Sample Calculation of Induced Module

Step 1: Start with the 2-dimensional module W for S_{3} with representing matrices:

$$
\begin{gathered}
\psi(e)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \psi((1,2))=\left(\begin{array}{rr}
-1 & -1 \\
0 & 1
\end{array}\right), \psi((2,3))=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \\
\psi((1,3))=\left(\begin{array}{rr}
1 & 0 \\
-1 & -1
\end{array}\right), \psi((1,2,3))=\left(\begin{array}{rr}
-1 & -1 \\
1 & 0
\end{array}\right), \psi((1,3,2))=\left(\begin{array}{rr}
0 & 1 \\
-1 & -1
\end{array}\right)
\end{gathered}
$$

Step 2: Choose a set of coset representatives for S_{3} in S_{4} :

$$
\left\{e=g_{1},(1,4)=g_{2},(2,4)=g_{3},(3,4)=g_{4}\right\}
$$

Step 3: Let $\sigma=(1,2)(3,4)$. We will compute $(\operatorname{Ind} \psi)(\sigma)$. We compute the values $g_{j}^{-1} \sigma g_{i}$ giving:

$$
\left(\begin{array}{cccc}
(1,2)(3,4) & (1,3,4,2) & (1,2,3,4) & (1,2) \\
(1,2,4,3) & (1,3)(2,4) & (1,2,3) & (1,2,4) \\
(1,4,3,2) & (1,3,2) & (1,4)(2,3) & (1,4,2) \\
(1,2) & (1,2,4) & (1,4,2) & (1,2)(3,4)
\end{array}\right)
$$

Only those in red are in S_{3}.

Step 4: The $\dot{\psi}\left(g_{j}^{-1} \sigma g_{i}\right)$ matrix is:

$$
(\operatorname{Ind} \psi)(1,2)(3,4)=\left(\begin{array}{rrrrrrr}
& & & & & & \\
& & & & & -1 & -1 \\
& & & & & -1 & -1
\end{array}\right)
$$

Notice the induced character vanishes on $\sigma=(1,2)(3,4)$, as no conjugate of σ lies in S_{3}.

