Math 620 - Final Exam: Due Monday May 4, 2009

Instructions: Do all the problems. You may use only your class notes and the textbook, no other sources or collaboration.

1. Let $f(x) \in \mathbb{Q}[x]$ have degree n and let K be a splitting field of $f(x)$ over \mathbb{Q}. Suppose that the Galois group $\operatorname{Gal}(K / \mathbb{Q})$ is isomorphic to the symmetric group S_{n}.
a. Show that $f(x)$ is irreducible over \mathbb{Q}.
b. If $n>2$ and α is a root of $f(x)$ in K, show that the only automorphism of $\mathbb{Q}(\alpha)$ is the identity.
c. If $n \geq 4$, show that $\alpha^{n} \notin \mathbb{Q}$.
2. Let A be a 9×9 matrix with complex entries, characteristic polynomial $\left(x^{2}+1\right)^{3}(x+2)^{3}$ and minimal polynomial $\left(x^{2}+1\right)^{2}(x+2)$.
a. Find the trace and determinant of A.
b. How many different conjugacy classes of matrices with this property are there in $G L_{n}(\mathbb{C})$? How many in $G L_{n}(\mathbb{Q})$?
c. Write down such a matrix with rational entries.
3. Page $877 \# 6,9$.
4. Let $G=G L_{n}(\mathbb{C})$ and let $B \leq G$ be the Borel subgroup of invertible upper triangular matrices. Show that Maschke's theorem does not hold for B, i.e. demonstrate a representation that is not completely reducible.
5. (Converse to Maschke's Theorem) Suppose G is a finite group and $p||G|$. Let F be a field of characteristic p. Let $\Delta(G)$ be the kernel of the augmentation map $\epsilon: F G \rightarrow F$ defined by:

$$
\epsilon\left(\sum a_{g} g\right)=\sum a_{g}
$$

a. Check that $\Delta(G)$ (called the augmentation ideal) is a submodule of $F G$ and that $F G / \Delta(G) \cong$ F, the trivial representation.
b. Let $\sigma=\sum_{g \in G} g$. Check that σ spans a one-dimensional trivial submodule of $F G$ and that $\sigma \in \Delta(G)$.
c. Observe that we have a series of submodules $0 \subset\langle\sigma\rangle \subseteq \Delta(G) \subset F G$ which, when refined to a composition series, has at least two copies of the trivial module in it.
d. Show that $F G$ is not a semisimple algebra.

