Instructions: G always denotes a finite group. Each of the seven problems will be weighted equally.

Part 1: Do all four problems.

1. Let P be a Sylow subgroup of G and let $N=N_{G}(P)$. Prove that $N_{G}(N)=N$.

Solution: Clearly $N \subseteq N_{G}(N)$. Now let $x \in N_{G}(N)$, so $x N x^{-1}=N$. Then both P and $x P x^{-1}$ are Sylow p-subgroups of N, but $P \unlhd N$ so is the unique Sylow p subgroup of N. Thus $x P x^{-1}=P$ so $x \in N$. Hence $N_{G}(N) \subseteq N$.
2. Consider $\sigma=(12)(34) \in S_{4}$. Write down the elements in the conjugacy class of σ. Write down the elements in the centralizer $C_{S_{4}}(\sigma)$.

Solution: Conjugacy class: $\{(12)(34),(13)(24),(14)(23)\}$
Centralizer: $\{e,(12),(34),(12)(34),(13)(24),(14)(23),(1324),(1423)\}$
3. Let $\phi: G \rightarrow H$ be a homomorphism and let $K \unlhd H$. Prove that $\phi^{-1}\{K\}$ is a subgroup of G and that it is normal.

Solution: Note that $e \in \phi^{-1}\{K\}$ so it is nonempty. Let $x, y \in \phi^{-1}\{K\}$. Then $\phi(x), \phi(y) \in K$ so $\phi(x) \phi(y)^{-1}=\phi\left(x y^{-1}\right) \in K$ since $K \leq H$. Thus $x y^{-1} \in \phi^{-1}\{K\}$ so $\phi^{-1}\{K\}$ is a subgroup. Let $g \in G$. Then $\phi\left(g x g^{-1}\right)=\phi(g) \phi(x) \phi(g)^{-1}$ is in K since $K \unlhd H$. Thus $g x g^{-1} \in \phi^{-1}\{K\}$ so $\phi^{-1}\{K\}$ is normal in G.
4. Define the following: characteristic subgroup, orbit, solvable group, commutator subgroup.

Solution: A subgroup H is characteristic in G if $\phi(H)=H$ for any $\phi \in$ Aut G. If G acts on a set A and $a \in A$ the orbit of a is the set $\{g a \mid g \in G\}$. A group G is solvable if it has a normal series where each quotient is abelian. The commutator subgroup of G is the subgroup generated by all commutators $\left\{x y x^{-1} y^{-1} \mid x, y \in G\right\}$.

Part 2: Choose three problems. Clearly indicate which three you have chosen.
5. Let G have odd order and let $g \in G$ be a nonidentity element. Prove that g is not conjugate to g^{-1}.

Solution: G has odd order so it has no elements of order two, thus no nonidentity element is equal to its inverse. Suppose $g=x g^{-1} x^{-1}$. Suppose also that h is conjugate to g, so $h=a g a^{-1}$. Then $h^{-1}=a g^{-1} a$ so h^{-1} is conjugate to g^{-1} and hence to g and h. Thus for each h in the conjugacy class of $g, h^{-1} \neq h$ is also in the class, so the class has even order. This is a contradiction since the size of the conjugacy class is the index of the centralizer of g; in particular it must divide the order of the group.
6. a. Show that $\operatorname{Inn} S_{4} \cong S_{4}$.
b. Write down the Sylow 3 subgroup(s) of S_{4}.
c. Suppose $\phi \in$ Aut S_{4}. Show that ϕ acts on the Sylow 3 subgroups and that any ϕ which fixes all of them must be the identity.
d. Use c to define an injective homomorphism from Aut S_{4} to S_{4}. Conclude that Aut $S_{4} \cong S_{4}$.

Solution: a. We showed in class that $Z\left(S_{4}\right)=\{e\}$ so $\operatorname{Inn} S_{4} \cong S_{4} / Z\left(S_{4}\right) \cong S_{4}$.
b. $P_{1}=\{e,(123),(132)\}, P_{2}=\{e,(124),(142)\}, P_{3}=\{e,(134),(143)\}, P_{4}=\{e,(234),(243)\}$.
c. Any automorphism preserves the order of subgroups, so permutes the Sylow 3-subgroups. We know $\phi(x)=x^{-1}$ is not an automorphism, since S_{4} is nonabelian. So choose ϕ preserving the Sylows and assume WLOG that $\phi(123)=(123)$ and $\phi(124)=(142)$. Then $(123)(124)=(13)(24)$ and $(123)(142)=(143)$. Thus $\phi(13)(24)=(143)$ which is a contradiction, since $(13)(24)$ has order 2 and (143) has order 3. Any other pair of 3 -cycles works the same way, so it must be that ϕ fixes all the three-cycles. These generate S_{4} so ϕ is the identity.
d. Aut S_{4} acts on the four Sylows so we get a homomorphism from Aut S_{4} to S_{4}. The kernel is trivial by c, so Aut S_{4} is isomorphic to a subgroup of S_{4}. Part a now tells us Aut $S_{4} \cong \operatorname{Inn} S_{4} \cong S_{4}$.
7. Let P be a normal Sylow p-subgroup of G and let $H \leq G$. Prove that $P \cap H$ is the unique Sylow p-subgroup of H.

Solution: $P \cap H \unlhd H$ and the second isomorphism theorem says that $H / P \cap H \cong P H / P$. Since P is a Sylow of G it is clear that p does not divide $[P H: P]=[H: P \cap H]$. But $P \cap H$ is a p subgroup, so it is a Sylow subgroup of H. Since it is normal in H, it is the unique Sylow p-subgroup.
8. Let \mathbf{F}_{p} denote the field with p elements and let $G=G L_{2}\left(\mathbf{F}_{p}\right)$.
a. What is the order of G ?
b. Prove that G has $p+1$ Sylow p-subgroups. (Hint: The Sylow theorems will show you must only produce two distinct Sylow subgroups)

Solution:

a. G has order $\left(p^{2}-1\right)\left(p^{2}-p\right)=p(p+1)(p-1)^{2}$
b. The order of G tells us the Sylows have size p. The number n_{p} is congruent to $1 \bmod p$ and divides $(p+1)(p-1)^{2}$. One easily sees the only possibilities are 1 or $p+1$. But $\left\{\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right)\right\}$ and $\left\{\left(\begin{array}{ll}1 & 0 \\ a & 1\end{array}\right)\right\}$ are both subgroups of order p, so there are at least two Sylows, and thus there are $1+p$ Sylows.
9. Let G be a non-abelian p-group of order p^{3}, where p is a prime number. Let $Z(G)$ be the center of G and G^{\prime} be its commutator subgroup.
a. Show that $Z(G)=G^{\prime}$ and that this is the unique normal subgroup of G of order p.
b. Determine the number of distinct conjugacy classes of G.

Solution: a. G is nonabelian so $G / Z(G)$ cannot be cyclic, so cannot have order p. Thus $Z(G)$ must have order p. Now $G / Z(G)$ has order p^{2} and is thus abelian. Hence $G^{\prime} \leq Z(G)$. However $G^{\prime} \neq\{e\}$ since G is nonabelian, so $G^{\prime}=Z(G)$. Now for any normal subgroup H of order p we must have G / H of order p^{2} hence abelian hence $G^{\prime} \leq H$. Thus G^{\prime} is the unique normal subgroup of order p.
b. For $g \in Z(G)$ the class of g is just g, so there are p classes of size one. For $g \notin Z(G)$ the centralizer $C_{G}(g)$ includes all of $\langle g\rangle$ and $Z(G)$ so has order p^{2}. Thus the conjugacy class has order $p^{3} / p^{2}=p$. Hence there are p classes of size one and $\left(p^{3}-p\right) / p=p^{2}-1$ classes of size p for a total of $p^{2}+p-1$ conjugacy classes.

