Math 619 Final Exam - December 14, 2011

1. Short Answer- no work need be shown. (40 points)

a. The set of upper triangular matrices with 1's on the diagonal.
b. The center of A_{4} is trivial so the ascending central series is just $1 \subseteq 1 \cdots$. However $\left[A_{4}, A_{4}\right]=V$ the Klein 4-group and $\left[A_{4}, V\right]=V$ so we have $A_{4} \supset V \supseteq V \cdots$.
c. $2 \cdot 6$!. Remember for $n=6$ only we have $\left|\operatorname{Out}\left(S_{6}\right)\right|=2$.
d. A_{4}.
e. $(123)(45678)(9,10,11,12,13,14,15)$ has order 105.
f. A complement is a subgroup $K \leq G$ with $H \cap K=1$ and $H K=G$. The subgroup $Z\left(Q_{8}\right) \unlhd Q_{8}$ does not have a complement.
g. (x) is prime but not maximal in $\mathbb{Z}[x]$.
h. $M_{2}(2)$, the ring of 2×2 matrices over a field of two elements has 6 invertible elements.
i. On p. 69
j. $H=\{e, r\} \unlhd N=\{e, r, s, s r\} \unlhd D_{8}$ but H is not normal in D_{8}.
2. (15 points)Recall that $\mathbb{Q} \otimes_{\mathbb{Z}} A=0$ for any torsion (in particular finite) abelian group. So it's clear that $\Pi_{i=1}^{\infty}\left(\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z} / 2^{i} \mathbb{Z}\right)=0$ since each term is zero.

To show that $\mathbb{Q} \otimes_{\mathbb{Z}} \Pi_{i=1}^{\infty} \mathbb{Z} / 2^{i} \mathbb{Z}$ is nonzero actually requires a little more that we've done in class. You can show that the element $1 \otimes(1,1,1, \ldots)$ generates a nonzero subgroup isomorphic to \mathbb{Z}. For a complete proof we need to show that \mathbb{Q} is a flat \mathbb{Z} module.
3. (15 points) Let $n \in N$. Since $\bar{\phi}$ is surjective there is an $m_{1} \in M$ and $i n_{1} \in I N$ so that $\phi\left(m_{1}\right)=n+i n_{1}$ (Let's abuse notation and write $i n_{1}$ for an element of $I N$ even though we know it's a sum of such elements). So $n=\phi\left(m_{1}\right)-i n$. Now repeat for $n_{1}=m_{2}+i n_{2}$ to we see that:

$$
n=\phi\left(m_{1}\right)-\phi\left(i m_{2}\right)-i^{2} \phi\left(n_{2}\right)
$$

again abusing notation. Repeating k times where $I^{k}=0$ we find that $n \in \phi(M)$ so ϕ is onto.
4. (15 points) Let M be irreducible and $0 \neq m \in M$. Since R is free we have a module homomorphism $\phi: R \rightarrow M$ given by $\phi(r)=r m$. The image is a nonzero submodule so ϕ is onto with kernel I, so $M \cong R / I$. However any ideal $I \subset J$ subset R would be a nontrivial submodule of R / I. Since M is irreducible then we have I is maximal. Conversely if I is
maximal then R / I is a left R module which is irreducible by the same idea.
5. (15 points) As $F[x]$ is a UFD we can factor $p(x)=f_{1}(x)^{m_{1}} \cdots f_{s}(x)^{m_{s}}$ into distinct irreducibles $f_{i}(x)$. The correspondence theorem says we are looking for ideals of $F[x]$ that contain $p(x)$. Since $F[x]$ is a PID we are looking for polynomials $q(x)$ so that $q(x) \mid p(x)$. Thus the ideals are exactly $(q(x)) /(p(x))$ where:

$$
q(x) f_{1}(x)^{n_{1}} \cdots f_{s}(x)^{n_{s}}, 0 \leq n_{i} \leq m_{i} .
$$

6. (10 points) If $x, y \in \operatorname{ker} \phi$ then $\phi\left(x y^{-1}\right)=e e=e$ so it is a subgroup. Also for $g \in G$ we have $\phi\left(g x g^{-1}\right)=\phi(g) \phi(x)^{-1} \phi(g)^{-1}=\phi(e)=e$ so it is a normal subgroup. If $e \neq x \in \operatorname{ker} \phi$ then $\phi(x)=\phi(e)=e$ so ϕ is not 1-1. Moreover if $x \neq y$ but $\phi(x)=\phi(y)$ then $\phi\left(x y^{-1}\right)=1$ so $\operatorname{ker} \phi \neq e$.
7. (15 points) Suppose $\phi^{-1}(P) \neq R$ and choose x, y with $x y \in \phi^{-1}(P)$. Then $\phi(x y)=$ $\phi(x) \phi(y) \in P$ so either $\phi(x)$ or $\phi(y)$ is in P, so either x or y is in $\phi^{-1}(P)$, so it is prime. Moreover $\phi(r x)=\phi(r) \phi(x) \in P$ since P is an ideal, so $r x \in \phi^{-1}(P)$, which shows it is an ideal.
8. (10 points) The field can be $(\mathbb{Z} / 3 \mathbb{Z})[x] /\left(x^{2}+1\right)$. The nine elements are $a+b x$ with $a, b \in \mathbb{Z} / 3 \mathbb{Z}$ and multiplication table obtained from the rule $x^{2}=2$.
9. (15 points) Let $n \in N$ and $g \in G$. Consider the element $g n g^{-1} n^{-1}$. It lies in N since N is normal so $g n g^{-1} \in N$. It's also a commutator so it's in G^{\prime}. Thus it is trivial, i.e. $g n=n g$ so $N \subseteq Z(G)$.
10. (10 points)By Gauss Lemma it is enough to show $p(x)$ is irreducible over \mathbb{Z}. The rational root test says the possible roots over \mathbb{Q} are $\pm 2, \pm 1$ which are not roots. So any factorization is into quadratics. So suppose:

$$
x^{4}+5 x^{2}+3 x+2=\left(x^{2}+a x+b\right)\left(x^{2}+c x+d\right) .
$$

We obtain:

$$
a+c=0 . b+a c+d=5, \quad(a d+b c)=3, b d=2 .
$$

The last equation forces $b+d= \pm 2$ but $a=-c$ so $a c$ is negative so the second equation can't possibly hold.
11. (15 points) Corrected Problem: Let R be a commutative ring with identity which has exactly one prime ideal P and let $D=R-P=\{r \in R \mid r \notin P\}$. Prove that R / P is a field
and that R is isomorphic to the ring of fractions $D^{-1} R$.
Since R has an identity P lies in some maximal ideal which is prime, to P is itself a maximal ideal so P is the unique maximal ideal and R / P is a field. For $r \notin P$ the ideal (r), if proper, lies in some maximal ideal so lies in P, clearly impossible. Thus $(r)=R$, so we see that D is precisely the set of units in R. Informally then inverting everything in D does nothing. More precisely define $\phi: D^{-1} R \rightarrow R$ by $\phi\left(\frac{r}{q}=r q^{-1}\right.$ and check that it is an isomorphism with inverse $r \rightarrow r / 1$.
12. (10 points) The quotient group G / N has order n so any element to the nth power is the identity. That is for $g \in G$ we have $(g N)^{n}=g^{n} N=N$. Thus $g^{n} \in N$ as desired.
13. (15 points) Let H and K be groups and $\phi: K \rightarrow$ Aut H be a homomorphism. The semidirect product $H \rtimes K$ has $H \times K$ as its underlying set but with operation:

$$
\left(h_{1}, k_{1}\right)\left(h_{2}, k_{2}\right)=\left(h_{1} \phi\left(k_{1}\right)\left(h_{2}\right), k_{1} k_{2}\right) .
$$

The set of (h, e) is a normal subgroup isomorphic to H with quotient group isomorphic to K.

