Math 619 Fall 2008- Exam 2 Solutions

1. Let G be nonabelian of order 18. A Sylow 3 subgroup has order 9 , hence index two and is normal. Since there must be a Sylow 2 subgroup or order 2 , we know G is a semidirect product $P_{3} \rtimes Z_{2}$.

Suppose first that $P_{3} \cong Z_{9}$. The group Aut Z_{9} is abelian of order 6 , hence cyclic (recall a generator of Z_{9} must map to a generator). Thus Aut Z_{9} has a unique element of order 2, namely that map ψ with $\psi(x)=x^{-1}$. So we have:

$$
G_{1}=\left\langle x, y \mid x^{9}=y^{2}=e, y x y=x^{-1}\right\rangle .
$$

Notice that $G_{1} \cong D_{18}$.
Next suppose that $P_{3} \cong Z_{3} \times Z_{3}=\langle a\rangle \times\langle b\rangle$. Recall that $\operatorname{Aut}\left(Z_{3} \times Z_{3}\right) \cong G L_{2}(3)$ has order $\left(3^{2}-1\right)\left(3^{2}-3\right)=48$, and so has elements of order 2 . A little computation with 2×2 matrices shows that the elements $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ of order two have either $a=-d$ or $b=c=0$. This leads to:

$$
\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right)\left(\begin{array}{ll}
1 & -1 \\
0 & -1
\end{array}\right)
$$

plus the transposes and negatives of the matrices above. Check that all but the first have an eigenvector of eigenvalue 1 and one of eigenvalue -1. So up to change of basis (i.e. conjugacy) there are only two conjugacy classes or matrices of order 2 , namely the classes of $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ and $\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$. Since Z_{2} is cyclic, conjugate images give the same semidirect product. Thus we get two more groups:

$$
\begin{gathered}
G_{2}=\left\langle x, a, b \mid x^{2}=a^{3}=b^{3}=e, a b=b a, x a x=a, x b x=b^{-1}\right\rangle \cong S_{3} \times Z_{3} \\
G_{3}=\left\langle x, a, b \mid x^{2}=a^{3}=b^{3}=e, a b=b a, x a x=a^{-1}, x b x=b^{-1}\right\rangle
\end{gathered}
$$

2. $\{(1,2,3),(4,5,6),(7,8,9),(1,4,7)(2,5,8)(3,6,9)\}$.
3. The units in $\mathbb{Z}[i]$ are $\pm 1, \pm i$. In a DVR the units are the elements of valuation 0 .
4. The center of $\mathbb{C} S_{3}$ is 3 -dimensional. The most obvoius basis is given by the class sums, namely $\{e,(1,2)+(1,3)+(2,3),(1,2,3)+(1,3,2)\}$.
5. It is a direct product of p-groups. Every maximal subgroup is normal. Every proper subgroup is proper in its normalizer. All the Sylow subgroups are normal.
6. Since $13=(2+3 i)(2-3 i)$ and $(2+3 i)$ is not in (13) then $2+3 i+(13)$ is a zero divisor in $\mathbb{Z}[i] /(13)$. Thus it is not an integral domain, so certainly not a field.
7. Let $D=\left\{0=d_{0}, 1=d_{1}, d_{2}, \ldots, d_{s}\right\}$ be a finite integral domain and let $0 \neq d \in D$. If $d d_{i}=d d_{j}$ then $d_{i}=d_{j}$ since cancelation holds in an ID. Thus $\left\{d d_{i}\right\}$ are distinct, and since D is finite, this is
a complete set of elements of D. Thus $d d_{i}=1$ for some i, so d is a unit, and hence D is a field.
8. Suppose $p \in D$ is prime. Suppose further that $p=r_{1} r_{2}$. Since p is prime we know, WLOG, that $p \mid r_{1}$. Thus $r_{1}=p s$ for some $s \in D$. Thus $p=p s r_{2}$ which gives $p\left(1-s r_{2}\right)=0$. Since we are in an integral domain we have $1-s r_{2}=0$, i.e. $s r_{2}=1$ so r_{2} is a unit. Thus any factorization of p into two terms includes a unit, i.e. p is irreducible.
9. Let G have order $p q$ with $p<q$. Then Sylow's theorem immediately implies the Sylow q subgroup Q is normal. Since it has order q it is isomorphic to Z_{q} and since the quotient has order p, it is isomorphic to Z_{p}. Thus $1 \triangleleft Q \triangleleft G$ is a composition series where each quotient is abelian, thus G is solvable by definition.
10. This problem was missing the hypothesis that n is odd. We have $D_{4 n}=\langle r, s| r^{2 n}=s^{2}=$ $\left.e, s r s=r^{-1}\right\rangle$. Check that $s r^{n} s=r^{n}$ so $\left\{e, r^{n}\right\}$ is a normal subgroup of order 2. Check also that $<s, r^{2}>$ is a subgroup isomorphic to $D_{2 n}$ which is normal (since it has index 2). Since n is odd, r^{n} is not in this subgroup. We have two normal subgroups with trivial intersection, so their product is isomorphic to the direct product $Z_{2} \times D_{2 n}$. This has the same number of elements as $D_{4 n}$ so it is $D_{4 n}$.
11. Let D be a Euclidean Domain and $I \subseteq D$ be an ideal. Choose an element $x \in I$ such that x has minimal norm among all elements of I. Let $w \in I$ so $n(w) \geq n(x)$. Since D is a ED we can write $w=q x+r$ with $n(r)<n(x)$ or $r=0$. But $r=w-q x \in I$ so by the minimality assumption, we cannot have $n(r)<n(x)$. Thus $r=0$ so $w=q x \in(x)$. Since $w \in I$ was arbitrary, we have shown that $I=(x)$ is principal. Thus D is a PID.
