Math 561 Fall 2013 Homework Number 6

Due Monday November 4, 2013

1. Use the hook length formula to compute the dimensions of the irreducible modules for S_{6}. Verify the sum of the squares is $6!$.
2. Let $\sigma \in S_{n}$ be an n-cycle and $\lambda \vdash n$. Use the Frobenius formula to prove $\chi_{\lambda}(\sigma)=0$ unless λ is a hook partitions (i.e. of the form $\left(n-d, 1^{d}\right)$). In this case show $\chi_{\lambda}(\sigma)=(-1)^{d}$.
3. Problem 5.24.1
4. Recall $V_{\lambda}=\mathbb{C} S_{n} c_{\lambda}=\mathbb{C} S_{n} a_{\lambda} b_{\lambda}$ is irreducible.
a) Prove that $V_{\lambda} \cong \mathbb{C} S_{n} b_{\lambda} a_{\lambda}$. (Hint: Use Schur's Lemma and the fact that right multiplications are left module homomorphisms.)
b) Conlude that V_{λ} is the image of the map from $\mathbb{C} S_{n} a_{\lambda}$ to $\mathbb{C} S_{n} b_{\lambda}$ given by right multiplication by b_{λ}, and similarly the other way.
c) Prove that $V_{\lambda^{\prime}} \cong V_{\lambda} \otimes \operatorname{sgn}$.
