Math 561 Midterm Exam

October 18, 2013

1. Short Answer- no work need be shown. (48 points)

a) Give the Jacobi identity for Lie algebras.
b) Let Q be a quiver with vertices V and edges E. Define a representation of Q.
c) Let G be a group and U, V be $k G$ modules. How does $k G$ act on the tensor product $U \otimes V$?
d) Define the radical of an algebra A.
e) State the column orthogonality relation for a character table.
f) Let $H \leq G$ and ψ a character of H. Give a formula for the induced character $\left(\operatorname{Ind}_{H}^{G} \psi\right)(g)$.
g) Define the Frobenius-Schur indicator of a character.
h) Let \mathfrak{g} be a Lie algebra. Define the universal enveloping algebra $\mathcal{U}(\mathfrak{g})$.
2. (35 points) Consider the character table below for an unknown group G. Label the conjugacy classes $C 1, C 2, C 3, \ldots, C 11$ corresponding to the 11 columns.

X. 1	1	1	1	1	1	1	1	1	1	1	1
X. 2	1	-1	-1	1	1	1	1	-1	-1	1	1
X. 3	1	-1	1	1	1	1	-1	-1	1	1	-1
X. 4	1	1	-1	1	1	1	-1	1	-1	1	-1
X. 5	2	.	-2	2	-1	2	.	.	1	-1	.
X. 6	2	.	2	2	-1	2	.	.	-1	-1	.
$X .7$	2	-2	.	-1	2	2	.	1	.	-1	.
$X .8$	2	2	.	-1	2	2	.	-1	.	-1	.
$X .9$	4	.	.	-2	-2	4	.	.	.	1	.
$X .10$	6	-3	-2	.	.	.	1
$X .11$	6	-3	2	.	.	.	-1

a) Determine the order of G.
b) Determine the size of each conjugacy class.
c) Determine the center of G as a union of conjugacy classes.
d) Determine the order of the commutator subgroup G^{\prime}.
e) What is the order of the smallest nontrivial normal subgroup of G ?
f) Let $K=\operatorname{ker}(X .6)$. Calculate the character table of G / K and determine its isomorphism class.
g) Decompose the tensor product $X .8 \cdot X .9$ into irreducibles.
3. ($\mathbf{1 7}$ points) Below are the character tables for A_{4} and S_{5} respectively, with conjugacy class sizes shown, and where w is a primitive cube root of unity. State the Frobenius reciprocity result for characters, and then use Frobenius reciprocity to decompose $\operatorname{Ind}_{A_{4}}^{S_{5}} \chi_{4}$ into irreducible S_{5} characters.

	1	10	15	20	30	24	20
	E	$(1,2)$	$(1,2)(3,4)$	$(1,2,3)$	$(1,2,3,4)$	$(1,2,3,4,5)$	$(1,2)(3,4,5)$
ψ_{1}	1	1	1	1	1	1	1
Ψ_{2}	1	-1	1	1	-1	1	-1
ψ_{3}	4	2	0	1	0	-1	-1
ψ_{4}	4	-2	0	1	0	-1	1
ψ_{5}	5	1	1	-1	-1	0	1
ψ_{6}	5	-1	1	-1	1	0	-1
ψ_{7}	6	0	-2	0	0	1	0

	1	4	4	3
	E	$(1,2,3)$	$(1,3,2)$	$(1,2)(3,4)$
X_{1}	1	1		
X_{2}	1	w	1	1
X_{3}	1	$w^{\wedge} 2$	$w^{\wedge} 2$	1
X_{4}	3	0	w	1
			0	-1

