
Math 619 Fall 2008- Exam 2 Solutions

1. Let G be nonabelian of order 18. A Sylow 3 subgroup has order 9, hence index two and is
normal. Since there must be a Sylow 2 subgroup or order 2, we know G is a semidirect product
P3 o Z2.

Suppose first that P3
∼= Z9. The group AutZ9 is abelian of order 6, hence cyclic (recall a

generator of Z9 must map to a generator). Thus AutZ9 has a unique element of order 2, namely
that map ψ with ψ(x) = x−1. So we have:

G1 = 〈x, y | x9 = y2 = e, yxy = x−1〉.
Notice that G1

∼= D18.
Next suppose that P3

∼= Z3 × Z3 = 〈a〉 × 〈b〉. Recall that Aut(Z3 × Z3) ∼= GL2(3) has order
(32 − 1)(32 − 3) = 48, and so has elements of order 2. A little computation with 2 × 2 matrices

shows that the elements
(

a b
c d

)
of order two have either a = −d or b = c = 0. This leads to:

( −1 0
0 −1

)
,

(
1 0
0 −1

)
,

(
1 1
0 −1

)(
1 −1
0 −1

)

plus the transposes and negatives of the matrices above. Check that all but the first have an
eigenvector of eigenvalue 1 and one of eigenvalue -1. So up to change of basis (i.e. conjugacy)

there are only two conjugacy classes or matrices of order 2, namely the classes of
(

1 0
0 −1

)
and

( −1 0
0 −1

)
. Since Z2 is cyclic, conjugate images give the same semidirect product. Thus we get

two more groups:

G2 = 〈x, a, b | x2 = a3 = b3 = e, ab = ba, xax = a, xbx = b−1〉 ∼= S3 × Z3

G3 = 〈x, a, b | x2 = a3 = b3 = e, ab = ba, xax = a−1, xbx = b−1〉
2. {(1, 2, 3), (4, 5, 6), (7, 8, 9), (1, 4, 7)(2, 5, 8)(3, 6, 9)}.

3. The units in Z[i] are ±1,±i. In a DVR the units are the elements of valuation 0.

4. The center of CS3 is 3-dimensional. The most obvoius basis is given by the class sums, namely
{e, (1, 2) + (1, 3) + (2, 3), (1, 2, 3) + (1, 3, 2)}.

5. It is a direct product of p-groups. Every maximal subgroup is normal. Every proper subgroup
is proper in its normalizer. All the Sylow subgroups are normal.

6. Since 13 = (2 + 3i)(2 − 3i) and (2 + 3i) is not in (13) then 2 + 3i + (13) is a zero divisor in
Z[i]/(13). Thus it is not an integral domain, so certainly not a field.

7. Let D = {0 = d0, 1 = d1, d2, . . . , ds} be a finite integral domain and let 0 6= d ∈ D. If ddi = ddj

then di = dj since cancelation holds in an ID. Thus {ddi} are distinct, and since D is finite, this is
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a complete set of elements of D. Thus ddi = 1 for some i, so d is a unit, and hence D is a field.

8. Suppose p ∈ D is prime. Suppose further that p = r1r2. Since p is prime we know, WLOG, that
p | r1. Thus r1 = ps for some s ∈ D. Thus p = psr2 which gives p(1− sr2) = 0. Since we are in an
integral domain we have 1− sr2 = 0, i.e. sr2 = 1 so r2 is a unit. Thus any factorization of p into
two terms includes a unit, i.e. p is irreducible.

9. Let G have order pq with p < q. Then Sylow’s theorem immediately implies the Sylow q sub-
group Q is normal. Since it has order q it is isomorphic to Zq and since the quotient has order p,
it is isomorphic to Zp. Thus 1 ¢ Q ¢ G is a composition series where each quotient is abelian, thus
G is solvable by definition.

10. This problem was missing the hypothesis that n is odd. We have D4n = 〈r, s | r2n = s2 =
e, srs = r−1〉. Check that srns = rn so {e, rn} is a normal subgroup of order 2. Check also that
< s, r2 > is a subgroup isomorphic to D2n which is normal (since it has index 2). Since n is odd, rn

is not in this subgroup. We have two normal subgroups with trivial intersection, so their product is
isomorphic to the direct product Z2×D2n. This has the same number of elements as D4n so it is D4n.

11. Let D be a Euclidean Domain and I ⊆ D be an ideal. Choose an element x ∈ I such that x
has minimal norm among all elements of I. Let w ∈ I so n(w) ≥ n(x). Since D is a ED we can
write w = qx + r with n(r) < n(x) or r = 0. But r = w− qx ∈ I so by the minimality assumption,
we cannot have n(r) < n(x). Thus r = 0 so w = qx ∈ (x). Since w ∈ I was arbitrary, we have
shown that I = (x) is principal. Thus D is a PID.


