1. Short Answer- no work need be shown. (40 points)

- a. Give an example of a UFD that is not a PID.
- b. Find a generator for the ideal (-4 + 10i, 58) in $\mathbb{Z}[i]$.
- c. Give an example of a ring which is finitely generated with an ideal which is not finite generated.
- d. Describe the maximal ideals in C[0, 1].
- e. State the Eisenstein criterion.
- f. Illustrate an example of a ring where the set of nilpotent elements does not form an ideal.
- g. How many elements of order 7 are there in a simple group of order 168?
- h. Give a set of conjugacy class representatives in the symmetric group S_4 .

2. (20 points) Let R be a commutative ring with identity. Recall $\eta(R)$ is the nilradical of R, the set of all nilpotent elements. Prove the following are equivalent:

- a. R has exactly one prime ideal.
- b. Every element of R is either nilpotent or a unit.
- c. $R/\eta(R)$ is a field.

3. (10 points) Let M be a cyclic R module. Prove that any quotient module M/N is also cyclic.

4. (10 points) Construct a field with 49 elements.

5. (20 points) Let $\psi : M \to M$ be an *R*-module homomorphism such that $\psi \circ \psi = \psi$. Prove that

$$M \cong \operatorname{Ker} \psi \oplus \operatorname{Im} \psi$$

as R-modules.

6. (10 points) Recall that $\mathbb{Z}[[x]]$ is the ring of formal power series with integer coefficients. Prove that $x^2 + 3x + 2$ is irreducible in $\mathbb{Z}[[x]]$ but is reducible in $\mathbb{Z}[x]$.

7. (20 points) Let P be a prime ideal in a commutative ring R with identity.

- a. Show the set D := R P is multiplicatively closed.
- b. Let R_P denote the ring of fractions $D^{-1}R$ with respect to this multiplicatively closed set. Show R_P has a unique maximal ideal \mathfrak{m} .
- c. Describe the field R_P/\mathfrak{m} for $R = \mathbb{Z}$, P = (2) and \mathfrak{m} the unique maximal ideal.

8. (20 points) Let F be a finite field and F^* the multiplicative group of nonzero elements. Prove that F^* is a cyclic group. Hint: Use the classification of finite abelian groups and properties of F[x].

9. (20 points) Let $I \subseteq R$ be an ideal in a ring R with identity, and let M be a nonzero R-module.

- a. Define IM and prove it is a submodule of M.
- b. Suppose further that I is a nilpotent ideal. Prove that IM is a proper submodule, and conclude that I annihilates any simple R module.
- c. Let F be a field of characteristic p and P a finite p-group. Prove that FP has a unique simple module, which is one-dimensional.

10. (10 points) Let p be the smallest prime dividing the order of a group G. Prove that any subgroup of index p must be normal.

11. (20 points) Let G be finite and recall the Frattini subgroup $\Phi(G)$ is the intersection of all maximal subgroup of G. Prove that $\Phi(G)$ is nilpotent.