The D_{4} root system

The D_{l} root system can be realized as the set of vectors in \mathbb{R}^{l} with integer coordinates and length $\sqrt{2}$. It clearly has $4 \cdot\binom{n}{2}=2 n(n-1)$ roots. A choice of simple roots is $\alpha_{i}=e_{i}-e_{i+1}$ for $1 \leq i<l$ together with $e_{l-1}+e_{l}$. For example in type D_{4} we have:

$$
\begin{aligned}
& \alpha_{1}=(1,-1,0,0) \\
& \alpha_{2}=(0,1,-1,0) \\
& \alpha_{3}=(0,0,1,-1) \\
& \alpha_{4}=(0,0,1,1)
\end{aligned}
$$

The standard labelling of the Dynkin Diagram for D_{l} is:

We have the following 12 positive roots:

$$
\begin{aligned}
\alpha_{1} & =(1,-1,0,0) \\
\alpha_{2} & =(0,1,-1,0) \\
\alpha_{3} & =(0,0,1,-1) \\
\alpha_{4} & =(0,0,1,1) \\
\alpha_{1}+\alpha_{2} & =(1,0,-1,0) \\
\alpha_{2}+\alpha_{3} & =(0,1,0,-1) \\
\alpha_{2}+\alpha_{4} & =(0,1,0,1) \\
\alpha_{1}+\alpha_{2}+\alpha_{3} & =(1,0,0,-1) \\
\alpha_{2}+\alpha_{2}+\alpha_{4} & =(1,0,0,1) \\
\alpha_{2}+\alpha_{3}+\alpha_{4} & =(0,1,1,0) \\
\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4} & =(1,0,1,0) \\
\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4} & =(1,1,0,0)
\end{aligned}
$$

Note the correspondence between the positive roots and the dimension vectors for the indecomposable modules for the D_{4} quiver.

