
1a. Let F = F2(t). Then the splitting field of the polynomial x2 − t is an inseparable extension
of F .

b. The Galois group of x4 − 4x2 + 2, which is the minimal polynomial of
√

2 +
√

2, is cyclic of
order 4 (see homework).

c. Q[x1, x2, . . . , xn, . . .] is not Noetherian.

d. Any RP is a local ring, for instance Z(2).

e. The Galois group of x4 − 2 is dihedral of order 8.

f. Note that α2 = 7 + 2
√

10 so α satisfies (x2 − 7)2 = 40 which gives m(x) = x4 − 14x2 + 9, and
since the degree of the extension is 4, this polynomial is irreducible.

2. Define φ : A2 → A3 by

φ(x, y) = (x, y, xy).
This is a regular map (x, y, and xy are polynomials) and it is clear that the image lies in the zero
set of the polynomial xy− z. Moreover any point in this zero set satisfies z = xy, so is of the form
(x, y, xy). Thus φ is 1− 1 and onto as a map from A2 to V .

Now define a map ψ : A3 → A2 by ψ(x, y, z) = (x, y). This is again clearly a regular map. When
restricted to V it is one-to one and onto and one easily checks that ψ and φ are mutual inverses
from A2 to V and back. Thus the two varieties are isomorphic.

Now k[V ] = k[x, y, z]/(xy − z) and k[A2] ∼= k[s, t]. The associated map φ̃ is just composition
with φ. It maps k[V ] to k[A2] and with φ̃(x) = s and φ̃(y) = t. Notice this is an isomorphism and
is well-defined since xy − z vanishes on V . Its inverse map takes s back to x and t back to y.

3. Let e2πi/3 = ζ3 be a primitive cube root of unity. Since ζ3 = −1
2 +

√
3

2 i, we get that the
splitting field of x3 − 2 over Q is Q( 3

√
2,
√−3). The extension has degree 6, thus the Galois group

is the full symmetric group S3 of permutations on the 3 roots, 3
√

2, 3
√

2ζ3,
3
√

2ζ2
3 .

Define:

σ( 3
√

2) = 3
√

2ζ3, σ(
√−3) =

√−3.

τ( 3
√

2) = 3
√

2, τ(
√−3) = −√−3.

Then σ and τ generate the Galois group, corresponding to a 3-cycle and a transposition in S3.
Notice that τ is just the restriction of complex conjugation.

There is a subgroup of size 3, generated by σ. The corresponding fixed field is Q(
√−3), which is

Galois (splitting field of x2 − 3) since the subgroup is normal.
There are 3 subgroups of size 2, corresponding to the three transpositions {τ, τσ, τσ2.} The fixed

field of < τ > is just Q( 3
√

2). The other two correspond to Q( 3
√

2ζ3) and Q( 3
√

2ζ2
3 ).

4. By assumption L/Q is Galois and p divides the order of the Galois group G = Gal(L/Q). By
Cauchy’s theorem G has a subgroup of size p, which corresponds to an intermediate field F with
[L : F ] = p, by the FTOGT. If α 6∈ F then F (α) is strictly larger than F and thus must be all of
L (since [L : F ] is prime). Suppose then that α ∈ F .

Recall that L is just the splitting field of the minimal polynomial of α. Since L 6= Q(α), there is
another root β (called a Galois conjugate of α) such that β 6∈ F . If σ is an element of the Galois
group taking α to β, then σ(F ) := F ′ will give us the desired field. It is still index p since σ is an
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automorphism. It does not contain α so F ′(α) = L.

5. Let V = Z(J) be an irreducible variety and suppose it is not connected, so it is the disjoint
union of two open sets. Since the topology of V is the subspace topology inherited from the Zariski
topology on An, we can assume there are open sets U1 and U2 in An such that the intersections
with V are disjoint and together give V . The complements of Ui are closed sets, so are of the form
Z(I1) and Z(I2) for radical ideals I1 and I2. From the definitions we have:

U1 ∩ V = U c
2 ∩ V = {a | f(a) = 0∀f ∈ J, h(a) = 0∀h ∈ I2.} = Z(J + I2)

U2 ∩ V = U c
1 ∩ V = {a | f(a) = 0∀f ∈ J, h(a) = 0∀h ∈ I1.} = Z(J + I1)

Thus Ui ∩ V are proper subvarieties whose union is V , contradicting V being irreducible. (One
can check further that J = I1 + I2, although this is not necessary here).

6. By the Nullstellensatz we have a bijection between varieties and radical ideals, which reverses
inclusions. Thus the descending chain of varieties corresponds to an ascending chain of ideals
I1 ⊂ I2 ⊂ · · · in k[An] ∼= k[x1, x2, . . . , xn]. The latter ring is Noetherian, by the Hilbert basis
theorem. Thus the ascending chain of ideals must stabilize, and thus the corresponding descending
chain of varieties does as well (since the maps are bijections).


