Math 620 - Due Tuesday January 27

1a. (Hint: everything in this problem is totally straightforward!) Let $\mathcal{F}: \mathcal{C} \rightarrow \mathcal{D}$ be a functor and let $X \in o b \mathcal{D}$. In class we defined a universal arrow from X to \mathcal{F}. Now suppose \mathcal{G} is a functor from \mathcal{D} to \mathcal{C} and let $A \in o b \mathcal{C}$. Define a universal arrow from \mathcal{G} to A by reversing arrows.
b. Let \mathcal{C} and \mathcal{D} be categories. Describe the product category $\mathcal{C} \times \mathcal{D}$ in the obvious way. Let $\Delta: \mathcal{D} \rightarrow \mathcal{D} \times \mathcal{D}$ be the diagonal functor taking A to (A, A) and $f: A \rightarrow B$ to $(f, f):(A, A) \rightarrow(B, B)$.
c. Let $A_{1}, A_{2} \in o b \mathcal{D}$. Show that $(V, v), v=\left(v_{1}, v_{2}\right)$ is a universal arrow from Δ to $\left(A_{1}, A_{2}\right)$ if and only if $\left(V, \pi_{1}, \pi_{2}\right)$ is a product of A_{1} and A_{2} in \mathcal{D}.
2. Suppose $\mathcal{F}: \mathcal{C} \rightarrow \mathcal{D}$ is left adjoint to $\mathcal{G}: \mathcal{D} \rightarrow C$. Show that \mathcal{G} preserves products. That is, suppose $\left\{A_{i} \in \mathcal{D}\right\}$ and $A=\Pi_{i \in I} A_{i}$ with maps $\pi_{i}: A \rightarrow A_{i}$ is a product in \mathcal{D}. Prove that $\mathcal{G}(A)=\Pi_{i \in I} \mathcal{G}\left(A_{i}\right)$ with maps $\mathcal{G}\left(\pi_{i}\right): \mathcal{G}(A) \rightarrow \mathcal{G}\left(A_{i}\right)$ is a product in \mathcal{C}. Dualize to show \mathcal{G} preserves coproducts.

Math 620 - Due Tuesday January 27

1a. (Hint: everything in this problem is totally straightforward!) Let $\mathcal{F}: \mathcal{C} \rightarrow \mathcal{D}$ be a functor and let $X \in o b \mathcal{D}$. In class we defined a universal arrow from X to \mathcal{F}. Now suppose \mathcal{G} is a functor from \mathcal{D} to \mathcal{C} and let $A \in o b \mathcal{C}$. Define a universal arrow from \mathcal{G} to A by reversing arrows.
b. Let \mathcal{C} and \mathcal{D} be categories. Describe the product category $\mathcal{C} \times \mathcal{D}$ in the obvious way. Let $\Delta: \mathcal{D} \rightarrow \mathcal{D} \times \mathcal{D}$ be the diagonal functor taking A to (A, A) and $f: A \rightarrow B$ to $(f, f):(A, A) \rightarrow(B, B)$.
c. Let $A_{1}, A_{2} \in o b \mathcal{D}$. Show that $(V, v), v=\left(v_{1}, v_{2}\right)$ is a universal arrow from Δ to $\left(A_{1}, A_{2}\right)$ if and only if $\left(V, \pi_{1}, \pi_{2}\right)$ is a product of A_{1} and A_{2} in \mathcal{D}.
2. Suppose $\mathcal{F}: \mathcal{C} \rightarrow \mathcal{D}$ is left adjoint to $\mathcal{G}: \mathcal{D} \rightarrow C$. Show that \mathcal{G} preserves products. That is, suppose $\left\{A_{i} \in \mathcal{D}\right\}$ and $A=\Pi_{i \in I} A_{i}$ with maps $\pi_{i}: A \rightarrow A_{i}$ is a product in \mathcal{D}. Prove that $\mathcal{G}(A)=\Pi_{i \in I} \mathcal{G}\left(A_{i}\right)$ with maps $\mathcal{G}\left(\pi_{i}\right): \mathcal{G}(A) \rightarrow \mathcal{G}\left(A_{i}\right)$ is a product in \mathcal{C}. Dualize to show \mathcal{G} preserves coproducts.

