
Math 619 Final Exam SOLUTIONS - December 11, 2012

1. Short Answer- no work need be shown. (40 points)

a. Z[x]

b. -4+10i

c. R = F [x1, x2, . . . , ] is a finitely generated left R module but the ideal (x1, x2, . . . ) is
not finitely generated.

d. All are of the form Mc = {f | f(c) = 0} where 0 ≤ c ≤ 1.

e. Let P be a prime ideal in an integral domain R and let f(x) = xn + an−1x
n−1 + · · ·+

a0 ∈ R[x]. Suppose all the ai ∈ P and a0 6∈ P 2. Then f(x) is irreducible in R[x].

f. M2(F ). The set of nilpotent matrices is not even closed under addition.

g. 48

h. {e, (12), (123), (1234), (12)(34)}

2. (20 points) Claim: η(R) is the intersection of every prime ideal in R.

Proof: Clearly nilpotent elements are in every prime ideal, so one containment is clear. To
show equality we must prove that for a not nilpotent, there exists a prime ideal not con-
taining a. So suppose a is not nilpotent. Set S be the set of ideals that do not contain any
power an, so by assumption {0} ⊆ S. Clearly Zorn’s lemma applies and S has a maximal
element P . Check that P is prime

b implies c

Suppose x + η(R) 6= 0. Then x 6∈ η(R) so x is a unit. Thus x−1 + η(R) is the inverse of
x+ η(R) so R/η(R) is a field.

c implies a

If R/η(R) is a field then η(R) is maximal and hence prime. Any other prime ideal contains
η(R) by the above, so there cannot be any as η(R) is maximal. Thus η(R) is the unique
prime ideal.

a implies b
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Suppose x is neither nilpotent nor a unit. Since x is not a unit then (x) is proper and thus
lies in some maximal ideal m whichby (a) must be the unique prime ideal, by the lemma this
is η(R), contradicting x not being nilpotent.

3. (10 points) Suppose M is cyclic generated by x. Then {rx | r ∈ R} = M . Since
M/N = {m+N | m ∈M} it is clear that M/N is cyclic, generated by x+N .

4. (10 points) Z[i]/(7) is a field of 49 elements as we saw on the homework since 7 is
congruent to 3 mod 4. Alternately once can take Z/7Z[x]/(p(x)) where p(x) is an irreducible
quadratic.

5. (20 points)Suppose m ∈ Kerψ ∩ Imψ. Then ψ(m) = 0 and there is a u ∈ M so
m = ψ(u). Thus m = ψ(ψ(u)) = 0, so the two spaces intersect trivially. They are both
submodules of M . Finally note that for m ∈M we have

m = ψ(m) + (m− ψ(m)) ∈ Imψ + Kerψ

so the criterion for an internal direct sum is verified.

6. (10 points) The polynomial factors as (x+2)(x+1) so it is is reducible in Z[x]. However
in the power series ring 1 + x is a unit so this is not a nontrivial factorization. Recall that:

1

1 + x
= 1− x+ x2 − x3 · · · .

7. (20 points) Let P be a prime ideal in a commutative ring R with identity.

a. This is just the definition of prime ideal, if a, b 6∈ P then ab 6∈ P .

b. Notice that the units in RP are just fractions of the form x
y

where neither x nor y is in

P . Observe that the set PRP = { p
y
| p ∈ P} is an ideal of RP and it contains every

noninvertible element. This immediately implies it is maximal. Since any proper
ideal cannot contain any units, this ideal contains every proper ideal, and is thus the
unique maximal ideal.

c. Notice that Z(2) is just rational numbers with odd denominators. Now suppose a is

also odd. Then a
b

= b
b

+ a−b
b

and a− b is even so a−b
b
∈ PRP and we have:

a

b
= 1.

When a is even then a
b

= 0. Thus the quotient field has just two elements, 0 and

1.

8. (20 points) F ∗ is a finite abelian group, suppose it has n elements. Write it in invariant
factor form:

Cn1 × · · · × Cns

where ni | ni−1.



We have n = n1n2 · · ·n2. Notice that every element in this group has order dividing n1,
and is thus a root of the polynomial xn1 − 1. However F [x] is a UFD, so a polynomial of
degree n1 has at most n roots. Thus n ≤ n1 ≤ n so n = n1 and the group is cyclic.

9. (20 points) Let I ⊆ R be an ideal in a ring R with identity, and let M be a nonzero
R-module.

a. IM = {i1m1 + · · · + isms | it ∈ I,mt ∈ M}. It is clearly closed under addition and
since rit ∈ I, it is also closed under the left action of R, so it is a submodule.

b. Suppose Ik = 0. If IM = M then 0 = IkM = IM = M , a contradiction. Thus IM
is proper. If M is simple though then 0 is the only proper submodule, so necessarily
IM = 0.
L

c. Let I be the augmentation ideal of FP , the kernel of the augmentation map ε : FP →
F . We proved on the homework that this ideal is nilpotent and codimension 1. Let
S be a simple FP -module. Every thing in FP is of the form λ · 1 + i for i ∈ I,λ ∈ F .
Now let 0 6= s ∈ S. Then since S is simple we have:

S = FPs = {(λ · 1 + i)s} = {λs}.
This shows that S is one-dimensional and that κ ∈ FP acts on this one-dimensional
space by ε(κ) where ε is the augmentatoin map (since ε(λ · 1 + i) = λ.) That is, we
have shown that S ∼= FP/I.

10. (10 points) If [G : H] = p we get a homomorphism f : G → Sp via the action on
the cosets. For g 6∈ H we have gH 6= H so ker f ≤ H < G and G/ ker f ∼= Im f ≤ Sp. If
ker f < H this gives a contradiction, as [H : ker f ] would be divisible by only primes ≥ p but
p! is divisible by one power of p together with smaller primes. Thus H = ker f so H �G.

11. (20 points) First observe conjugation preserves the set of maximal subgroups so
Φ(G)�G (actually it is characteristic). Let P be a Sylow subgroup of Φ(G). By the Frattini
argument we have G = NG(P )Φ(G). If NG(P ) were proper, it would lie in some maximal
subgroup M . Of course Φ(G) would also lie in M meaning NG(P )Φ(G) ≤ M < G, a
contradiction. Thus NG(P ) = G and P is normal in G, in particular it is normal in Φ(G).
Since all Sylows are normal, we have that Φ(G) is nilpotent.


