
Math 619 Midterm Exam #1- October 2, 2008- SOLUTIONS

Instructions: G always denotes a finite group. Each of the seven problems will be weighted
equally.

Part 1: Do all four problems.

1. Let P be a Sylow subgroup of G and let N = NG(P ). Prove that NG(N) = N .

Solution: Clearly N ⊆ NG(N). Now let x ∈ NG(N), so xNx−1 = N . Then both P and xPx−1

are Sylow p-subgroups of N , but P £N so is the unique Sylow p subgroup of N . Thus xPx−1 = P
so x ∈ N . Hence NG(N) ⊆ N .

2. Consider σ = (12)(34) ∈ S4. Write down the elements in the conjugacy class of σ. Write down
the elements in the centralizer CS4(σ).

Solution: Conjugacy class: {(12)(34), (13)(24), (14)(23)}
Centralizer: {e, (12), (34), (12)(34), (13)(24), (14)(23), (1324), (1423)}

3. Let φ : G → H be a homomorphism and let K £H. Prove that φ−1{K} is a subgroup of G and
that it is normal.

Solution: Note that e ∈ φ−1{K} so it is nonempty. Let x, y ∈ φ−1{K}. Then φ(x), φ(y) ∈ K
so φ(x)φ(y)−1 = φ(xy−1) ∈ K since K ≤ H. Thus xy−1 ∈ φ−1{K} so φ−1{K} is a subgroup. Let
g ∈ G. Then φ(gxg−1) = φ(g)φ(x)φ(g)−1 is in K since K £ H. Thus gxg−1 ∈ φ−1{K} so φ−1{K}
is normal in G.

4. Define the following: characteristic subgroup, orbit, solvable group, commutator subgroup.

Solution: A subgroup H is characteristic in G if φ(H) = H for any φ ∈ AutG. If G acts on
a set A and a ∈ A the orbit of a is the set {ga | g ∈ G}. A group G is solvable if it has a normal
series where each quotient is abelian. The commutator subgroup of G is the subgroup generated by
all commutators {xyx−1y−1 | x, y ∈ G}.

Part 2: Choose three problems. Clearly indicate which three you have chosen.

5. Let G have odd order and let g ∈ G be a nonidentity element. Prove that g is not conjugate to
g−1.

Solution: G has odd order so it has no elements of order two, thus no nonidentity element is
equal to its inverse. Suppose g = xg−1x−1. Suppose also that h is conjugate to g, so h = aga−1.
Then h−1 = ag−1a so h−1 is conjugate to g−1 and hence to g and h. Thus for each h in the
conjugacy class of g, h−1 6= h is also in the class, so the class has even order. This is a contradiction
since the size of the conjugacy class is the index of the centralizer of g; in particular it must divide
the order of the group.

6. a. Show that InnS4
∼= S4.

b. Write down the Sylow 3 subgroup(s) of S4.

c. Suppose φ ∈ AutS4. Show that φ acts on the Sylow 3 subgroups and that any φ which fixes
all of them must be the identity.

d. Use c to define an injective homomorphism from AutS4 to S4. Conclude that AutS4
∼= S4.
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Solution: a. We showed in class that Z(S4) = {e} so InnS4
∼= S4/Z(S4) ∼= S4.

b. P1 = {e, (123), (132)}, P2 = {e, (124), (142)}, P3 = {e, (134), (143)}, P4 = {e, (234), (243)}.

c. Any automorphism preserves the order of subgroups, so permutes the Sylow 3-subgroups.
We know φ(x) = x−1 is not an automorphism, since S4 is nonabelian. So choose φ preserving the
Sylows and assume WLOG that φ(123) = (123) and φ(124) = (142). Then (123)(124) = (13)(24)
and (123)(142) = (143). Thus φ(13)(24) = (143) which is a contradiction, since (13)(24) has order
2 and (143) has order 3. Any other pair of 3-cycles works the same way, so it must be that φ fixes
all the three-cycles. These generate S4 so φ is the identity.

d. AutS4 acts on the four Sylows so we get a homomorphism from AutS4 to S4. The kernel
is trivial by c, so AutS4 is isomorphic to a subgroup of S4. Part a now tells us AutS4

∼= InnS4
∼= S4.

7. Let P be a normal Sylow p-subgroup of G and let H ≤ G. Prove that P ∩ H is the unique
Sylow p-subgroup of H.

Solution: P ∩H £H and the second isomorphism theorem says that H/P ∩H ∼= PH/P . Since
P is a Sylow of G it is clear that p does not divide [PH : P ] = [H : P ∩ H]. But P ∩ H is a p-
subgroup, so it is a Sylow subgroup of H. Since it is normal in H, it is the unique Sylow p-subgroup.

8. Let Fp denote the field with p elements and let G = GL2(Fp).
a. What is the order of G?

b. Prove that G has p + 1 Sylow p-subgroups. (Hint: The Sylow theorems will show you must
only produce two distinct Sylow subgroups)

Solution:
a. G has order (p2 − 1)(p2 − p) = p(p + 1)(p− 1)2

b. The order of G tells us the Sylows have size p. The number np is congruent to 1 mod p and

divides (p + 1)(p− 1)2. One easily sees the only possibilities are 1 or p + 1. But {
(

1 a
0 1

)
} and

{
(

1 0
a 1

)
} are both subgroups of order p, so there are at least two Sylows, and thus there are

1 + p Sylows.

9. Let G be a non-abelian p-group of order p3, where p is a prime number. Let Z(G) be the center
of G and G′ be its commutator subgroup.

a. Show that Z(G) = G′ and that this is the unique normal subgroup of G of order p.

b. Determine the number of distinct conjugacy classes of G.

Solution: a. G is nonabelian so G/Z(G) cannot be cyclic, so cannot have order p. Thus Z(G)
must have order p. Now G/Z(G) has order p2 and is thus abelian. Hence G′ ≤ Z(G). However
G′ 6= {e} since G is nonabelian, so G′ = Z(G). Now for any normal subgroup H of order p we
must have G/H of order p2 hence abelian hence G′ ≤ H. Thus G′ is the unique normal subgroup
of order p.

b. For g ∈ Z(G) the class of g is just g, so there are p classes of size one. For g 6∈ Z(G) the
centralizer CG(g) includes all of < g > and Z(G) so has order p2. Thus the conjugacy class has
order p3/p2 = p. Hence there are p classes of size one and (p3 − p)/p = p2 − 1 classes of size p for
a total of p2 + p− 1 conjugacy classes.


