Math 619 Final Exam - December 14, 2011

1. Short Answer- no work need be shown. (40 points)

a. Give an example of a Sylow p-subgroup in $G L_{n}(p)$, the $n \times n$ invertible matrices with entries in a field of p elements.
b. Find the upper and lower central series for A_{4}.
c. How many elements does the group $\operatorname{Aut}\left(S_{6}\right)$ have?
d. Give an example of a group which is solvable but not nilpotent.
e. Give an element in the symmetric group S_{15} which has maximal possible order.
f. Let $H \unlhd G$. Define a complement for the subgroup H. Give an example where H does not have a complement.
g. Give an example of a commutative ring R and a prime ideal in R that is not maximal.
h. Give an example of a ring with exactly 6 invertible elements.
i. Give the complete subgroup lattice for the dihedral group D_{8}.
j. Prove or give a counterexample: $H \unlhd N \unlhd G$ implies $H \unlhd G$.
2. (15 points) Recall that tensor products commute with direct sums. That is, for a right R-module M and left R-modules $\left\{N_{i}\right\}_{i \in I}$ we have:

$$
M \otimes_{R}\left(\oplus_{i \in I} N_{i}\right) \cong \oplus_{i \in I}\left(M \otimes_{R} N_{i}\right)
$$

Show that tensor products do not commute with direct products in general. (Hint: Consider the extension of scalars from \mathbb{Z} to \mathbb{Q} of the direct product of the modules $M_{i}=\mathbb{Z} / 2^{i} \mathbb{Z}$.)
3. (15 points) Let I be a nilpotent ideal in a commutative ring R. Let M and N be R-modules and let $\phi: M \rightarrow N$ be an R-module homomorphism. Show that if the induced $\operatorname{map} \bar{\phi}: M / I M \rightarrow N / I N$ is surjective, then ϕ is surjective.
4. (15 points) Let R be a commutative ring. Show that an R-module M is irreducible if and only if it is isomorphic (as an R-module) to R / I for some maximal ideal I.
5. (15 points) Let F be a field and $p(x) \in F[x]$. Describe all the ideals in the ring $F[x] /(p(x))$.
6. (10 points) Let $\phi: G \rightarrow H$ be a group homomorphism. Prove that the kernel $\operatorname{ker} \phi$ is a normal subgroup and $\operatorname{ker} \phi=\{e\}$ if and only if ϕ is injective.
7. (15 points) Let $\phi: R \rightarrow S$ be a homomorphism of commutative rings and let P be a prime ideal of S. Prove that the preimage $\phi^{-1}(P)$ is either all of R or else a prime ideal in R.
8. (10 points) Construct a field with 9 elements and give its multiplication table.
9. (15 points) Let N be a normal subgroup of G. Suppose $N \cap G^{\prime}=\{e\}$. Prove that $N \subseteq Z(G)$.
10. (10 points)Prove that $p(x)=x^{4}+5 x^{2}+3 x+2$ is irreducible over \mathbb{Q}.
11. (15 points) Let R be a commutative ring with identity which has exactly one prime ideal P and let $D=R-P=\{r \in R \mid r \notin P\}$. Prove that R / P is a field that is isomorphic to the ring of fractions $D^{-1} R$.
12. (10 points) Let G be a group and N a normal subgroup of index n. Prove that $g^{n} \in N$ for all $g \in G$.
13. (15 points) Describe in detail the construction of a semidirect product of groups.

