Math 620 HW1- Due Monday January 30

1. Page $918 \# 2$.
2. Let \mathcal{C} be a category and $\left\{A_{i} \mid i \in I\right\}$ a family of objects of \mathcal{C}. A product for the family is an object P of \mathcal{C} (usually denoted $\Pi_{i \in I} A_{i}$) together with a family of morphisms $\left\{\pi_{i}: P \rightarrow A_{i} \mid i \in I\right\}$ such that for any object B and family of morphisms $\left\{\phi_{i}: B \rightarrow A_{i} \mid i \in I\right\}$, there is a unique morphism $\phi: B \rightarrow P$ such that $\pi_{i} \circ \phi=\phi_{i}$ for all $i \in I$.
a. Describe a product for $\left\{A_{1}, A_{2}\right\}$ in terms of commutative diagrams.
b. Show that in the category of groups, $G_{1} \times G_{2}$ with the usual projections maps π_{1}, π_{2} is a product for $\left\{G_{1}, G_{2}\right\}$.
c. Come up with a definition of coproduct by reversing arrows in the definition of product. You can look it up if you are not sure.
d. Show that $Z_{2} \times Z_{3}$ is a coproduct for Z_{2} and Z_{3} in the category $\mathbf{A b}$ but not in the category of finite groups.
3. Let Ab be the category of abelian groups. For $n>0$ consider the functor

$$
F_{n}: \mathrm{Ab} \rightarrow \mathrm{Ab}
$$

such that

$$
F_{n}(G)=\{g \in G \mid n g=0\}
$$

Determine the left adjoint of F_{n} and prove that it is the left adjoint.
4. Give an example of a functor which is not representable, and prove that it is not.
5. Prove that the forgetful functor from groups to sets is representable.
6. Let T be the forgetful functor form the category of abelian groups to the category of groups. Let S be the abelianization functor $S(G)=G / G^{\prime}$. Prove that (S, T) is an adjoint pair.
7. Define a contravariant functor $\mathcal{F}: \operatorname{Grp} \rightarrow$ Sets as follows. Let $\mathcal{F}(G)$ be the set of subgroups of G. For $\phi: G \rightarrow H$ let $\mathcal{F}(\phi)=\phi^{-1}$. Is \mathcal{F} representable?

