1. Short Answer- no work necessary (30 points)

a. Let M be an R module. State the universal property satisfied by the symmetric algebra S(M) in terms of an adjoint pair of functors.

Let A be a commutative R algebra. Then R-module homomorphisms from M to A correspond to R-algebra homomorphisms from $\mathcal{S}(M)$ to A. The pair of adjoint functors is the functor $\mathcal{S}: R - mod \to \text{commutative } R - alg$, and the forgetful functor going the other way. That is:

$$\operatorname{Hom}_{R-mod}(M, A) \cong \operatorname{Hom}_{R-alg}(\mathcal{S}(M), A).$$

b. State two equivalent conditions for an R-module Q to be *injective*.

Q is injective iff any SES $0 \to Q \to U \to N$ splits. Also iff given any injection $f: U \to V$ and $\psi: U \to Q$ there exists $\Psi: V \to Q$ such that $\Psi \circ f = \psi$.

c. Let \mathcal{F} and \mathcal{G} be covariant functors $C \to D$. Then \mathcal{F} and \mathcal{G} are naturally isomorphic if ...

For each $A \in C$ there is an isomorphism $\nu_A : \mathcal{F}(A) \to \mathcal{G}(A)$. And further, for any $f \in \operatorname{Hom}_C(A, B)$ we have:

$$\nu_B \circ \mathcal{F}(f) = \mathcal{G}(f) \circ \nu_A.$$

2. (20 points) Let F be a field and consider the 8-dimensional F[x]-module:

$$F[x]/(x-1)^2(x-2)^2 \bigoplus F[x]/(x-1)^3(x-2).$$

Give the rational canonical form and Jordan canonical form for the linear map given by the action of x on this module.

Using the Chinese remainder theorem we see that the elementary divisors are $\{(x-1)^2, (x-1)^3, (x-2)^2, (x-2)\}$. Then the invariant factors must be $\{a_2(x) = (x-1)^3(x-2)^2, a_1(x) = (x-1)^2(x-2)\}$. Expanding out the invariant factors, this gives JCF and RCF respectively:

1	1	1	0	0	0	0	0	0		0	0	0	0	4	0	0	0 \
	0	1	1	0	0	0	0	0		1	0	0	0	-8	0	0	0
	0	0	1	0	0	0	0	0		0	1	0	0	25	0	0	0
	0	0	0	1	1	0	0	0		0	0	1	0	-19	0	0	0
	0	0	0	0	1	0	0	0	,	0	0	0	1	7	0	0	0
	0	0	0	0	0	2	1	0		0	0	0	0	0	0	0	2
	0	0	0	0	0	0	2	0		0	0	0	0	0	1	0	-5
	0	0	0	0	0	0	0	2 /		0 /	0	0	0	0	0	1	4 /

3. (20 points) Let A be a nonzero finite abelian group. Prove that A is neither projective nor injective as a \mathbb{Z} -module.

We know A is a direct sum of cyclic groups, so there is an obvious surjection $\pi : \mathbb{Z}^n \to A$ which cannot split, as \mathbb{Z}^n has no nonzero torsion elements. Thus A is not projective.

We can argue similarly to show A is not injective, or use Baer's criterion. Since $|A| \cdot A = 0$, we have that A is not divisible, so not an injective \mathbb{Z} -module.

4. (20 points) Let V be a 3-dimensional vector space with basis $\{v_1, v_2, v_3\}$ and let $T: V \to V$ be a linear transformation represented in this basis by the matrix:

$$\left(\begin{array}{rrrr} -1 & 2 & 1 \\ -2 & 0 & 3 \\ 1 & 1 & 1 \end{array}\right).$$

Give the matrices representing the linear transformations

$$\Lambda^{2}(T) : \Lambda^{2}(V) \to \Lambda^{2}(V) \Lambda^{3}(T) : \Lambda^{3}(V) \to \Lambda^{3}(V),$$

using appropriate bases.

Use $\{v_1 \land v_2, v_1 \land v_3, v_2 \land v_3\}$. Notice that

$$\begin{split} \Lambda^2(T)(v_1 \wedge v_2) &= T(v_1) \wedge T(v_2) \\ &= (-v_1 - 2v_2 + v_3) \wedge (2v_1 + v_3) \\ &= -v_1 \wedge v_3 - 4v_2 \wedge v_1 - 2v_2 \wedge v_3 + 2v_3 \wedge v_1 \\ &= 4v_1 \wedge v_2 - 3v_1 \wedge v_3 - 2v_2 \wedge v_3. \end{split}$$

Similar calculations for the other 2 basis vectors give the matrix:

5. (10 points) Let A be a 3×3 matrix over \mathbb{Q} with $A^8 = I$. Prove that $A^4 = I$.

A satisfies $x^8 - 1$. which factors over \mathbb{Q} into irreducibles as $(x^4 + 1)(x^2 + 1)(x - 1)(x + 1)$. So its minimal polynomial divides this. However its minimal polynomial also divides the characteristic polynomial, which is degree 3. Thus the minimal polynomial actually divides $x^4 - 1$ ($\mathbb{Q}[x]$ is a UFD), which means $A^4 - I = 0$.