
Math 619-Final Exam Fall 2008- SOLUTION SKETCH

You may use your class notes and homework assignments, as well as Dummit and Foote, but no
other material of any sort. Do not discuss the exam with anyone but the instructor. The exam
is due on Monday December 15 at noon.

Do all the problems.

1. Let R be commutative and I, J ideals of R. Prove that

R/I ⊗R R/J ∼= R/(I + J)

as R modules.

Solution: Define a map ψ : R/I ×R/J → R/(I + J) by ψ(r1 + I, r2 + J) = r1r2 + I + J . Since
I, J ⊂ I + J , ψ is well-defined. Check that ψ is R-bilinear, so induces a map ψ̃ : R/I ⊗ R/J →
R/(I + J) given by ψ̃(r1 + I ⊗ r2 + J) = r1r2 + I + J , which is also an R-module homomorphism.
Define a map Φ in the other direction by Φ(r+I +J) = r⊗1 = 1⊗r. Notice that Φ(I) = Φ(J) = 0,
so Φ(I + J) = 0 so Φ is well-defined. Check that Φ is also a module homomorphism and Φ ◦ ψ̃ and
ψ̃ ◦ Φ are the respective identity maps, and so Φ and ψ̃ thus are isomorphisms.

2. Let R and S be rings and let RM be a left R module and RNS an R-S bimodule.

a. Prove that HomR(M, N) is a right S module with the action of S given by (fs)(m) = f(m)s.

Solution: First we check that fs ∈ HomR(M,N). We have (fs)(rm) = f(rm)s = rf(m)s =
r(fs)(m) as desired. Now to check that we have a right S module we must verify that (f1 +
f2)s = f1s + f2s and f(s1 + s2) = fs1 + fs2. Both of these are immediate. Finally notice that
f(s1s2)(m) = f(m)s1s2 and (fs1)s2(m) = fs1(m)s2 = f(m)s1s2 so f(s1s2) = (fs1)s2.

b. Suppose ψ :R M →R M ′ is a homomorphism of left R modules. Notice that ψ induces a map:

ψ̃ : HomR(M ′, N) → HomR(M, N)

given by ψ̃(f) = f ◦ ψ. Prove that ψ̃ is a homomorphism of right S modules.

Solution: Easy to check that ψ̃(f1 +f2) = ψ̃(f1)+ ψ̃(f2) so we have a homomorphism of abelian
groups. Now let s ∈ S and m ∈ M . Then

ψ̃(fs)(m) = (fs) ◦ ψ(m)
= f(ψ(m))s

= ψ̃(f)(m)(s)

= (ψ̃(f))s(m).

Thus ψ̃(fs) = (ψ̃(f))s so ψ̃ is a right S-module map.

3. Suppose f : M → N and g : N → M are R-module homomorphisms such that g ◦ f = 1M .
Prove that N ∼= Im f ⊕Ker g.

Solution: Let n ∈ N . Then n = f(g(n)) + n − f(g(n)). Notice that g(n − f(g(n))) =
g(n)− g ◦ f ◦ g(n) = 0 since g ◦ f = 1. Thus n ∈ Im f + Ker g so N = Im f + Ker g. Now suppose
f(m) ∈ Im f ∩Ker g. Then g(f(m)) = 0 but g(f(m)) = m so m = 0 and thus f(m) = 0. We have
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shown N is the sum and since the intersection is 0, the sum is direct.

4. Show that the ring R of even integers contains a maximal ideal I such that R/I is not a field.

Solution: Let I = (4) = 4Z which is clearly an ideal in R. Then R/I has two elements, namely
0+I and 2+I. But both elements square to 0 in the ring R/I so R/I is not a field. Suppose a 6∈ I.
Then a is even but not a multiple of 4 so the gcd of a and 4 is two. Thus the subgroup generated by
a and 4 is 2Z = R. This proves I is a maximal ideal (actually more, that it is a maximal subgroup).

5. Page 213 #7: Prove there are no simple groups of order 1755 or 5265. (Some reading of the
beginning of Section 6.2 will be helpful here.)

Solution: Suppose G is simple of order 1755 = 33 ∗ 5 ∗ 13. Then n3 ≡ 1 mod 3 and n3 | 65
which forces n3 = 13 since n3 6= 1 by assumption. Then G acts transitively on these 13 Sylow
3-subgroups by conjugation, which gives a nontrivial homomorphism ψ : G → S13. The kernel is
normal, so trivial, and thus ψ is an injection, so G is isomorphic to a subgroup of S13, so WLOG
assume G ≤ S13. Let P13 be a Sylow subgroup of G (and hence of S13) so P is generated by a
13-cycle. The Sylow theorems tell us that n13 = 27 so [G : NG(P )] = 27 so |NG(P )| = 65. We
have:

Z13
∼= P ≤ G ≤ S13.

Then NG(P ) ≤ NS13(P ), so |NG(P )| divides |NS13(P )| = 13 ∗ 12. But 65 does not divide 13*12, so
we have a contradiction.

The proof for 5265 = 34 ∗ 5 ∗ 13 is identical, except we conclude |NG(P )| = 195.

6. How many Sylow p subgroups does the general linear group GL3(p) have?

Solution: Let P be a Sylow p subgroup. Then np = [G : NG(P )]. Recall that

|GL3(p)| = (p3 − 1)(p3 − p)(p3 − p2) = p3(p− 1)3(p2 + p + 1)(p + 1)

and that the upper unitriangular matrices are a Sylow p-subgroup of order p3.

Let p =




1 a b
0 1 c
0 0 1


 ∈ P be arbitrary. Suppose T ∈ NG(P ). This is true if and only if

TpT−1 ∈ P for any p ∈ P , i.e. if and only if Tp = p̃T for some p̃ ∈ P . So suppose:

T =




d e f
g h i
j k l


 ∈ NG(P ), p̃ =




1 A B
0 1 C
0 0 1




Set Tp = p̃T and assume a, b, c are nonzero. The matrix equality gives us 9 equations in the
entries of T, p, p̃, from which one easily solves that g = j = k = 0 so T is upper triangular. But it
is easy to see upper triangular matrices are all in the normalizer. Thus:

NG(P ) =








d e f
0 h i
0 0 l


 | dhl 6= 0



 .

We conclude that |NG(P )| = (p− 1)3p3 so np = (p2 + p + 1)(p + 1).



3

7. Let G be infinite and let H < G be a subgroup of finite index. Prove that G is not simple. Hint:
p.122 #8.

Solution: Suppose [G : H] = n. Then G acts on the left cosets G/H which gives a nontrivial
homomorphism ψ : G → Sn. The kernel is a subgroup with G/K ∼= ψ(G) ≤ Sn. Thus G/K is
finite so K is normal of finite index so K 6= 1 and G is not simple.

8. Recall that the commutator of x and y is [x, y] = xyx−1y−1. Notice in an abelian group that
the identity is the only commutator. Prove, more generally, that if [G : Z(G)] = n that G has at
most n2 different commutators.

Solution: Suppose x1Z(G) = x2Z(G) and y1Z(G) = y2Z(G) so x1 = x2z and y1 = y2z̃ for
some z, z̃ ∈ Z(G). Check that [x1, y1] = [x2, y2]. Thus [x, y] is determined completely by the cosets
xZ(G) and yZ(G) so there are at most n2 possibilities.

9. Let Z[12 ] be the subring of Q generated by Z and 1
2 . Prove or disprove that Z[12 ] is a free Zmodule.

Solution: Check that Z[12 ] is just the set of rational numbers which, in lowest terms, have
denominator a power of 2. Suppose it were a free abelian group. Suppose further the rank is at
least 2, so there is a basis {b1, b2, . . . } where b1 = m

2i and b2 = n
2j with m and n odd and i, j ≥ 0.

Assume that i ≥ j WLOG. Then:

mn

2j
= mb2 = 2i−jnb1

and both m and 2i−jn are in Z. This contracts the freeness of the basis. Thus it must be rank 1,
i.e. ∼= Z. But this is clearly impossible. The subgroup generated by a

2i does not have elements with
denominators having powers of 2 greater than 2i, so Z[12 ] is not cyclic, so not isomorphic to Z.

10. Let Z7 denote the ring of integers modulo 7. Let p(x) = x3 + 2x + 1 ∈ Z7[x].

a. Either prove p(x) is irreducible or exhibit a factorization of it.

b. How many elements are in the ring Z7[x]/(p(x))? Is it a field? Explain.

Solution: p(x) is degree 3 so it is irreducible if and only if it has no roots. Check that
p(0), p(1), . . . , p(6) are all nonzero, so p(x) is irreducible. Thus Z7[x]/(p(x)) is a field. Every
coset is uniquely written as a0 + a1x + a2x

2 + (p(x)) with a0, a1, a2 ∈ Z7. Thus it is a field of 73

elements.


