Math 620 - Due Tuesday January 27

1a. (Hint: everything in this problem is totally straightforward!) Let \(F : \mathcal{C} \to \mathcal{D} \) be a functor and let \(X \in \text{ob}\mathcal{D} \). In class we defined a universal arrow from \(X \) to \(F \). Now suppose \(G \) is a functor from \(\mathcal{D} \) to \(\mathcal{C} \) and let \(A \in \text{ob}\mathcal{C} \). Define a universal arrow from \(G \) to \(A \) by reversing arrows.

b. Let \(\mathcal{C} \) and \(\mathcal{D} \) be categories. Describe the **product category** \(\mathcal{C} \times \mathcal{D} \) in the obvious way. Let \(\Delta : \mathcal{D} \to \mathcal{D} \times \mathcal{D} \) be the diagonal functor taking \(A \to (A, A) \) and \(f : A \to B \) to \((f, f) : (A, A) \to (B, B) \).

c. Let \(A_1, A_2 \in \text{ob}\mathcal{D} \). Show that \((V, v), v = (v_1, v_2)\) is a universal arrow from \(\Delta \) to \((A_1, A_2) \) if and only if \((V, \pi_1, \pi_2)\) is a product of \(A_1 \) and \(A_2 \) in \(\mathcal{D} \).

2. Suppose \(F : \mathcal{C} \to \mathcal{D} \) is left adjoint to \(G : \mathcal{D} \to \mathcal{C} \). Show that \(G \) preserves products. That is, suppose \(\{A_i \in \mathcal{D}\} \) and \(A = \Pi_{i \in I} A_i \) with maps \(\pi_i : A \to A_i \) is a product in \(\mathcal{D} \). Prove that \(G(A) = \Pi_{i \in I} G(A_i) \) with maps \(G(\pi_i) : G(A) \to G(A_i) \) is a product in \(\mathcal{C} \). Dualize to show \(G \) preserves coproducts.