Math 561 Midterm Exam Solutions

October 18, 2013

1a. $[x,[y, z]]+[y,[z, x]]+[z,[x, y]]=0$ for all $x, y, z, \in \mathfrak{g}$.
b. Each vertex v is assigned a vector space $W(v)$ and for each edge e pointing from v_{1} to v_{2} there is a linear map $T_{e}: W\left(v_{1}\right) \rightarrow W\left(v_{2}\right)$.
c. The group acts diagonally $g(u \otimes v)=g u \otimes g v$ and the action is extended to $k G$ by linearity.
d. The radical is the common annihilator of all simple A modules, i.e. $\operatorname{rad}(A)=\{a \in A \mid a S=$ 0 for all simple A- modules $S\}$.
e. Let $\chi_{1}, \ldots, \chi_{r}$ be the irreducible characters. Then

$$
\sum_{i=1}^{r} \chi_{i}(g) \overline{\chi_{i}(h)}= \begin{cases}\left|C_{G}(g)\right| & \text { if } g \text { and } h \text { are conjugate }, \\ 0 & \text { else. }\end{cases}
$$

f. Let $\left\{g_{i}\right\}_{i=1}^{t}$ be a set of left coset representatives. Then:

$$
\left(\operatorname{Ind}_{H}^{G} \psi\right)(g)=\sum_{i=1}^{t} \dot{\psi}\left(g_{i}^{-1} g g_{i}\right)
$$

where $\dot{\psi}(x)$ is defined to be zero if $x \notin H$.
g. $F S(\chi)=\frac{1}{|G|} \sum_{g \in G} \chi\left(g^{2}\right)$.
h . The universal enveloping algebra is the tensor algebra $T(\mathfrak{g})$ quotiented out by the ideal generated by $\{x y-y x-[x, y] \mid x, y \in \mathfrak{g}\}$.

2 a. The order is 108 , the sum of the character degrees.
b. Using column orthogonality to calculate centralizer orders, we get the conjugacy class sizes are $1,9,9,6,6,2,9,18,18,12,18$.
c. The center is trivial, there are no other classes of size 1 .
d. The number of linear characters is $4=\left|G / G^{\prime}\right|$ so G^{\prime} has 27 elements.
e. Calculating the kernels of the irreducibles we see that χ_{10} and χ_{11} have trivial kernel. Every other irreducible has C_{1} and C_{6} in the kernel so $C_{1} \cup C_{6}$ is the smallest normal subgroup, it has order 3.
f. The kernel of $X .6$ is $C_{1} \cup C_{3} \cup C_{4} \cup C_{6}$. The irreducible characters of G / K correspond to those of G which have K in their kernel. These are X.1, X.3, X.6. Focusing on these 3 we get 3 distinct columns and so the character table if G / K is:

$$
\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 1 \\
2 & 0 & -1
\end{array}
$$

This is a nonabelian group of order 6 , so $G / K \cong S_{3}$.
g. $X .5+X .6+X .9$
3. Let $H \leq G$ and let ψ be a character of H and χ a character of G. Then:

$$
\left(\psi, \chi_{H}\right)=\left(\psi^{G}, \chi\right)
$$

Thus to get the decomposition we need to restrict each of $\psi_{1}, \ldots, \psi_{7}$ to A_{4} and calculate the inner product with X_{4}. Doing so we obtain $\psi_{3}+\psi_{4}+\psi_{5}+\psi_{6}+2 \psi_{7}$.

