1. Short Answer- no work need be shown. (40 points)

a. Give an example of a UFD that is not a PID.
b. Find a generator for the ideal $(-4+10 i, 58)$ in $\mathbb{Z}[i]$.
c. Give an example of a ring which is finitely generated with an ideal which is not finite generated.
d. Describe the maximal ideals in $C[0,1]$.
e. State the Eisenstein criterion.
f. Illustrate an example of a ring where the set of nilpotent elements does not form an ideal.
g. How many elements of order 7 are there in a simple group of order $168 ?$
h. Give a set of conjugacy class representatives in the symmetric group S_{4}.
2. (20 points) Let R be a commutative ring with identity. Recall $\eta(R)$ is the nilradical of R, the set of all nilpotent elements. Prove the following are equivalent:
a. R has exactly one prime ideal.
b. Every element of R is either nilpotent or a unit.
c. $R / \eta(R)$ is a field.
3. (10 points) Let M be a cyclic R module. Prove that any quotient module M / N is also cyclic.
4. (10 points) Construct a field with 49 elements.
5. (20 points) Let $\psi: M \rightarrow M$ be an R-module homomorphism such that $\psi \circ \psi=\psi$. Prove that

$$
M \cong \operatorname{Ker} \psi \oplus \operatorname{Im} \psi
$$

as R-modules.
6. (10 points) Recall that $\mathbb{Z}[[x]]$ is the ring of formal power series with integer coefficients. Prove that $x^{2}+3 x+2$ is irreducible in $\mathbb{Z}[[x]]$ but is reducible in $\mathbb{Z}[x]$.
7. (20 points) Let P be a prime ideal in a commutative ring R with identity.
a. Show the set $D:=R-P$ is multiplicatively closed.
b. Let R_{P} denote the ring of fractions $D^{-1} R$ with respect to this multiplicatively closed set. Show R_{P} has a unique maximal ideal \mathfrak{m}.
c. Describe the field R_{P} / \mathfrak{m} for $R=\mathbb{Z}, P=(2)$ and \mathfrak{m} the unique maximal ideal.
8. (20 points) Let F be a finite field and F^{*} the multiplicative group of nonzero elements. Prove that F^{*} is a cyclic group. Hint: Use the classification of finite abelian groups and properties of $F[x]$.
9. (20 points) Let $I \subseteq R$ be an ideal in a ring R with identity, and let M be a nonzero R-module.
a. Define $I M$ and prove it is a submodule of M.
b. Suppose further that I is a nilpotent ideal. Prove that $I M$ is a proper submodule, and conclude that I annihilates any simple R module.
c. Let F be a field of characteristic p and P a finite p-group. Prove that $F P$ has a unique simple module, which is one-dimensional.
10. (10 points) Let p be the smallest prime dividing the order of a group G. Prove that any subgroup of index p must be normal.
11. (20 points) Let G be finite and recall the Frattini subgroup $\Phi(G)$ is the intersection of all maximal subgroup of G. Prove that $\Phi(G)$ is nilpotent.

