Math 620 HW1- Due Tuesday January 20

1. Page $914 \# 1,3$ Page $918 \# 1-3$
2. Let \mathcal{C} be a category and $\left\{A_{i} \mid i \in I\right\}$ a family of objects of \mathcal{C}. A product for the family is an object P of \mathcal{C} (usually denoted $\Pi_{i \in I} A_{i}$) together with a family of morphisms $\left\{\pi_{i}: P \rightarrow A_{i} \mid i \in I\right\}$ such that for any object B and family of morphisms $\left\{\phi_{i}: B \rightarrow A_{i} \mid i \in I\right\}$, there is a unique morphism $\phi: B \rightarrow P$ such that $\pi_{i} \circ \phi=\phi_{i}$ for all $i \in I$.
a. Describe a product for $\left\{A_{1}, A_{2}\right\}$ in terms of commutative diagrams.
b. Show that in the category of groups, $G_{1} \times G_{2}$ with the usual projections maps π_{1}, π_{2} is a product for $\left\{G_{1}, G_{2}\right\}$.
c. Come up with a definition of coproduct by reversing arrows in the definition of product.
d. Show that $Z_{2} \times Z_{3}$ is a coproduct for Z_{2} and Z_{3} in the category $\mathbf{A b}$ but not in the category of finite groups.
