Math 561 Midterm Exam

October 18, 2013

1. Short Answer- no work need be shown. (48 points)

- a) Give the Jacobi identity for Lie algebras.
- **b)** Let Q be a quiver with vertices V and edges E. Define a representation of Q.
- c) Let G be a group and U, V be kG modules. How does kG act on the tensor product $U \otimes V$?
- **d)** Define the radical of an algebra A.
- e) State the column orthogonality relation for a character table.
- f) Let $H \leq G$ and ψ a character of H. Give a formula for the induced character $(\operatorname{Ind}_{H}^{G} \psi)(g)$.
- g) Define the Frobenius-Schur indicator of a character.
- **h)** Let \mathfrak{g} be a Lie algebra. Define the *universal enveloping algebra* $\mathcal{U}(\mathfrak{g})$.

2. (35 points) Consider the character table below for an unknown group G. Label the conjugacy classes $C1, C2, C3, \ldots, C11$ corresponding to the 11 columns.

X.1	1	1	1	1	1	1	1	1	1	1	1
X.2	1	-1	-1	1	1	1	1	-1	-1	1	1
Х.З	1	-1	1	1	1	1	-1	-1	1	1	-1
Χ.4	1	1	-1	1	1	1	-1	1	-1	1	-1
X.5	2	•	-2	2	-1	2			1	-1	•
Х.б	2	•	2	2	-1	2			-1	-1	•
Χ.7	2	-2		-1	2	2		1		-1	•
X.8	2	2		-1	2	2		-1		-1	•
Х.9	4	•		-2	-2	4				1	•
X.10	6	•				-3	-2				1
X.11	6	•	•	•	•	-3	2	•	•	•	-1

a) Determine the order of G.

b) Determine the size of each conjugacy class.

c) Determine the center of G as a union of conjugacy classes.

d) Determine the order of the commutator subgroup G'.

e) What is the order of the smallest nontrivial normal subgroup of G?

f) Let K = ker(X.6). Calculate the character table of G/K and determine its isomorphism class.

g) Decompose the tensor product $X.8 \cdot X.9$ into irreducibles.

3. (17 points) Below are the character tables for A_4 and S_5 respectively, with conjugacy class sizes shown, and where w is a primitive cube root of unity. State the Frobenius reciprocity result for characters, and then use Frobenius reciprocity to decompose $\operatorname{Ind}_{A_4}^{S_5} \chi_4$ into irreducible S_5 characters.

	1	10	15	20	30	24	20
	E	(1,2)	(1,2)(3,4)	(1,2,3)	(1,2,3,4)	(1,2,3,4,5)	(1,2)(3,4,5)
ψ_1	1	1	1	1	1	1	1
ψ₂	1	-1	1	1	-1	1	-1
ψ₃	4	2	0	1	0	-1	-1
ψ₄	4	-2	0	1	0	-1	1
ψ₅	5	1	1	-1	-1	0	1
ψ ₆	5	-1	1	-1	1	0	-1
ψ,7	6	0	-2	0	0	1	0

	1	4	4	3
	E	(1,2,3)	(1,3,2)	(1,2)(3,4)
X ₁	1	1	1	1
X ₂	1	W	w^2	1
X ₃	1	w^2	W	1
X_4	3	0	0	-1