1. Short Answer- no work need be shown. (40 points)
a. Give the invariant factor decomposition for the isomorphism classes of abelian groups of order 72.

$$
C_{72}, \quad C_{36} \times C_{2}, \quad C_{18} \times C_{2} \times C_{2}, \quad C_{24} \times C_{3}, \quad C_{12} \times C_{6}, \quad C_{6} \times C_{6} \times C_{2} .
$$

b. Let $H \unlhd G$. Define a complement for the subgroup H. Give an example where H does not have a complement.

A complement is a subgroup $K \leq G$ such that $G=H K$ and $H \cap K=1$. For $G=Q_{8}$ and $H=\langle i\rangle$ there is no complement.
c. Give an example of a unique factorization domain which is not a principal ideal domain.
$\mathbb{Z}[x]$
d. Give an example of a group which is solvable but not nilpotent.
S_{4}
e. Give an example of a maximal ideal in $C[0,1]$, the ring of continuous realvalued functions on $[0,1]$.

The maximal ideals are all of the form $M_{c}:=\{f \mid f(c)=0\}$ where $c \in[0,1]$.
f. Let I, J be ideals in a ring R. Describe the ideal $I J$.

$$
I J=\left\{i_{1} j_{1}+i_{2} j_{2}+\cdots+i_{s} j_{s} \mid i_{t} \in I, j_{t} \in J, s \geq 1 .\right\}
$$

g. Define an integral domain.

A commutative ring with identity and no zero divisors.
h. Let G be a group. Define the Frattini subgroup of G.

The intersection of all maximal subgroups, if there are any. Otherwise it is defined as G.

2. (15 points) State the Chinese Remainder Theorem.

Let R be a commutative ring with identity and $I_{1}, I_{2}, \ldots, I_{s}$ be ideals which are pairwise comaximal. Then $I_{1} I_{2} \cdots I_{s}=I_{1} \cap I_{2} \cdots \cap I_{s}$ and:

$$
R / I_{1} I_{2} \cdots I_{s} \cong R / I_{1} \times R / I_{2} \times \cdots \times R / I_{s} .
$$

3. (25 points) Classify the isomorphism types of groups of order 75.

There are three isomorphism types, two abelian and one nonabelian. By Sylow's theorem the Sylow 5 subgroup P_{5} has order 25 and is normal. Any Sylow 3 subgroup will be a complement so G must be a semidirect product $P_{5} \rtimes P_{3}$. Since it has order 5^{2}, we have $P_{5} \cong C_{25}$ or $C_{5} \times C_{5}$. The former has an automorphism group of order $\phi(25)=20$, which has no elements of order 3. Thus this example is just:

$$
G_{1} \cong C_{25} \times C_{3} \cong C_{75} .
$$

When $P_{5} \cong C_{5} \times C_{5}$ we get the direct product:

$$
G_{2} \cong C_{5} \times C_{5} \times C_{3} \cong C_{15} \times C_{5} .
$$

However $\operatorname{Aut}\left(C_{5} \times C_{5}\right) \cong \mathrm{GL}_{2}(5)$ has order $\left(5^{2}-1\right)\left(5^{2}-5\right)=2^{5} \cdot 3 \cdot 5$ so there is a nontrivial semidirect product also.

The Sylow 3 subgroups of $\mathrm{GL}_{2}(5)$ are cyclic of order 3 and are all conjugate. Thus any nontrivial map $\phi: C_{3} \rightarrow \mathrm{GL}_{2}(5)$ will give the same semidirect product (by the famous "exercise 6"):

$$
G_{3} \cong\left(C_{5} \times C_{5}\right) \rtimes C_{3} .
$$

Finding an explicit matrix of order 3 allows one to write down a presentation. For example $\left(\begin{array}{cc}0 & 2 \\ 2 & -1\end{array}\right)$ yields:

$$
G_{3} \cong\left\langle x, y, z \mid x^{5}=y^{5}=z^{3}=1, x y=y x, z x z^{-1}=y^{2}, z y z^{-1}=x^{2} y^{-1}\right\rangle
$$

4. (20 points) Suppose R is a commutative ring with identity and with the property that every ideal is finitely generated. Suppose

$$
0 \subset I_{0} \subseteq I_{1} \subseteq I_{2} \subseteq \cdots R
$$

is an ascending chain of ideals. Prove the chain terminates, i.e. that there exists some $s \geq 0$ such that

$$
I_{s}=I_{s+1}=I_{s+2}=\cdots
$$

Let $I=\cup_{i=j}^{\infty} I_{j}$ which is easily seen to be an ideal, so is finitely generated, let $I=$ $\left(r_{1}, r_{2}, \ldots, r_{m}\right)$. Each r_{i} is in the union, so is in some $I_{t(i)}$. Choosing s as the the maximum $t(i)$ we find the generators all lie in some I_{s} and thus

$$
I=I_{s}=I_{s+1}=\cdots
$$

as desired.

