1. Short Answer- no work need be shown. (40 points)

a. The set of upper triangular matrices with 1's on the diagonal.

b. The center of A_4 is trivial so the ascending central series is just $1 \subseteq 1 \cdots$. However $[A_4, A_4] = V$ the Klein 4-group and $[A_4, V] = V$ so we have $A_4 \supset V \supseteq V \cdots$.

c. $2 \cdot 6!$. Remember for n = 6 only we have $|\operatorname{Out}(S_6)| = 2$.

d. A_4 .

e. (123)(45678)(9, 10, 11, 12, 13, 14, 15) has order 105.

f. A complement is a subgroup $K \leq G$ with $H \cap K = 1$ and HK = G. The subgroup $Z(Q_8) \leq Q_8$ does not have a complement.

- g. (x) is prime but not maximal in $\mathbb{Z}[x]$.
- h. $M_2(2)$, the ring of 2×2 matrices over a field of two elements has 6 invertible elements.
- i. On p. 69
- j. $H = \{e, r\} \leq N = \{e, r, s, sr\} \leq D_8$ but H is not normal in D_8 .

2. (15 points)Recall that $\mathbb{Q} \otimes_{\mathbb{Z}} A = 0$ for any torsion (in particular finite) abelian group. So it's clear that $\prod_{i=1}^{\infty} (\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}/2^i \mathbb{Z}) = 0$ since each term is zero.

To show that $\mathbb{Q} \otimes_{\mathbb{Z}} \prod_{i=1}^{\infty} \mathbb{Z}/2^i \mathbb{Z}$ is nonzero actually requires a little more that we've done in class. You can show that the element $1 \otimes (1, 1, 1, ...)$ generates a nonzero subgroup isomorphic to \mathbb{Z} . For a complete proof we need to show that \mathbb{Q} is a *flat* \mathbb{Z} module.

3. (15 points) Let $n \in N$. Since $\overline{\phi}$ is surjective there is an $m_1 \in M$ and $in_1 \in IN$ so that $\phi(m_1) = n + in_1$ (Let's abuse notation and write in_1 for an element of IN even though we know it's a sum of such elements). So $n = \phi(m_1) - in$. Now repeat for $n_1 = m_2 + in_2$ to we see that:

$$n = \phi(m_1) - \phi(im_2) - i^2 \phi(n_2)$$

again abusing notation. Repeating k times where $I^k = 0$ we find that $n \in \phi(M)$ so ϕ is onto.

4. (15 points) Let M be irreducible and $0 \neq m \in M$. Since R is free we have a module homomorphism $\phi : R \to M$ given by $\phi(r) = rm$. The image is a nonzero submodule so ϕ is onto with kernel I, so $M \cong R/I$. However any ideal $I \subset JsubsetR$ would be a nontrivial submodule of R/I. Since M is irreducible then we have I is maximal. Conversely if I is

maximal then R/I is a left R module which is irreducible by the same idea.

5. (15 points) As F[x] is a UFD we can factor $p(x) = f_1(x)^{m_1} \cdots f_s(x)^{m_s}$ into distinct irreducibles $f_i(x)$. The correspondence theorem says we are looking for ideals of F[x] that contain p(x). Since F[x] is a PID we are looking for polynomials q(x) so that q(x) | p(x). Thus the ideals are exactly (q(x))/(p(x)) where:

$$q(x)f_1(x)^{n_1}\cdots f_s(x)^{n_s}, 0 \le n_i \le m_i.$$

6. (10 points) If $x, y \in \ker \phi$ then $\phi(xy^{-1}) = ee = e$ so it is a subgroup. Also for $g \in G$ we have $\phi(gxg^{-1}) = \phi(g)\phi(x)^{-1}\phi(g)^{-1} = \phi(e) = e$ so it is a normal subgroup. If $e \neq x \in \ker \phi$ then $\phi(x) = \phi(e) = e$ so ϕ is not 1-1. Moreover if $x \neq y$ but $\phi(x) = \phi(y)$ then $\phi(xy^{-1}) = 1$ so $\ker \phi \neq e$.

7. (15 points) Suppose $\phi^{-1}(P) \neq R$ and choose x, y with $xy \in \phi^{-1}(P)$. Then $\phi(xy) = \phi(x)\phi(y) \in P$ so either $\phi(x)$ or $\phi(y)$ is in P, so either x or y is in $\phi^{-1}(P)$, so it is prime. Moreover $\phi(rx) = \phi(r)\phi(x) \in P$ since P is an ideal, so $rx \in \phi^{-1}(P)$, which shows it is an ideal.

8. (10 points) The field can be $(\mathbb{Z}/3\mathbb{Z})[x]/(x^2+1)$. The nine elements are a + bx with $a, b \in \mathbb{Z}/3\mathbb{Z}$ and multiplication table obtained from the rule $x^2 = 2$.

9. (15 points) Let $n \in N$ and $g \in G$. Consider the element $gng^{-1}n^{-1}$. It lies in N since N is normal so $gng^{-1} \in N$. It's also a commutator so it's in G'. Thus it is trivial, i.e. gn = ng so $N \subseteq Z(G)$.

10. (10 points)By Gauss Lemma it is enough to show p(x) is irreducible over \mathbb{Z} . The rational root test says the possible roots over \mathbb{Q} are ± 2 , ± 1 which are not roots. So any factorization is into quadratics. So suppose:

$$x^{4} + 5x^{2} + 3x + 2 = (x^{2} + ax + b)(x^{2} + cx + d).$$

We obtain:

$$a + c = 0$$
. $b + ac + d = 5$, $(ad + bc) = 3$, $bd = 2$.

The last equation forces $b + d = \pm 2$ but a = -c so ac is negative so the second equation can't possibly hold.

11. (15 points) Corrected Problem: Let R be a commutative ring with identity which has exactly one prime ideal P and let $D = R - P = \{r \in R \mid r \notin P\}$. Prove that R/P is a field

and that R is isomorphic to the ring of fractions $D^{-1}R$.

Since R has an identity P lies in some maximal ideal which is prime, to P is itself a maximal ideal so P is the unique maximal ideal and R/P is a field. For $r \notin P$ the ideal (r), if proper, lies in some maximal ideal so lies in P, clearly impossible. Thus (r) = R, so we see that D is precisely the set of units in R. Informally then inverting everything in D does nothing. More precisely define $\phi: D^{-1}R \to R$ by $\phi(\frac{r}{q} = rq^{-1})$ and check that it is an isomorphism with inverse $r \to r/1$.

12. (10 points) The quotient group G/N has order n so any element to the nth power is the identity. That is for $g \in G$ we have $(gN)^n = g^n N = N$. Thus $g^n \in N$ as desired.

13. (15 points) Let H and K be groups and $\phi : K \to \operatorname{Aut} H$ be a homomorphism. The semidirect product $H \rtimes K$ has $H \times K$ as its underlying set but with operation:

$$(h_1, k_1)(h_2, k_2) = (h_1\phi(k_1)(h_2), k_1k_2).$$

The set of (h, e) is a normal subgroup isomorphic to H with quotient group isomorphic to K.