: R-\bmod \rightarrow$ commutative $R-a l g$, and the forgetful functor going the other way. That is:

$$
\operatorname{Hom}_{R-m o d}(M, A) \cong \operatorname{Hom}_{R-a l g}(\mathcal{S}(M), A)
$$

b. State two equivalent conditions for an R-module Q to be injective.
Q is injective iff any SES $0 \rightarrow Q \rightarrow U \rightarrow N$ splits. Also iff given any injection $f: U \rightarrow V$ and $\psi: U \rightarrow Q$ there exists $\Psi: V \rightarrow Q$ such that $\Psi \circ f=\psi$.
c. Let \mathcal{F} and \mathcal{G} be covariant functors $C \rightarrow D$. Then \mathcal{F} and \mathcal{G} are naturally isomorphic if ...

For each $A \in C$ there is an isomorphism $\nu_{A}: \mathcal{F}(A) \rightarrow \mathcal{G}(A)$. And further, for any $f \in \operatorname{Hom}_{C}(A, B)$ we have:

$$
\nu_{B} \circ \mathcal{F}(f)=\mathcal{G}(f) \circ \nu_{A} .
$$

2. (20 points) Let F be a field and consider the 8 -dimensional $F[x]$-module:

$$
F[x] /(x-1)^{2}(x-2)^{2} \bigoplus F[x] /(x-1)^{3}(x-2)
$$

Give the rational canonical form and Jordan canonical form for the linear map given by the action of x on this module.

Using the Chinese remainder theorem we see that the elementary divisors are $\left\{(x-1)^{2},(x-\right.$ $\left.1)^{3},(x-2)^{2},(x-2)\right\}$. Then the invariant factors must be $\left\{a_{2}(x)=(x-1)^{3}(x-2)^{2}, a_{1}(x)=\right.$ $\left.(x-1)^{2}(x-2)\right\}$. Expanding out the invariant factors, this gives JCF and RCF respectively:

$$
\left(\begin{array}{cccccccc}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 2
\end{array}\right),\left(\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 4 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & -8 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 25 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & -19 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 7 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & -5 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 4
\end{array}\right)
$$

3. (20 points) Let A be a nonzero finite abelian group. Prove that A is neither projective nor injective as a \mathbb{Z}-module.

We know A is a direct sum of cyclic groups, so there is an obvious surjection $\pi: \mathbb{Z}^{n} \rightarrow A$ which cannot split, as \mathbb{Z}^{n} has no nonzero torsion elements. Thus A is not projective.

We can argue similarly to show A is not injective, or use Baer's criterion. Since $|A| \cdot A=0$, we have that A is not divisible, so not an injective \mathbb{Z}-module.
4. (20 points) Let V be a 3 -dimensional vector space with basis $\left\{v_{1}, v_{2}, v_{3}\right\}$ and let $T: V \rightarrow V$ be a linear transformation represented in this basis by the matrix:

$$
\left(\begin{array}{ccc}
-1 & 2 & 1 \\
-2 & 0 & 3 \\
1 & 1 & 1
\end{array}\right)
$$

Give the matrices representing the linear transformations

$$
\begin{aligned}
& \Lambda^{2}(T): \Lambda^{2}(V) \rightarrow \Lambda^{2}(V) \\
& \Lambda^{3}(T): \Lambda^{3}(V) \rightarrow \Lambda^{3}(V),
\end{aligned}
$$

using appropriate bases.
Use $\left\{v_{1} \wedge v_{2}, v_{1} \wedge v_{3}, v_{2} \wedge v_{3}\right\}$. Notice that

$$
\begin{aligned}
\Lambda^{2}(T)\left(v_{1} \wedge v_{2}\right) & =T\left(v_{1}\right) \wedge T\left(v_{2}\right) \\
& =\left(-v_{1}-2 v_{2}+v_{3}\right) \wedge\left(2 v_{1}+v_{3}\right) \\
& =-v_{1} \wedge v_{3}-4 v_{2} \wedge v_{1}-2 v_{2} \wedge v_{3}+2 v_{3} \wedge v_{1} \\
& =4 v_{1} \wedge v_{2}-3 v_{1} \wedge v_{3}-2 v_{2} \wedge v_{3} .
\end{aligned}
$$

Similar calculations for the other 2 basis vectors give the matrix:

$$
\left(\begin{array}{ccc}
4 & -1 & 6 \\
-3 & -2 & 1 \\
-2 & -5 & -3
\end{array}\right)
$$

Recall that $\Lambda^{3}(V)$ is one-dimensional, spanned by $v_{1} \wedge v_{2} \wedge v_{3}$ and $\Lambda^{3}(T)$ is just multiplication by the determinant, so the matrix is (11).
5. (10 points) Let A be a 3×3 matrix over \mathbb{Q} with $A^{8}=I$. Prove that $A^{4}=I$.
A satisfies $x^{8}-1$. which factors over \mathbb{Q} into irreducibles as $\left(x^{4}+1\right)\left(x^{2}+1\right)(x-1)(x+1)$. So its minimal polynomial divides this. However its minimal polynomial also divides the characteristic polynomial, which is degree 3 . Thus the minimal polynomial actually divides $x^{4}-1\left(\mathbb{Q}[x]\right.$ is a UFD), which means $A^{4}-I=0$.

