Review

A commutative ring with 1, $D \subseteq R$ multiplicative closed. (For example $D = R - P$, P prime)

Def. Localization of R at D: $D^{-1}R = \left\{ \frac{f}{g} \mid f, g \in R, g \in D \right\}$

- $D^{-1}R = 0 \iff 0 \in D$
- No zero divisors in D, $0 \in D \implies D^{-1}R$ is integral domain containing R
- R an integral domain, $D = R^*$ $\implies D^{-1}R$ is field of fractions of R
- $\eta: R \to D^{-1}R$, $\eta(r) = \frac{r}{1}$ is well-defined, Kernel = $\{ r \mid r \cdot 0 \text{ some} \}

- It allows us to consider correspondences between certain ideals in R and $D^{-1}R$

Def. D, R as above, $I \subseteq R$ an ideal. Let $D^{-1}I = \left\{ \frac{a}{g} \mid a \in I, g \in D \right\}$.

Notice $D^{-1}I = I \cdot D^{-1}R$

Proof

1. $D^{-1}I$ is an ideal in $D^{-1}R$ called extension of I in $D^{-1}R$.
 (In no zero divisor case $I \subseteq D^{-1}I$)

Proof easy exercise
Prop 2. \(I \subseteq R, D \) as above. Then \(D^I = D^R \) iff \(D \cap I \neq \emptyset \).

Proof. Suppose \(D \cap I \neq \emptyset \), then \(\frac{d}{d} = 1 \in D^I \Rightarrow D^I = D^R \).

Conversely suppose \(D^I = D^R \), let \(I = \frac{a}{d} \in I, d \in D \).

Thus \(\frac{d}{d} = \frac{a}{d} \Rightarrow (d^2 - ad)x = 0 \quad x \in D \)
\(d^2x = adx \quad d^2x \in D \quad ad \in I \)
neither 0 unless \(0 \in D \).

Def. Now let \(J \) be an ideal in \(D^R \). Then \(\Pi^{-1}(J) \) is an ideal in \(R \), called the contraction of \(J \).

Rem. \(\Pi^{-1}(J) \) is the set of numerators which appear in \(\Pi \) of \(J \).

Ex. \(R = \mathbb{Z} \quad D^R = \mathbb{Z}_3 \) has ideal \(\mathbb{Z}/(3) = \{ \frac{5a}{b} | 3 \not| b \} \)
contraction of \(J \) is \(5\mathbb{Z} \)

Prop 3. 1. \(I \subseteq \Pi^{-1}(D^I) \)
2. Every ideal in \(D^R \) is of form \(D^I \), same \(I \subseteq R \).
3. If \(P \) is prime in \(R \) and \(DAP = 0 \) then \(D^P \) is prime in \(D^R \)
and \(\Pi(D^P) = P \).

Proof. Exc.
2. A commutative ring is a local ring if and only if a unique maximal ideal exists.

3. If P is a maximal ideal, then $P = P_P$.

4. If Q is not maximal in R, then $Q = Q_Q$.

Theorem: Let $P < P$ be prime.

Proof:

1. In 1-1 correspondence between prime ideals of R minus R, and prime ideals of R minus P (since P is prime).

Special Case: $P = P_P$, P prime, disjoint from P.

Corollary: Every prime ideal of R minus R is disjoint from P.
Then R comm w/ I. TFAE:

1. R is local w/ maximal ideal M.
 a. \{nonunits\} forms an ideal.
 3. \exists maximal ideal such that $1 + M$ is a unit \forall € M.

Part 1 \rightarrow 2: Suppose a nonunit \(a \), proper $\Rightarrow (a) \cap M = a + M$ so M has all nonunits so $M = \text{all nonunits}$.

2. \rightarrow 1: Clear any proper ideal is $\subseteq \{\text{nonunits}\}$.

3. \rightarrow 1: Suppose $a \notin M$ so $(a) + M = R$ so $1 = ar + m$ so $ar = 1 - m$
 is a unit so a is a unit so $M = \{\text{nonunits}\}$.

1 \rightarrow 3: $1 + M = \text{unit}$.

Local Rings in Algebraic Geometry

Setting: $k = \mathbb{R}$, V a variety, note $k[V]$ is an int domain (since $k[V]$ prime).

Def: $k(V)$ = field of fractions of $k[V]$, think rational functions on V.

Def: f/g is regular at $v \in V$ (aka defined) if $\exists f, g \in k[V]$ so

$f/g = f/vg$ and $g(v) \neq 0$.

Remarks

1. Unless $k[V]$ were a UFD, no "lowest terms" for f/g.

2. If f/g regular at V then regular on open neighborhood $3g \neq 0$ of v, which is dense in V.
Def. Let \(\mathcal{O}_V = \{ f/y \in k(V) \mid f/y \text{ is regular at } V \} \) the local ring at \(V \).

Rmk. \(\mathcal{O}_V \) is a local ring, it is \(= k[V]_{x(V)} \). (This is intrinsic)

\[M_{x(V)} = \mathfrak{m}_{x(V)} = \{ f/y \in k[V]_{x(V)} \mid f(V) = 0 \}, \]

Prop. \(k[V] = \{ f/y \in k(V) \mid \text{regular everywhere} \} \).

Prop. Suppose \(\varphi : V \rightarrow W \) regular map and \(\varphi(V) = W \) with \(\varphi : k[V] \rightarrow k[W] \). Then this induces

\[\varphi : \mathcal{O}_V \rightarrow \mathcal{O}_W \quad (\varphi)(f/y) = (\varphi(f))/\varphi(y) \]

making such that \(\varphi^{-1}(M_{y(W)}) = M_{x(V)} \) (local homomorphism).

Local Ring can be used to give alg def of smoothness, dimension, tangent planes, etc.
Tangent Space

- Old way: \(V = Z(f) \) hypersurface, \(v \in V \).

\[D_v(f)(x_1, \ldots, x_n) = \frac{df}{dx_1}(v_x) x_1 + \ldots + \frac{df}{dx_n}(v_x) x_n. \]

Then

\[D_{v_1}(x_1 - v_1, \ldots, x_n - v_n) \] is linear approx to \(f(x_1, \ldots, x_n) \) at \(v \).

Tangent space \(\tilde{T} = Z(D_v(f)) \) at \(v \), \(\tilde{T} + v \) is tangent plane.

\[f(x, y) = x^2 + y^2 - v \] circle = \(Z(f) \) at \((\sqrt{v}, \sqrt{v}) \)

\[\frac{df}{dx} = 2x, \quad \frac{df}{dy} = 2y \]

\[D_{(\sqrt{v}, \sqrt{v})} f = \sqrt{v} x + \sqrt{v} y \]

\(\sqrt{v} x + \sqrt{v} y = 0 \) shift up to tangent line.

Def: \(T_{\gamma, v} = Z\{D_v(f)(x_1, \ldots, x_n) | f \in X(V) \} \) tangent space at \(v \).

\((\gamma, v) \) tangent space of hypersurface.

Then \(V, v, \alpha_v, m_v \) as above. Then

\[(T_{\gamma, v})^* = m_v/v \] as \(k \)-vector spaces

Def: dimension of \(V = \text{Trans degree } R(V) \) over \(R \),
determined by any local ring since \(R(V) = \text{fractions } \alpha_v, v \).

Def: \(V \) is nonsingular at \(v \) if \(\dim \text{ tangent space} = \dim V \)
Else singular.

\(V \) is smooth if nonsing everywhere.