1. Short Answer- no work need be shown. (30 points)
a. Give generators for a Sylow 3 -subgroup of S_{9}.
b. Define a nilpotent group and nilpotence class.
c. Give an example of a group that is solvable but not nilpotent.
d. Give an example of a group G with a normal subgroup $H \unlhd G$ which does not have a complement.
e. List the isomorphism classes of abelian groups of order 36 .
2. (10 points) Suppose $H \unlhd G$ and K is a characteristic subgroup of H. Prove $K \unlhd G$.
3. (10 points) Prove that $D_{8 n}$ is not isomorphic to $Z_{2} \times D_{4 n}$.
4. (15 points) Let P be a Sylow p-subgroup of G and let $N=N_{G}(P)$. Prove that $N_{G}(N)=N$.
5. (15 points) Prove that there are no simple groups of order $336=2^{4} \cdot 3 \cdot 7$. Hint: Look at the permutation action of G on $\operatorname{Syl}_{7}(G)$.
6. (20 points) Classify the isomorphism types of groups of order 18 , and give a presentation for each.

You may find it useful to know the group $G L_{2}(3)$ has order $48=\left(3^{2}-1\right)\left(3^{2}-3\right)$ and every element of order 2 is conjugate to either

$$
\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \text { or }\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) .
$$

1a. $\{(1,2,3),(1,4,7)(2,5,8)(3,6,9)\}$
b. Define the upper central series by $Z^{i}(G)$ by $Z^{0}(G)=\{e\}$ and $Z^{i}(G) / Z^{i-1}(G)=$ $Z\left(G / Z^{i-1}(G)\right)$. Then G is nilpotent of class c if $Z^{c-1}(G)<Z^{i}(G)=G$.
c. S_{4} is solvable but not nilpotent.
d. Let $G=Q_{8}$ and $H=Z\left(Q_{8}\right)=\{ \pm 1\}$.
e. $Z_{36}, Z_{18} \times Z_{2}, Z_{12} \times Z_{3}, Z_{6} \times Z_{6}$
2. Let $g \in G$ and $i_{g}(x)=g x g^{-1}$ be the corresponding inner automorphism of G. Since $H \unlhd G$ then i_{g} restricts to an automorphism of H, and hence $i_{g}(K)=g K g^{-1}=K$ as K is characteristic in H. Thus $K \unlhd G$.
3. Recall that $D_{2 n}$ has trivial center if $n>1$ is odd and center $\left\{e, r^{n / 2}\right\}$ if n is even. This is easy to show. The reflections $s r^{i}$ do not commute with r since $r s r^{i} r^{-1}=s r^{i-2}$. Moreover $s r^{i} s^{-1}=r^{-i}$ so powers of r do not commute with s unless n is even and $i=n / 2$. Turning to the problem then we see $D_{8 n}$ has a center of order 2 but $Z_{2} \times D_{4 n}$ has a center of order 4 , namely $Z_{2} \times\left\{e, r^{2 n}\right.$, so the groups are not isomorphic.
4. Let $x \in N_{G}(N)$. Then $x N x^{-1}=N$ so $x P x^{-1} \leq N$. Thus $x P x^{-1}$ is a Sylow p-subgroup of N but $P \unlhd N$ is a normal Sylow p-subgroup. This means N has a unique Sylow p-subgroup so $x P x^{-1}=P$, i.e. $x \in N$. Thus $N_{G}(N) \leq N$. The other containment is automatic, so $N=N_{G}(N)$.
5. Suppose G is simple of order 336. By Sylow's theorem $n_{7}=8$. Choose $P_{7} \in \operatorname{Syl}_{7}(G)$ and let $N=N_{G}\left(P_{7}\right)$. Then $n_{7}=[G: N]=8$ so $|N|=42$.

Action on left cosets of N gives a homomorphism $\rho: G \rightarrow S_{8}$, which is necessarily injective as G is simple. So assume WLOG that $G \leq S_{8}$. Recall that if $G \not 又 A_{8}$ then $G \cap A_{8}$ is a normal subgroup of index 2 , so we may assume further $G \leq A_{8}$ WLOG.

Elements of order 7 in S_{8} are 7 -cycles, so WLOG let $P_{7}=\langle(1,2,3,4,5,6,7)\rangle$. Then:

$$
N_{S_{8}}\left(P_{7}\right)=\langle(1,2,3,4,5,6,7),(1,4,6,5,2,7)\rangle
$$

has order 42. However $(1,4,6,5,2,7)$ is odd so not in A_{8}. Thus

$$
\left|N_{A_{8}}\left(P_{7}\right)\right|=42 / 2=21
$$

But $N_{G}\left(P_{7}\right) \leq N_{A_{8}}\left(P_{7}\right)$ and $42 \not \leq 21$, so we have a contradiction. The normalizer of a Sylow 7 in G is twice the size of the normalizer in A_{8}.
6. By Sylow's theorem $n_{9}=1$ so we have $P_{9} \unlhd G$. Let Z_{2} be a Sylow 2-subgroup. Then $P_{9} Z_{2}=G$ and $P_{9} \cap Z_{2}=\{e\}$ so $G \cong P_{9} \rtimes Z_{2}$.

Suppose first that P_{9} is cyclic, isomorphic to Z_{9}. Then Aut Z_{9} is abelian and has order $\phi(9)=6$. In particular it has a unique automorphism of order 2 that inverts the generator. So we have one nontrivial map $Z_{2} \rightarrow$ Aut Z_{9} and the trivial one, giving two groups:

$$
\begin{gathered}
G_{1} \cong Z_{9} \times Z_{2} \cong Z_{18}=\left\{x \mid x^{18}=1\right\} \\
G_{2}=\left\{x, y \mid x^{9}=y^{2}=1, y x y^{-1}=x^{-1}\right\}
\end{gathered}
$$

Next suppose $P_{9} \cong Z_{3} \times Z_{3}$. Since $\operatorname{Aut}\left(Z_{3} \times Z_{3}\right) \cong G L_{2}(3)$, we are looking for maps $\phi: Z_{2} \rightarrow G L_{2}(3)$. We know from exercise 6 that maps with images conjugate subgroups give the same semidirect product, so we get at most two nonabelian groups together with the direct product. The two matrices give us the actions:

$$
\begin{gathered}
G_{3}=\left\{a, b, y \mid a^{3}=b^{3}=y^{2}=1, a b=b a, y a y^{-1}=a, y b y^{-1}=b\right\} \cong Z_{3} \times Z_{3} \times Z_{2} . \\
G_{4}=\left\{a, b, y \mid a^{3}=b^{3}=y^{2}=1, a b=b a, y a y^{-1}=a^{-1}, y b y^{-1}=b\right\} \\
G_{5}=\left\{a, b, y \mid a^{3}=b^{3}=y^{2}=1, a b=b a, y a y^{-1}=a^{-1}, y b y^{-1}=b^{-1} x\right\}
\end{gathered}
$$

To see the last two groups are not isomorphic one can compute that G_{5} has trivial center while $b \in Z\left(G_{4}\right)$.

