1. Short Answer- no work need be shown. (30 points)

- a. Define what it means for a group action to be *faithful*.
- b. Determine the commutator subgroup of D_8 and S_4 .
- c. State the second (aka diamond) isomorphism theorem.
- d. Give the conjugacy classes of D_8 .
- e. Define the center of a group.
- **2.** (20 points) For $g \in G$ define

$$i_g: G \to G$$

by $i_g(x) = gxg^{-1}$. Recall that $\operatorname{Aut}(G)$ is the group of automorphisms of G.

- a. Prove i_g is an automorphism of G.
- b. Prove the map $i: G \to \operatorname{Aut}(G)$ given by $g \to i_g$ is a group homomorphism.
- c. What is the kernel of i?
- d. Prove that the image of i is a normal subgroup in Aut(G). This subgroup is called the group of *inner automorphisms*.

3. (15 points)Let $F \cong \mathbb{Z}/2\mathbb{Z}$ be the field with 2 elements. Write down the six elements in the general linear group $GL_2(F)$ and prove this group is isomorphic to S_3 by giving an explicit isomorphism.

4. (15 points) Give the entire subgroup lattice for a cyclic group of order 12.

5. (10 points) Let $f: G \to H$ be a homomorphism of groups, and let $B \leq H$. Prove that ker f is a normal subgroup of G and $f^{-1}(B)$ is a subgroup of G.

6. (10 points) Give a presentation of the alternating group A_4 using only two generators.