The D_4 root system

The D_l root system can be realized as the set of vectors in \mathbb{R}^l with integer coordinates and length $\sqrt{2}$. It clearly has $4 \cdot \binom{n}{2} = 2n(n-1)$ roots. A choice of simple roots is $\alpha_i = e_i - e_{i+1}$ for $1 \leq i < l$ together with $e_{l-1} + e_l$. For example in type D_4 we have:

 $\begin{array}{rcl} \alpha_1 &=& (1,-1,0,0) \\ \alpha_2 &=& (0,1,-1,0) \\ \alpha_3 &=& (0,0,1,-1) \\ \alpha_4 &=& (0,0,1,1) \end{array}$

The standard labelling of the Dynkin Diagram for D_l is:

We have the following 12 positive roots:

$$\begin{aligned} \alpha_1 &= (1, -1, 0, 0) \\ \alpha_2 &= (0, 1, -1, 0) \\ \alpha_3 &= (0, 0, 1, -1) \\ \alpha_4 &= (0, 0, 1, 1) \\ \alpha_1 + \alpha_2 &= (1, 0, -1, 0) \\ \alpha_2 + \alpha_3 &= (0, 1, 0, -1) \\ \alpha_2 + \alpha_4 &= (0, 1, 0, 1) \\ \alpha_1 + \alpha_2 + \alpha_3 &= (1, 0, 0, -1) \\ \alpha_2 + \alpha_2 + \alpha_4 &= (1, 0, 0, 1) \\ \alpha_2 + \alpha_3 + \alpha_4 &= (0, 1, 1, 0) \\ \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 &= (1, 0, 1, 0) \\ \alpha_1 + 2\alpha_2 + \alpha_3 + \alpha_4 &= (1, 1, 0, 0) \end{aligned}$$

Note the correspondence between the positive roots and the dimension vectors for the indecomposable modules for the D_4 quiver.