Math 620 Spring 2012 Midterm 2 Solutions

1. Suppose $\operatorname{deg}(f(x))=n$ and let α be a root of $f(x)$ in some extension field. Since $f(x)$ is irreducible over K we have $[K(\alpha): K]=n$. Let $[L: K]=m$ so $\operatorname{gcd}(n, m)=1$. We have $[L(\alpha): K]=[L(\alpha): L] \cdot m=[L(\alpha): K(\alpha)] \cdot n$. The relatively prime condition forces $[L(\alpha): L]=n$, which means $f(x)$ is still the minimal polynomial of α over L, so $f(x)$ is irreducible over L.
2. We have

$$
[F(\alpha): F]=\left[F(\alpha): F\left(\alpha^{2}\right)\right] \cdot\left[F\left(\alpha^{2}\right): F\right] .
$$

Since α is a root of $x^{2}-\alpha^{2} \in F\left(\alpha^{2}\right)[x]$, the degree of the extension $F(\alpha) / F\left(\alpha^{2}\right)$ is at most 2. But $[F(\alpha): F]$ is odd, so $\left[F(\alpha): F\left(\alpha^{2}\right)\right]=1$, i.e. $F\left(\alpha^{2}\right)=F(\alpha)$.
3. Let $\eta_{6}=1 / 2+\sqrt{-3} / 2$ be a primitive sixth root of unity. So $\eta_{6}^{2}=\eta_{3}=-1 / 2+\sqrt{-3} / 2$ is a primitive third root of unity. The four roots of $x^{4}+x^{2}+1$ are $\left\{ \pm \eta_{6}, \pm \eta_{3}\right\}$. One can see this directly using the substitution $y=x^{2}$ and the quadratic formula, or by factoring $x^{4}+x^{1}+1=\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)=\Phi_{3}(x) \Phi_{6}(x)$. The the splitting field is just $\mathbb{Q}(\sqrt{-3})$, which has degree 2 over \mathbb{Q}.
4. Let $\alpha=\sqrt{2+\sqrt{2}}$. Check that $\left(\alpha^{2}-2\right)^{2}=2$, i.e. α is a root of $x^{4}-4 x^{2}+2$. Using the quadratic formula one finds the roots of this polynomial are $\pm \sqrt{2 \pm \sqrt{2}}$, so the polynomial is separable and the splitting field is a Galois extension. The polynomial is irreducible by Eisenstein $(p=2)$. I claim all 4 roots already lie in $F:=\mathbb{Q}(\alpha)$, so this is the splitting field.

Just check that $\alpha^{2}-2=\sqrt{2} \in F$. Also that $\sqrt{2+\sqrt{2}} \sqrt{2-\sqrt{2}}=\sqrt{2}$ so $\sqrt{2-\sqrt{2}} \in F$, and we have the splitting field, and $[F: Q]=4$. (The four roots are $\left\{\alpha,-\alpha, \frac{\alpha^{2}-2}{\alpha}, \frac{\alpha^{2}-2}{-\alpha}\right\}$. The Galois group has order 4 and since α can go to any of the four roots, we see it is cyclic or order 4 , generated by $\sigma(\alpha)=\frac{\alpha^{2}-2}{\alpha}$. Observe that $\sigma^{2}(\alpha)=-\alpha$. The subgroup of order 2 generated by σ^{2} fixes $\sqrt{2}$. The picture of the Galois correspondence is:

5. This problem needs an assumption that $\operatorname{char} K=0$. Let $\alpha \in K$ and $\alpha \notin F$. Let $p(x)$ be the minimal polynomial of α over F, so $p(x)$ is an irreducible quadratic, and is separable. Since it's degree 2 it splits over K, i.e. K is the splitting field of a separable (since char $K=0$) polynomial, i.e. it's Galois.

