Math 619 Midterm Exam \#1 SOLUTIONS

1. a. A group action on A is faithful if $g \cdot a=a \forall a \in A$ implies $g=e$.
b. $\left(D_{8}\right)^{\prime}=\left\{e, r^{2}\right\}, \quad\left(S_{4}\right)^{\prime}=A_{4}$.
c. Suppose $H, K \leq G$ with $H \leq N_{G}(K)$. Then $H K \leq G, K \unlhd H K, H \cap K \unlhd H$ and $H K / K \cong H / H \cap K$.
d. $\{e\},\left\{r^{2}\right\},\left\{r, r^{3}\right\},\left\{s, s r^{2}\right\},\left\{s r, s r^{3}\right\}$
e. $Z(G)=\{z \in G \mid z g=g z \forall g \in G\}$.
2. a. Easy check shows that $i_{g} \circ i_{g^{-1}}(x)=x=i_{g^{-1}} \circ i_{g}(x)$ so i_{g} is a bijection. Also:

$$
i_{g}(x y)=g x y g^{-1}=g x g^{-1} g y g^{-1}=i_{g}(x) i_{g}(y)
$$

so i_{g} is an automorphism of G.
b. Let $g, h \in G$. Then

$$
i_{g h}(x)=g h x(g h)^{-1}=g h x h^{-1} g^{-1}=i_{g}\left(h x h^{-1}\right)=i_{g} \circ i_{h}(x)
$$

so $i_{g h}=i_{g} \circ i_{h}$ and the map i is a homomorphism $G \rightarrow \operatorname{Aut}(G)$..
c. The map i_{g} is trivial when $g x g^{-1}=x \forall x \in G$, so the kernel of i is $Z(G)$.
d. Let $\psi \in \operatorname{Aut}(G)$ and $g \in G$. We must show $\psi \circ i_{g} \circ \psi^{-1}$ is in the image of i. But:

$$
\begin{aligned}
\psi \circ i_{g} \circ \psi^{-1}(x) & =\psi\left(g \psi^{-1}(x) g^{-1}\right) \\
& =\psi(g) \psi\left(\psi^{-1}(x)\right) \psi(g)^{-1} \\
& =\psi(g) x \psi(g)^{-1} \\
& =i_{\psi(g)}(x) .
\end{aligned}
$$

3. We have

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

To get an isomorphism we can map $(1,2)$ to any of the matrices of order 2 , for example to $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and map the three cycle (123) to one of the matrices of order 3.
4. Done in class.
5. The kernel contains $\{e\}$ so is nonempty. Let $x, y \in \operatorname{ker} f$ and $g \in G$. Then $f\left(x y^{-1}\right)=$ $f(x) f(y)^{-1}=e$ so $x y^{-1} \in \operatorname{ker} f$ and it is a subgroup. Finally $f\left(g x g^{-1}\right)=f(g) f(x) f(g)^{-1}=$
$f(g) e f(g)^{-1}=e$ so $g x g^{-1} \in \operatorname{ker} f$ and it is normal.
Let $x, y \in f^{-1}(B)$ so $f(x)=b_{1} \in B$ and $f(y)=b_{2} \in B$. Notice $f(e)=e \in B$ so the set is nonempty. Next:

$$
f\left(x y^{-1}\right)=f(x) f(y)^{-1}=b_{1} b_{2}^{-1} \in B
$$

since $B \leq H$. Thus $x y^{-1} \in f^{-1}(B)$ so $f^{-1}(B) \leq G$.
6. Choose $x=(12)(34)$ and $y=(123)$ for example to find this presentation:

$$
A_{4}=\left\langle x, y \mid x^{2}=y^{3}=(x y)^{3}=e\right\rangle
$$

